

UNIVERSITE ABDELMALEK ESSAADI FACULTE DES SCIENCES TETOUAN

THESE

Présentée

Pour l'obtention du

DOCTORAT EN SCIENCES

Par:

MOHAMED DAKKACH

Discipline : Chimie-Physique Appliquée Spécialité : Chimie Inorganique, Catalyse et Environnement

- Synthèses et caractérisations de nouveaux complexes à base de ruthénium (II) à ligands polypyridinique et carbène N-hétérocyclique : application en catalyse d'oxydation
- Développement de nouveaux systèmes catalytiques "propres" mettant en œuvre le phosphate naturel : application à la coupure oxydante de la liaison C-C en présence de dioxygène

Soutenue le 28 septembre 2010 devant le jury composé de :

A. EL AMARTI	Professeur à la Faculté des Sciences, Tétouan	Président
S. SEBTI	Professeur à la Faculté des Sciences Ben M'Sik, Casablanca	Rapporteur
M. SOUSSI EL BEGRANI	Professeur à la Faculté des Sciences, Tétouan	Rapporteur
I. ROMERO GARCIA	Professeur à la Faculté des Sciences, Girona (Espagne)	Rapporteur
A. BARHOUN	Professeur à la Faculté des Sciences, Tétouan	Examinateur
M. E. EL AMRANI	Professeur à la Faculté des Sciences, Tétouan	Examinateur
M. RODRIGUEZ PIZARRO	Professeur à la Faculté des Sciences, Girona (Espagne)	Directrice
A. ATLAMSANI	Professeur à la Faculté des Sciences, Tétouan	Directeur

Résumé

Ce travail est consacré au développement de nouveaux systèmes catalytiques mettant en œuvre les complexes du ruthénium (II) polypyridiniques ou le phosphate naturel (PN). L'activité catalytique a été examinée dans des réactions d'oxydation de grande importance industrielle : l'époxydation des oléfines, l'oxydation de l'eau en dioxygène et la coupure oxydante de la liaison C-

C des cycloalcanones et des α-cétols.

Dans la première partie, nous avons mis au point la synthèse de nouvelles familles de complexes du ruthénium, $[Ru^{II}(T)(D)X]^{n+}$ (X = Cl ou H_2O ; n = 0 ou 1 ou 2), contenant des ligands tridentates (T) et bidentates (D) de nature géométrique et électronique différente. Les complexes obtenus ont été caractérisés, en solution, par les techniques spectroscopiques RMN 1D et 2D, UVvisible, spectrométrie de masse et l'analyse élémentaire. La structure des chlorocomplexes a été caractérisée par la DRX. Les propriétés redox ont été étudiées par la VC et la DPV. De cette étude, il ressort que les aquocomplexes contenant un ligand bidentate à fort caractère σ-donneur (pyrpy-O et CN-Me) présentent un processus électrochimique biélectronique, dans un large domaine de pH. (spectroscopiques, différentes propriétés sur les ligands des électrochimiques, acido-basiques et photochimiques) des complexes synthétisés a été examinée.

La réactivité des aquocomplexes a été évaluée dans l'époxydation des oléfines. En général, tous les complexes et notamment les aquocomplexes carbènes N-hétérocycliques ont conduit à de bons rendements et à des sélectivités élevées. L'influence électronique (anionique, neutre et carbénique) et géométrique (faciale, méridionale, cis et trans) des ligands T et D sur l'activité

catalytique a été étudiée de façon approfondie.

Les tests préliminaires d'oxydation de l'eau en dioxygène par les aquocomplexes sont

encourageants; en particulier, les complexes contenant des ligands neutres comme pypz-Me.

Le dernier volet dans cette partie concerne l'immobilisation de certains catalyseurs homogènes dans les liquides ioniques ou sur les électrodes modifiées. Ainsi, les liquides ioniques nous ont permis d'obtenir des catalyseurs efficaces et recyclables jusqu'à dix fois sans perte significative de l'activité. D'autre part, les électrodes modifiées ont abouti à des catalyseurs

hétérogènes robustes et facilement séparables.

