

Université Sidi Mohamed Ben Abdellah

Faculté des Sciences et Techniques Fès

Département Génie Electrique

Mémoire de Projet de fin d'étude

Préparé par

Yassine MAMA

Pour l'obtention du diplôme

Ingénieur d'Etat en

SYSTEMES ELECTRONIQUES & TELECOMMUNICATIONS

Intitulé

Projet CFA dans les machines KOMAX et manipulation des fichiers XML

Encadré par :

Pr El MOUSSAOUI Mr Aziz DEGHAY (Sews Cabind Maroc)

Soutenu le 25 Juin 2014, devant le jury composé de :

Pr El MOUSSAOUI : Encadrant Mr Aziz DEGHAY : Encadrant Pr T. LAMHAMDI : Examinateur Pr M. JORIO : Examinateur

Dédicace

A mes très chers parents,

Aucun mot, aucune expression ne pourra témoigner de ma reconnaissance et ma gratitude à votre égard, vos sacrifices abondants et votre soutien innombrable resteront à jamais gravés dans mon cœur et mon esprit ;

A ma douce sœur Hanane, ma petite charmante Hajar et mon adorable frère Amine

Je ne sais pas comment vous remercier pour tout ce que vous avez fait pour moi;

A toute ma grande famille Merci pour l'intérêt que vous portez pour moi ;

A tous ceux qui m'aiment...

Je dédie ce travail...

Remerciements

Tout d'abord je tiens à souligner que j'ai trouvé au sein du SEWS Cabind MAROC une équipe dynamique et accueillante.

J'exprime ma profonde gratitude à mon encadrant **Mr. El Moussaoui**, pour le privilège qu'il m'a donné en acceptant de diriger ce travail, son encouragement, ses directives et ses précieux conseils tout au long de mon projet de fin d'études.

Ainsi mes remerciements s'adressent à mon encadrant industriel **Mr AZIZ DEGHAY** chef de section maintenance zone Coupe/sertissage qui m'a aidé à m'intégrer rapidement, pour son encadrement et le temps qu'il m'a consacré durant toute la durée du stage.

J'adresse aussi mes remerciements à tous **les techniciens**, qui m'ont permis grâce à leurs explications, leurs disponibilités, et leurs soutiens d'acquérir de nouvelles connaissances pratiques. Sans oublier d'exprimer toute ma gratitude à **Mr Toufik GHAMRAOUI** chef du département maintenance et sécurité, pour leur disponibilité et pour l'aide qu'il réserve à tous les stagiaires.

Au terme de ce Stage de fin d'étude, je tiens à exprimer ma profonde gratitude à **Mr LAHBABI**, Professeur responsable de notre filière, tout le cadre professoral pour leurs efforts considérables, spécialement le département Génie Electrique et surtout **les professeurs** de la filière Systèmes Electroniques et Télécommunications, je remercie également le **corps administratif** de l'établissement.

J'adresse également mes vifs remerciements aux membres de jury de ma soutenance pour leur participation à l'évaluation de mon travail.

Enfin, je remercie tous ceux qu'ont participé de près ou de loin à l'élaboration de ce travail.

RÉSUMÉ

La concurrence au marché mondial a poussé le secteur automobile vers un développement exceptionnel de plus en plus évolutif. Sews-Cabind Maroc étant l'un des leaders dans le domaine de fabrication des faisceaux électriques pour automobile a mis en place une stratégie qui se base sur l'amélioration continue. C'est dans l'objectif d'augmenter la productivité et de diminuer le temps d'arrêt des machines, que j'ai mené mon projet de fin d'études intitulé :

« Projet CFA dans les machines KOMAX et manipulation des fichiers XML »

Ce projet consiste à la mise en place du concept Crimp Force Analyzer (CFA) dans les machine Komax, en effectuant le diagnostic des différentes caractéristiques ayant un impact direct sur le sujet en question, Ainsi déterminer les paramètres optimaux aux connexions à problème CFA et leurs transfert automatique dans les machines en manipulant des fichiers XML.