Dans la seconde partie, nous avons mis en œuvre des réactions de coupure oxydante catalytique des liaisons C-C de différents substrats carbonylés (cycloalcanones et α -cétols) en présence de phosphate naturel du type fluoroapatite, $Ca_{10}(PO_4)_6F_2$, et du dioxygène. L'objectif recherché consistait à trouver un système hétérogène alternatif propre et efficace à l'oxydation industrielle de la cyclohexanone en acide adipique par l'acide nitrique. Dans un premier temps, en utilisant la 2-méthylcyclohexanone comme substrat modèle, nous avons optimisé les conditions opératoires afin de rendre le système 'PN/O₂' plus performant. Ensuite, nous avons montré que le PN est un catalyseur efficace et sélectif pour l'oxydation de cétones cycliques et de certains α -cétols. La modification du PN par le vanadium aboutit à la préparation d'un nouveau catalyseur V/PN. Ce dernier a été caractérisé par différentes méthodes physico-chimiques : DRX, IRTF, MEB et BET. Il parait que le vanadium est bien dispersé à la surface du PN.

L'étude comparative entre les deux systèmes catalytiques 'PN/O₂' et 'V/PN/O₂' montre que ce dernier est plus actif. L'oxydation de la 2-hydroxypinane-3-one, réputée exigeante, par les deux systèmes est aussi très efficace. Ceci ouvre des perspectives intéressantes pour une préparation plus sélective de l'acide adipique moyennant un passage forcé de la cyclohexanone à la 2-hydroxycyclohexanone. Enfin, les deux systèmes 'PN/O₂' et 'V/PN/O₂' ont été recyclés mais un

lessivage faible du vanadium a été observé au premier cycle.

Mots clés :

Catalyse Redox/ Epoxydation/ Complexes du Ruthénium/ Ligands Polypyridyniques/ Ligands Carbènes N-Hétérocycliques/ Processus Biélectroniques/ Liquides Ioniques/ Polypyrroles/ Électrodes Modifiées/ Oxydation de l'Eau/ Phosphate Naturel/ Dioxygène/ Coupure Oxydante des Liaisons C-C.

Table des Matières

Résumé	i
Recimen	ii
Liste des apreviations	iii
Annexe-CD	v
Introduction générale	1
<u>Première Partie</u>	
Nouveaux complexes du ruthénium (II) à ligands polypyridinique et carbène N-hétérocyclique : synthèses, caractérisations et applications en catalyse d'oxydation	
Chapitre 1 : Analyse bibliographique : les aquocomplexes du ruthénium (II) polypyridiniques en catalyse d'oxydation	
1. Généralités sur les complexes du ruthénium	6
2. Oxocomplexes polypyridiniques du ruthénium	7
2.1. Propriétés redox et acide	7
2.2. Processus biélectronique : Effet des ligands	9
3. Application en catalyse d'oxydation des oxocomplexes du ruthénium	12
3.1. Différentes voies mécanistiques	12
3.2. Epoxydation des oléfines	14
3.3. Oxydation de l'eau	19
Références bibliographiques	24
Chapitre 2 : Nouvelles familles de complexes de Ru(II) contenant des ligands N-donneurs anionique et neutre et leurs utilisations en catalyse d'oxydation : étude des effets géométrique et électronique	
1. Introduction	29
2. Résultats expérimentaux et discussions	30
2.1. Synthèses et structure à l'état solide	30
2.2. Propriétés spectroscopiques	38

2.2.1. Spectroscopie RMN ¹ H	38
2.2.2. Spectroscopie d'absorption U.V- visible	42
2.3. Propriétés d'oxydo-réduction	49
2.3.1. Etude électrochimique des chlorocomplexes	49
2.3.2. Etude électrochimique des aquocomplexes : Diagramme de	1
Pourbaix	51
2.4. Etude comparative des propriétés électrochimiques des	
aquocomplexes synthétisés avec ceux de la littérature	57
2.5. Activités catalytiques	60
2.5.1. Epoxydation des oléfines	60
2.5.2. Oxydation de l'eau	66
3. Conclusion	70
4. Partie expérimentale	72
4.1. Réactifs et solvants	72
4.2. Instrumentation et conditions générales	72
4.3. Synthèses et caractérisations des composés étudiés	74
4.3.1. trans-[Ru ^{II} Cl(pyrpy)(trpy)]·0,3CHCl ₃ , trans-2	74
4.3.2. trans-[Ru ^{II} (pyrpy-O)(trpy)]OH ₂](PF ₆), trans-3	75
4.3.3. trans et cis-[Ru ^{II} Cl(pypz-Me)(trpy)](PF ₆), trans-4 et cis-4	75
4.3.4. trans-[Ru ^{II} (pypz-Me)(trpy)OH ₂](PF ₆) ₂ ·H ₂ O, trans-5	76
4.3.5. cis-[Ru ^{II} (pypz-Me)(trpy)OH ₂](PF ₆) ₂ ·H ₂ O, cis-6	77
Références bibliographiques	78
5. Annexe	81
Chapitre 3 : Nouveaux aquocomplexes carbènes N-hétérocycliques du Ruthénium (II) ayant un processus redox biélectronique : application en catalyse d'oxydation	
1. Rappel bibliographique : les complexes carbènes N-hétérocycliques du	
ruthénium en catalyse homogène	
1.1. Avant propos	84
1.2. Généralités sur les carbènes N-hétérocycliques	84
1.2.1. Définition	84
1.2.2. Historique	85
1.2.3. Liaison métal-NHC	86
1.3. Complexes NHC en catalyse homogène	87
Références bibliographiques	90

2. Résultats expérimentaux et discussions	93
2.1. Introduction	93
2.2. Synthèse des complexes	94
2.3. Propriétés structurales et spectroscopiques	97
2.3.1. Etude par diffraction des rayons X	97
2.3.2. Caractérisation par la RMN ¹ H	103
2.3.3. Spectroscopie d'absorption UV- visible	107
2.4. Propriétés d'oxydo-réduction	113
2.4.1. Etude électrochimique des halocomplexes	113
2.4.2. Etude électrochimique des aquocomplexes : Diagramme de	
Pourbaix	115
2.5. Etude comparative des propriétés électrochimiques des aquocomplexes	
synthétisés avec ceux de la littérature	120
2.6. Activités catalytiques	122
2.6.1. Epoxydation des oléfines	122
2.6.2. Oxydation de l'eau	127
3. Conclusion	130
4. Partie expérimentale	131
4.1. Réactifs et solvants	131
4.2. Synthèses et caractérisations des composés étudiés	131
4.2.1. trans, fac-[Ru ^{II} Cl(CN-Me)(pbea)](PF ₆)·0,5CH ₂ Cl ₂ , trans, fac-3	131
4.2.2. trans, fac-[Ru ^{II} (CN-Me)(pbea)OH ₂](PF6) ₂ , trans, fac-5	132
4.2.3. trans et cis-[Ru ^{II} Cl(CN-Me)(trpy)](PF ₆), trans-6 et cis-6	133
4.2.4. trans-[Ru ^{II} (CN-Me)(trpy)OH ₂](PF ₆) ₂ ·0,5H ₂ O, trans-8·	134
4.2.5. <i>cis</i> -[Ru ^{II} (CN-Me)(trpy)OH ₂](PF ₆) ₂ ·3,5H ₂ O, <i>cis</i> -8	134
Références bibliographiques	136
5. Annexe	138
Chapitre 4 : Epoxydation catalytique des oléfines dans les liquides ioniques	
1. Rappel bibliographique : les liquides ioniques, solvants de réaction	4.15
d'oxydation catalytique	142
1.1. Avant propos	142
1.2. Généralités sur les liquides ioniques	142
1.2.1. Présentation	142
1.2.2. Historique	144
1.2.3. Propriétés des liquides ioniques	144