Pour ce faire, la méthodologie de travail suivie a été de définir d'abord la situation initiale, d'analyser les problèmes, de proposer des solutions fiables et finalement de mettre en place les solutions choisies.

Mots clés :

CFA, machine Komax, fichier XML, WPCS, Top Image, faisceaux électriques pour automobile, productivité, temps d'arrêt.

Abstract

The competition in the global market has driven the automotive industry to an exceptional development, which is more and more evolutionary. Sews-Cabind Morocco being one of the leaders in the field of manufacturing wire harnesses for automotive, has established a strategy that is based on continuous improvement. In the aim to increase productivity and reduce machine down time, I conducted my graduation project entitled:

"CFA Project in KOMAX machines and manipulating of XML files"

This project involves the implementation of the Crimp Force Analyzer (CFA) concept, by making the diagnosis of different characteristics that have a direct impact on the subject matter, also determine the optimal settings for connections CFA problem and manipulating XML files to transfer into machines the new settings.

To do this, the working methodology followed was to first define the initial situation, analyze problems, propose a reliable solutions and finally implement the solutions.

Key words :

CFA, machine Komax, XML file, WPCS, Top Image, wiring harnesses for automotive, machine downtime, productivity.

Sommaire :

Introduction Générale	7
Chapitre 1 : Présentation de l'établissement d'accueil	8
Chapitre1: Présentation de l'établissement d'accueil :	9
1.1 Introduction :	9
1.2 Historique :	9
1.3 Implantation au Maroc	10
1.4 Organigramme de l'entreprise :	11
1.5 processus de production :	12
1.5.1 Qu'est-ce qu'un faisceau de câbles :	12
1.5.2 Qu'est-ce qu'un câble/ un fil :	12
1.5.3 Processus de fabrication :	13
Chapitre 2 : Présentation du projet	17
Chapitre 2 : Présentation du projet	18
2.1 Cadre du projet :	18
2.2 Cahier de charge :	18
2.3 Planning du projet :	18
2.4 Machine Komax :	19
2.4.1 Description :	19
2.4.2 Constitution de la machine komax :	20
2.5 CFA : Crimp Force Analyser :	25
2.5.1 Introduction :	25
2.5.2 Fonctionnement de CFA :	25
2.5.3 paramètre CFA :	26
Chapitre 3 : Analyse du projet	
Chapitre 3 : Analyse du projet	31
3.1. Les déférents problèmes dans les machines KOMAX :	31
3.2. Mesure du Degré de criticité des problèmes détectés par CFA :	31
3.3. L'identification et l'analyse des causes :	34
3.4. Identification des connexions à problème CFA	36
Chapitre 4 : Solutions	
Chapitre 4 : Solutions	
4.1 Etude de stabilité CFA des presses :	

4.1.1	Analyseur CFA :	
4.1.2	Mode opératoire :	
4.2 D	étermination des paramètres CFA :	43
4.2.1	Etape 1 : Ajuster les Zones (Z1 et Z2) :	43
4.2.2	Etape 2 : Ajustement du BLO et les Sensibilités S1, S2 et S3 :	44
4.2.3	Etape 3 : Définition du point de détection pour sertissage sur isolant :	44
4.2.4	Validation des nouveaux paramètres CFA :	45
4.2.5	Nouveaux paramètres CFA :	45
4.3 D	étermination des droits d'accès :	47
4.3.1	Création de groupe :	47
4.3.2	Création d'utilisateur :	47
4.3.3	Les droits d'accès :	48
4.3.4	Sauvegarde des droits d'accès :	50
4.4 T	ransfert automatique des paramètres CFA :	51
4.4.1.	Introduction sur WPCS : :	51
4.4.2.	WPCS données de description du serveur :	51
4.4.3.	Manipulation des fichiers XML :	52
Chapitre	5 : Bilan général	56
Chapitre 5 :	Bilan général	57
5.1. E	tats des indicateurs de performance :	57
5.1.1.	Productivité :	57
5.1.2.	Temps d'arrêt :	58
Conclusion .		60
Liste des fig	ures	61
Liste des tal	bleaux	62
Glossaire de	es abréviations	63
Bibliograph	ié	63
Annexes		64
Annexe1	: Historique SEWS-CM	64
Annexe 2	: diagramme de Gantt	65
Annexe3	: liste de connexion	66
Annexe4	: éléments d'un mini-applicateur	68

Introduction Générale

Dans le cadre de notre formation en ingénierie Systèmes électroniques et télécommunications on est tenu de réaliser un stage de fin d'étude en milieu professionnel, le choix du lieu de stage n'était pas au hasard mais après une recherche profonde.

En effet on se dirige de plus en plus vers la mondialisation, qui se traduit par l'ouverture des frontières face aux marchés internationaux. Et avec l'installation des nouvelles entreprises dans le domaine de câblage automobile au Maroc ma recherche a été orientée dans ce sens, alors mon choix a été Sews Cabind Maroc Ain Sebâa, l'une des leaders de ce domaine.

La concurrence accrue entre les différents acteurs économiques opérant dans ce secteur les mènes à chercher l'excellence, en instaurant des processus fiables et rentables, et qui assurent la qualité exigée par les clients avec un coût de revient minimum, consciente de ces changements, la société Sews Cabind Maroc a adopté le contrôle de CFA (Crimp Force Analyzer) dans sa chaine de production (zone coupe et sertissage).

C'est dans cette optique s'inscrit mon projet de fin d'études effectué au sein de Sews Cabind Maroc, spécialisée dans l'industrie du câblage automobile.

Ce projet de fin d'études s'articule sur deux axes :

- Détermination des paramètres CFA pour chaque connexion.
- L'exploitation et la manipulation des fichiers XML.

Le rapport présent s'agit dans sa première partie d'une présentation du contexte général du projet, à savoir la présentation de l'entreprise et la méthodologie adoptée ainsi le cadre de projet. Ensuite, dans la deuxième partie, il sera question d'un diagnostic de l'existant et une analyse de différent paramètre qui entre en jeu. Un chapitre sera consacré aux solutions proposées et aux actions réalisées, Finalement, un bilan général et une conclusion.

Chapitre 1 : Présentation de l'établissement d'accueil

L'objectif de ce chapitre est de présenter le contexte général de mon travail, à savoir l'organisme où j'ai effectué mon stage de fin d'étude et son processus de production.

Chapitre1: Présentation de l'établissement d'accueil :

1.1 Introduction :

SEWS CABIND Maroc Ain Sebâa est un site de production appartenant au groupe multinational japonais SUMITOMO, une entreprise qui produit des faisceaux électriques pour voitures.

Dans ce chapitre nous présentons son organigramme, ses activités, ses produits, ses partenaires ainsi que son processus de production.

1.2 Historique :

Le groupe SUMITOMO a été fondé depuis quatre siècles, il a commencé ses activités par l'exploitation et la transformation des matières premières, depuis lors les domaines d'activité du groupe se sont diversifiés et intéressent de plus en plus les secteurs d'industrie, de commerce, de finance, des télécommunications et des services...

En 1985, la filiale du groupe SUMITOMO dont les activités se sont concentrées autour du secteur du câblage industriel, a pris le nom de SUMITOMO ELECTRIC WIRING SYSTEMS, son réseau mondial s'étend sur les cinq continents et occupe le troisième rang mondial en son domaine.

Figure 1 : POLITIQUE DU GROUPE SEWS

« Sumitomo Electric Group » compte 332 entreprises homologuées et plus de 170 mille salariés dans 36 pays à travers le monde. Le business du W/H d'automobile géré par Sumitomo ELECTRIC Wiring Systems (SEWS) est le secteur le plus important dans le groupe. SEWS a établi une présence mondiale avec 95 sociétés dans 33 pays qui emploient 140 mille salariés.