1.3. Utilisation des LI comme solvants de reaction catalytique	146
1.3.1. Intérêt des LI en catalyse	147
1.3.2. Liquides ioniques dans l'époxydation catalytique	148
Références bibliographiques	152
2. Résultats expérimentaux et discussions	155
2.1. Introduction	155
2.2. Essais d'optimisation de l'époxydation catalytique des oléfines : ca	s du
cyclooctène	155
2.2.1. Effet de la fraction de [bmim]PF ₆	156
2.2.2. Effet de l'oxydant	
2.3. Généralisation de l'époxydation catalytique des oléfines dans le	
mélange [bmim]PF ₆ -CH ₂ Cl ₂	158
2.4. Recyclage	159
2.4.1 Recyclage dans CH ₂ Cl ₂	159
2.4.2 Recyclage dans [bmim]PF ₆	162
3. Conclusion	165
Références bibliographiques	166
Chapitre 5 : Nouveau film de polypyrrole fonctionnalisé par le comp trans,fac-[Ru ^{II} (bpea-pyr)(CN-Me)OH ₂] ²⁺ supporté sur une électrode de fe de carbone : application en catalyse d'époxydation	lexe
Chapitre 5 : Nouveau film de polypyrrole fonctionnalisé par le comp trans,fac-[Ru ^{II} (bpea-pyr)(CN-Me)OH ₂] ²⁺ supporté sur une électrode de fe	lexe
Chapitre 5 : Nouveau film de polypyrrole fonctionnalisé par le comp trans,fac-[Ru ^{II} (bpea-pyr)(CN-Me)OH ₂] ²⁺ supporté sur une électrode de fe de carbone : application en catalyse d'époxydation 1. Rappel bibliographique : polypyrroles fonctionnalisés par les	lexe utre
Chapitre 5 : Nouveau film de polypyrrole fonctionnalisé par le comp trans, fac-[Ru ^{II} (bpea-pyr)(CN-Me)OH ₂ ²⁺ supporté sur une électrode de fe de carbone : application en catalyse d'époxydation 1. Rappel bibliographique : polypyrroles fonctionnalisés par les aquocomplexes du ruthénium : catalyseurs supportés sur des électrodes po	lexe utre
Chapitre 5 : Nouveau film de polypyrrole fonctionnalisé par le comp trans, fac-[Ru ^{II} (bpea-pyr)(CN-Me)OH ₂] ²⁺ supporté sur une électrode de fe de carbone : application en catalyse d'époxydation 1. Rappel bibliographique : polypyrroles fonctionnalisés par les aquocomplexes du ruthénium : catalyseurs supportés sur des électrodes poles réactions d'oxydation	lexe utre our 167
Chapitre 5 : Nouveau film de polypyrrole fonctionnalisé par le comp trans, fac-[Ru ^{II} (bpea-pyr)(CN-Me)OH ₂] ²⁺ supporté sur une électrode de fe de carbone : application en catalyse d'époxydation 1. Rappel bibliographique : polypyrroles fonctionnalisés par les aquocomplexes du ruthénium : catalyseurs supportés sur des électrodes po les réactions d'oxydation 1.1. Avant-propos	lexe utre our 167
Chapitre 5: Nouveau film de polypyrrole fonctionnalisé par le comp trans, fac-[Ru ^{II} (bpea-pyr)(CN-Me)OH ₂ ²⁺ supporté sur une électrode de fe de carbone : application en catalyse d'époxydation 1. Rappel bibliographique : polypyrroles fonctionnalisés par les aquocomplexes du ruthénium : catalyseurs supportés sur des électrodes po les réactions d'oxydation 1.1. Avant-propos 1.2. Electropolymérisation oxydante du groupe pyrrole	lexe utre our 167 167
Chapitre 5: Nouveau film de polypyrrole fonctionnalisé par le comp trans, fac-[Ru ^{II} (bpea-pyr)(CN-Me)OH ₂] ²⁺ supporté sur une électrode de fe de carbone : application en catalyse d'époxydation 1. Rappel bibliographique : polypyrroles fonctionnalisés par les aquocomplexes du ruthénium : catalyseurs supportés sur des électrodes po les réactions d'oxydation 1.1. Avant-propos 1.2. Electropolymérisation oxydante du groupe pyrrole 1.2.1. Mécanisme de l'électropolymérisation du groupe pyrrole	lexe utre our 167 167 167
Chapitre 5: Nouveau film de polypyrrole fonctionnalisé par le comp trans, fac-[Ru ^{II} (bpea-pyr)(CN-Me)OH ₂] ²⁺ supporté sur une électrode de fe de carbone : application en catalyse d'époxydation 1. Rappel bibliographique : polypyrroles fonctionnalisés par les aquocomplexes du ruthénium : catalyseurs supportés sur des électrodes po les réactions d'oxydation 1.1. Avant-propos 1.2. Electropolymérisation oxydante du groupe pyrrole 1.2.1. Mécanisme de l'électropolymérisation du groupe pyrrole 1.2.2. Méthodes d'obtention de polypyrroles fonctionnalisés	lexe utre 0ur 167 167 169
Chapitre 5: Nouveau film de polypyrrole fonctionnalisé par le comp trans, fac-[Ru ^{II} (bpea-pyr)(CN-Me)OH ₂] ²⁺ supporté sur une électrode de fe de carbone : application en catalyse d'époxydation 1. Rappel bibliographique : polypyrroles fonctionnalisés par les aquocomplexes du ruthénium : catalyseurs supportés sur des électrodes pol les réactions d'oxydation 1.1. Avant-propos 1.2. Electropolymérisation oxydante du groupe pyrrole 1.2.1. Mécanisme de l'électropolymérisation du groupe pyrrole 1.2.2. Méthodes d'obtention de polypyrroles fonctionnalisés 1.2.3. Electropolymérisation de complexes pyrroliques du ruthéniu	lexe utre 0ur 167 167 169