1.3 Implantation au Maroc

En avril 2001, un partenariat a été contracté entre CABIND S.P.A, une société italienne créée en 1998 à Casablanca, et le groupe japonais spécialisé dans l'équipement électrique, Sumitomo Wiring System LTD (SWS). la société SEWS CABIND MAROC SAS (SEWS-CM) a vu le jour à Casablanca. Le groupe Marocain Tagmat Holding a rejoint les deux autres groupes et il détient 20% du chiffre d'affaire.

SEWS-CABIND MAROC (SEWS-CM) fabrique les faisceaux électriques (W/H) et les différents câbles d'automobile. Le Site de Ain Harrouda abrite le Siège Social et une Usine de production. ce Site se situe à sur un terrain de 6 ha et compte environ 1700 personnes. Sews Cabind Maroc dispose de deux autres sites de production, l'un à Berrechid et l'autre à Ain Sebaâ. La fiche d'identification de la société Sews Cabind Maroc est donnée ci-dessous (tableau 1).

Raison Sociale	SEWS CABIND MAROC
Date de création	Le 25 Avril 2001
Chiffre d'affaires	1 400 million dirhams
Capital	350 million dirhams
Président	M. Takashi Ichikawa
Effectif des salariés	5 500
Sites de production	Ain Harrouda, Ain Sebaâ, et Berrechid
Siege Social	Zone Industrielle Ahmed Ben Ichou Km 9 Route de Rabat Ain Harrouda 28632 Mohammedia BP130 Maroc Tel : +212 (0)522 74 94 94 Fax : +212 (0)522 33 27 18
Activité	Fabrication et vente de faisceaux de câble et câbles d'automobile

Tableau 1 : Fiche D'identification (SEWS-CABIND MAROC)

Le groupe dispose de Cinq usines basées au Maroc représentés dans la figure 2 :

Figure 2 : Implantation de SEWS au Maroc

Pour plus de détail voir annexe 1 : Historique SEWS-CM.

Le site d'Ain Sebaâ est une usine de production des faisceaux de câbles (W/H), pour véhicules utilitaires & voitures, créer depuis décembre 2009 sur une superficie de 14 400m² compte 1700 salariés. Ces produits sont divisés en 3 familles (figure3) :

1.4 Organigramme de l'entreprise :

L'organigramme de la figure 4 illustre l'organisation des différents départements de la société :

Figure 4 : Organigramme de SEWS CABIND Maroc

1.5 processus de production :

L'usine de SEWS CABIND MAROC Ain Sebaâ, se compose de plusieurs lignes de production. Chaque ligne est chargée de faire le montage d'un type de faisceaux électrique spécifié et surnommé du même nom que le client.

1.5.1 Qu'est-ce qu'un faisceau de câbles :

Un faisceau de câbles comprend plusieurs composantes telles que les câbles, les terminaux, les enveloppes, les tubes et les bandes. Etant assemblés dans une forme particulière pour faciliter son installation dans un véhicule, le faisceau de câbles est aussi dit "câbles attachés." Les faisceaux de câbles ne sont pas utilisés seulement dans les voitures mais aussi dans les équipements de transport, les copieurs, les magnétoscopes, les ordinateurs, les distributeurs automatiques et l'électroménager. Les faisceaux de câbles sont utilisés pour acheminer les informations et le courant électrique, exactement comme les nerfs et les vaisseaux sanguins du corps humain.la figure suivante (Fig.5) montre un exemple des câbles électriques d'une voiture :