Chapitre 5: Nouveau film de polypyrrole fonctionnalisé par le comp trans, fac-[Ru ^{II} (bpea-pyr)(CN-Me)OH ₂] ²⁺ supporté sur une électrode de fe de carbone : application en catalyse d'époxydation 1. Rappel bibliographique : polypyrroles fonctionnalisés par les aquocomplexes du ruthénium : catalyseurs supportés sur des électrodes po les réactions d'oxydation 1.1. Avant-propos 1.2. Electropolymérisation oxydante du groupe pyrrole 1.2.1. Mécanisme de l'électropolymérisation du groupe pyrrole 1.2.2. Méthodes d'obtention de polypyrroles fonctionnalisés 1.2.3. Electropolymérisation de complexes pyrroliques du ruthéniu 1.3. Complexes polypyrroliques du ruthénium comme catalyseurs	lexe utre 167 167 169 m 170
Chapitre 5: Nouveau film de polypyrrole fonctionnalisé par le comp trans, fac-[Ru ^{II} (bpea-pyr)(CN-Me)OH ₂] ²⁺ supporté sur une électrode de fe de carbone : application en catalyse d'époxydation 1. Rappel bibliographique : polypyrroles fonctionnalisés par les aquocomplexes du ruthénium : catalyseurs supportés sur des électrodes pol les réactions d'oxydation 1.1. Avant-propos 1.2. Electropolymérisation oxydante du groupe pyrrole 1.2.1. Mécanisme de l'électropolymérisation du groupe pyrrole 1.2.2. Méthodes d'obtention de polypyrroles fonctionnalisés 1.2.3. Electropolymérisation de complexes pyrroliques du ruthéniu 1.3. Complexes polypyrroliques du ruthénium comme catalyseurs hétérogènes dans les réactions d'oxydation	lexe utre our 167 167 169 m 170
Chapitre 5: Nouveau film de polypyrrole fonctionnalisé par le comp trans, fac-[Ru ^{II} (bpea-pyr)(CN-Me)OH ₂] ²⁺ supporté sur une électrode de fe de carbone : application en catalyse d'époxydation 1. Rappel bibliographique : polypyrroles fonctionnalisés par les aquocomplexes du ruthénium : catalyseurs supportés sur des électrodes po les réactions d'oxydation 1.1. Avant-propos 1.2. Electropolymérisation oxydante du groupe pyrrole 1.2.1. Mécanisme de l'électropolymérisation du groupe pyrrole 1.2.2. Méthodes d'obtention de polypyrroles fonctionnalisés 1.2.3. Electropolymérisation de complexes pyrroliques du ruthéniu 1.3. Complexes polypyrroliques du ruthénium comme catalyseurs	lexe utre our 167 167 169 m 170
Chapitre 5: Nouveau film de polypyrrole fonctionnalisé par le comp trans, fac-[Ru ^{II} (bpea-pyr)(CN-Me)OH ₂] ²⁺ supporté sur une électrode de fe de carbone : application en catalyse d'époxydation 1. Rappel bibliographique : polypyrroles fonctionnalisés par les aquocomplexes du ruthénium : catalyseurs supportés sur des électrodes pol les réactions d'oxydation 1.1. Avant-propos 1.2. Electropolymérisation oxydante du groupe pyrrole 1.2.1. Mécanisme de l'électropolymérisation du groupe pyrrole 1.2.2. Méthodes d'obtention de polypyrroles fonctionnalisés 1.2.3. Electropolymérisation de complexes pyrroliques du ruthéniu 1.3. Complexes polypyrroliques du ruthénium comme catalyseurs hétérogènes dans les réactions d'oxydation	lexe utre our 167 167 169 m 170 172
Chapitre 5: Nouveau film de polypyrrole fonctionnalisé par le comp trans, fac-[Ru ^{II} (bpea-pyr)(CN-Me)OH ₂] ²⁺ supporté sur une électrode de fe de carbone : application en catalyse d'époxydation 1. Rappel bibliographique : polypyrroles fonctionnalisés par les aquocomplexes du ruthénium : catalyseurs supportés sur des électrodes po les réactions d'oxydation 1.1. Avant-propos 1.2. Electropolymérisation oxydante du groupe pyrrole 1.2.1. Mécanisme de l'électropolymérisation du groupe pyrrole 1.2.2. Méthodes d'obtention de polypyrroles fonctionnalisés 1.2.3. Electropolymérisation de complexes pyrroliques du ruthéniu 1.3. Complexes polypyrroliques du ruthénium comme catalyseurs hétérogènes dans les réactions d'oxydation Références bibliographiques	lexe utre our 167 167 169 m 170 172 175
Chapitre 5: Nouveau film de polypyrrole fonctionnalisé par le comp trans,fac-[Ru ^{II} (bpea-pyr)(CN-Me)OH ₂ ²⁺ supporté sur une électrode de fe de carbone : application en catalyse d'époxydation 1. Rappel bibliographique : polypyrroles fonctionnalisés par les aquocomplexes du ruthénium : catalyseurs supportés sur des électrodes po les réactions d'oxydation 1.1. Avant-propos 1.2. Electropolymérisation oxydante du groupe pyrrole 1.2.1. Mécanisme de l'électropolymérisation du groupe pyrrole 1.2.2. Méthodes d'obtention de polypyrroles fonctionnalisés 1.2.3. Electropolymérisation de complexes pyrroliques du ruthéniu 1.3. Complexes polypyrroliques du ruthénium comme catalyseurs hétérogènes dans les réactions d'oxydation Références bibliographiques 2. Résultats expérimentaux et discussions	lexe utre our 167 167 169 m 172 175 176