Figure 5 : Schéma des faisceaux électriques d'une voiture

1.5.2 Qu'est-ce qu'un câble/ un fil :

Un câble électrique est composé de plusieurs fils et éventuellement d'un blindage extérieur. Un câble peut même être constitué de plusieurs câbles comme (par exemple) dans le cas des câbles téléphoniques ou dans le cas des câbles sous-marins. Il peut être employé pour transmettre des signaux électriques et/ou de l'énergie électrique. Les matériaux utilisés présentent des caractéristiques intéressantes en ce qui concerne la résistance électrique, le poids, la tenue mécanique. Un fil électrique est le composant électrotechnique servant au transport de l'électricité, afin de transmettre de l'énergie. Il est constitué d'un matériau conducteur, monobrin ou multibrin, souvent entouré d'une enveloppe isolante (plastique, ou autre). L'intérieur du fil électrique est appelée « âme » du fil. La figure 6 présente les fils électrique avec les joints et les boitiers :

Figure 6 : les fils électrique avec les joints et les boitiers

1.5.3 Processus de fabrication :

Les différentes étapes de fabrication des faisceaux électriques peuvent être décrites par l'organigramme suivant (figure 7) :

Figure 7 : La chaîne de production

1.5.4 Description des différentes étapes du processus de fabrication :

Sous processus de coupe :

Cette zone constitue la tête de la chaîne de production, équipé de 21 machines Komax. Pour fabriquer des faisceaux, il faut : **Couper, Dénuder et Sertir**, ces opérations peuvent être réalisées manuellement ou automatiquement à l'aide des machines Komax.

- Couper : Opération consistant à couper les gaines, fils, nappes, câbles à la bonne longueur.
- Dénuder : On retire la partie isolante d'un conducteur sur une longueur définie. en général, le dénudage s'effectue en même temps que la coupe.
- Sertir : Opération consistant à fixer une cosse ou un contact sur un conducteur. le sertissage peut être réalisé de différentes manières : soit manuellement à l'aide d'outils adaptés (pince, pistolet ...), soit en reprise sur une presse, soit automatiquement sur des robots lors de la coupe et du dénudage des fils

Sous processus de préparation :

• **Torsadage :** Un fil torsadé permet d'éviter l'effet de champ électromagnétique indésirable. Il est conçu pour les freins, airbag, bielle... Chaque fil à son pas de Torsadage selon la fonction qu'il accomplie, (voir figure 8 et 9) :

Figure 8 : Fils torsadés

Figure 9 : Robot de Torsadage

• Opération d'épissure (shunk) : Cette opération consiste à lier (souder) les extrémités de deux fils ou plus après enlèvement de l'isolant (dénuder), l'opératrice place l'ensemble des extrémités à souder entre une enclume du revolver (siège d'enclume) et une autre du mors mobile. Entre ces deux parties, il y a une transmission d'énergie sous une pression et à une température donnée, ces trois paramètres sont en fonction du nombre d'extrémités et les sections à lier ce qui donne un nœud nommé SALD (figue 11). Ce dernier doit être couvert par un manchon en caoutchouc RBK (figure10), l'ensemble se met dans un four réglé en

température ce qui permet le retreint du manchon, la soudure et le retreint doivent satisfaire à un nombre de normes qualitatives à respecter.

Figure 11 : SALD

Figure 10 : partie isolant (RBK)

Sous processus d'assemblage :

• Opération de pré montage : cette opération consiste à insérer l'une des connexions d'un fil unitaire, un fil d'une SALD (repéré , marqué) dans une voie d'un boîtier en respectant les instructions indiquées dans la gamme de pré montage. la réalisation de certains insertions, dans des positions identiques d'un même composant, nécessite un système qui indique l'emplacement de telle connexion : « Guida Luce », Cette méthode a pour avantage d'éviter les insertions inversés des fils électriques et de s'assurer du passage du courant électrique. La figure 12 ci-dessous présente un poste de pré montage :

Figure 12 : poste de pré montage des faisceaux électriques

• **Opération de montage :** le montage du faisceau se fait sur une planche fixe ou mobile (figure13) où est tracé le cheminement des fils constituant ce dernier. le positionnement des boîtiers (leurs figurines, numéro, code...), la nature est la manière d'enroulement de la matière pour assembler les fils : continu, discontinu (feutrine, textiles), les positionnements des SALD ainsi que les symboles de tous les faisceaux qui peuvent être sur cette planche.il s'agit de mettre les connexions des fils dans les voies des boîtiers concernées, selon es instruction de la gamme de montage établie par le service méthode à partir du plan électrique.