2.3.1. RMN ¹ H	179
2.3.2. Spectroscopie d'absorption UV- visible	180
2.4. Propriétés d'oxydo-réduction	181
2.5. Electropolymérisation anodique du complexe	
[Ru ^{II} (bpea-pyr)(CN-Me)OH ₂](PF ₆) ₂	182
2.6. Activité catalytique en phase hétérogène	185
3. Conclusion	187
4. Partie expérimentale	188
4.1. Réactifs et solvants	188
4.2. Synthèses et caractérisations des composés étudiés	188
4.2.1. trans,mer-[Ru ^{II} Cl ₂ (bpea-pyr)dmso], 2	188
4.2.2. cis,fac-[Ru ^{II} Cl ₂ (bpea-pyr)(dmso)], 3	188
4.2.3. trans,fac-[Ru ^{II} Cl (bpea-pyr)(CN-Me)](PF ₆)·0,8CH ₂ Cl ₂ , 4·	189
4.2.4. trans, fac-[Ru ^{II} (bpea-pyr)(CN-Me)OH ₂](PF ₆) ₂ ·6H ₂ O, 5·	189
4.3. Préparation des électrodes modifiées utilisées pour la catalyse	190
4.4. Catalyse hétérogène	190
Références bibliographiques	191
	192
E Annovo	
5. Annexe	192
5. Annexe	192
	192
Deuxième Partie Etude comparative de la réactivité de nouveaux systèmes catalytiques propres : 'PN/O ₂ ' et 'V/PN/O ₂ ' dans la coupure oxydante de la liaison C-C de cycloalcanones α-substituées et d'α-	192
Deuxième Partie Etude comparative de la réactivité de nouveaux systèmes catalytiques propres : 'PN/O ₂ ' et 'V/PN/O ₂ ' dans la coupure oxydante de la liaison C-C de cycloalcanones α-substituées et d'α-cétols en présence de l'oxygène moléculaire Chapitre 6: Synthèse bibliographique: le phosphate naturel comme catalyseur hétérogène et les différentes voies de la coupure oxydante de la	193
Deuxième Partie Etude comparative de la réactivité de nouveaux systèmes catalytiques propres : 'PN/O ₂ ' et 'V/PN/O ₂ ' dans la coupure oxydante de la liaison C-C de cycloalcanones α-substituées et d'α-cétols en présence de l'oxygène moléculaire Chapitre 6: Synthèse bibliographique: le phosphate naturel comme catalyseur hétérogène et les différentes voies de la coupure oxydante de la liaison C-C des cycloalcanones α-substituées et des α-cétols	
Deuxième Partie Etude comparative de la réactivité de nouveaux systèmes catalytiques propres : 'PN/O2' et 'V/PN/O2' dans la coupure oxydante de la liaison C-C de cycloalcanones α-substituées et d'α-cétols en présence de l'oxygène moléculaire Chapitre 6: Synthèse bibliographique: le phosphate naturel comme catalyseur hétérogène et les différentes voies de la coupure oxydante de la liaison C-C des cycloalcanones α-substituées et des α-cétols 1. Avant propos	193
Deuxième Partie Etude comparative de la réactivité de nouveaux systèmes catalytiques propres : 'PN/O ₂ ' et 'V/PN/O ₂ ' dans la coupure oxydante de la liaison C-C de cycloalcanones α-substituées et d'α-cétols en présence de l'oxygène moléculaire Chapitre 6: Synthèse bibliographique: le phosphate naturel comme catalyseur hétérogène et les différentes voies de la coupure oxydante de la liaison C-C des cycloalcanones α-substituées et des α-cétols 1. Avant propos	193 194
Deuxième Partie Etude comparative de la réactivité de nouveaux systèmes catalytiques propres : 'PN/O ₂ ' et 'V/PN/O ₂ ' dans la coupure oxydante de la liaison C-C de cycloalcanones α-substituées et d'α-cétols en présence de l'oxygène moléculaire Chapitre 6: Synthèse bibliographique: le phosphate naturel comme catalyseur hétérogène et les différentes voies de la coupure oxydante de la liaison C-C des cycloalcanones α-substituées et des α-cétols 1. Avant propos	193 194

3. Différentes voies d'oxydation appliquées à la coupure de la liaison C-C de	
cycloalcanones et d'α-hydroxycétones	203
3.1. Oxydation des cycloalcanones	203
3.1.1. Voies stechiométriques	203
3.1.2. Voies catalytiques	204
3.2. Oxydation des α-hydroxycétones	209
3.2.1 Voies steechiométriques	210
3.2.2. Voies catalytiques	215
3.3. Oxydation de la cyclohexanone à l'acide adipique en présence de	
l'oxygène moléculaire	220
Références bibliographiques	222
Chapitre 7 : Etude comparative des propriétés catalytiques du PN et du V/PN dans la coupure oxydante de cétones cycliques et d'α-cétols en présence du dioxygène	
1. Préparation du phosphate naturel modifié avec le vanadium	226
2. Caractérisation du catalyseur V/PN	227
2.1. Analyse thermique et structurale du métavanadate d'ammonium	
NH ₄ VO ₃ à l'état pur	227
2.2. Diffraction des rayons X sur poudre	228
2.3. Etude par spectrométrie Infrarouge à Transformée de Fourier IRTF	229
2.4. Mesure de la surface spécifique et de la porosité	231
2.5. Microscopie électronique à balayage	232
3. Oxydation catalytique des cycloalcanones α-substituées par le phosphate	
naturel seul en présence de l'oxygène moléculaire	234
3.1. Influence de différents paramètres et essais d'optimisation de la	
coupure oxydante des cétones cycliques	234
3.1.1. Etude de l'effet du solvant	234
3.1.2. Influence de la quantité de PN	237
3.1.3. Effet de la température	237
3.1.4. Etude du recyclage de PN	238
3.2. Extension du système catalytique 'PN/O2' à d'autres cycloalcanones	240
4. Oxydation catalytique de cycloalcanones α-substituées par le phosphate	
naturel modifié par le vanadium	241

4.1. Etude de l'influence de différents paramètres réactionnels et essais	
d'optimisation	241
4.1.1. Effet de la teneur en vanadium dans le PN	241
4.1.2. Influence de la masse du catalyseur	242
4.1.3. Effet du solvant	243
4.1.4. Etude du Recyclage de V/PN	244
4.2. Coupure oxydante de différentes cycloalcanones par le système	
'V/PN/O ₂ '	245
5. Oxydation des α-hydroxycétones par le PN seul ou modifié avec le vanadium en présence de l'oxygène moléculaire	246
5.1. Introduction	246
5.2. Oxydation de la 2-hydroxycyclohexanone	246
5.3. Oxydation de différents α-cétols aromatiques en présence des	
systèmes 'PN/O ₂ ' ou 'V/PN/O ₂ '	247
5.4. Application en chimie fine	249
6. Conclusion	252
7. Partie expérimentale	253
7.1. Produits utilisés	253
7.2. Préparation du catalyseur phosphaté V/PN	253
7.3. Techniques de caractérisation du V/PN	253
7.4. Tests catalytiques	254
Références bibliographiques	256
Conclusion générale	258
Conclusion generale	200