Figure 13 : planche de montage des faisceaux électriques

Contrôle électrique :

Ce type de vérification consiste à contrôler la conductivité et la continuité du courant dans tout le faisceau, l'inversion des fils et l'étanchéité des boîtiers, en utilisant une planche électrique (figure 14) équipée par des ordinateurs et composée par des dizaines de contre parties (ou Autoblocs), dont chacune a des fils liés à la carte mère du logiciel et autres fils pour alimenter les leds de présence plus des points de test fixés sur l'auto bloc pour la continuité électrique.

Figure 14 : Planche de test électrique des faisceaux

➢ Contrôle final :

C'est la dernière étape où l'opératrice contrôle le faisceau manuellement en précisant les remarques sur la continuité, le montage des connexions sur ses boîtiers et l'emplacement des joints etc. (voir figure 15) :

Figure 15: poste de contrôle final

Zone d'emballage et d'expédition :

C'est à ce niveau que se font les dernières retouches sur le câble électrique pour qu'il soit conforme (côté aspect) aux exigences du client, avant d'être finalement emballé et expédie.

Chapitre 2 : Présentation du projet

Afin de bien cerner le sujet, ce chapitre présente une description exacte de la problématique, tout en planifiant les tâches, pour maitriser les jalons du projet.

Chapitre 2 : Présentation du projet 2.1 Cadre du projet :

La zone coupe ou de préfabrication, englobe les opérations de coupe et de sertissage. Ce sous-processus constitue la tête de la chaîne de production, ces opérations sont réalisées sur une vingtaine de machines de coupe très performantes dont la majorité est des Komax.

Ces machines sont classées en familles qui font référence aux clients de Sews et chacune de ces machines est manipulée par une opératrice qui suit les ordres de fabrication donnés par le service de lancement. Les opérations de sertissage qui consistent à encastrer des connexions sur les parties dénudées des fils sont réalisées par des mini-applicateurs.

Le sertissage peut être fait soit sur les machines Komax ou bien sur des presses manuelles en fonction de la nature des fils et des contacts à sertir.

La cadence des presses manuelles est beaucoup plus faible que celle atteinte par les Komax.

2.2 Cahier de charge :

L'opération de sertissage est qualifiée comme une opération critique puisque toute la production s'arrête sur sa qualité. C'est dans ce cadre s'inscrit le sujet de mon stage qu'est intitulé **« Projet CFA dans les machines KOMAX et manipulation des fichiers XML »**, durant 4 mois je suis mené à :

- Effectuer le suivi et une analyse sur la machine komax et en particulier la station presse.
- La mise en place et le suivi du projet CFA dans les machines KOMAX.
- Collecter et déterminer les références des connexions a problème de CFA.
- Déterminer les paramètres CFA adéquats aux connexions à problème CFA.
- Manipulation des fichiers XML pour transmettre les paramètres CFA automatiquement dans le réseau.
- La détermination des actions de maintenance convenables pour les différentes anomalies déduites de l'étude CFA.
- mettre en œuvre un module de formation sur CFA au profil des opératrices.

2.3 Planning du projet :

Pour planifier les différentes étapes de ce projet nous avons utilisé le diagramme de GANTT. Nous avons exploité leurs fonctionnalités pour planifier et suivre l'évolution dans le temps de toutes les étapes du projet (Voir Annexe 2).

2.4 Machine Komax :

2.4.1 Description :

Figure 16 Machine Komax

Komax (figure 16) : est une machine pour sertissage automatique évolutives des stations d'usinage individuelles, elle est alimentée en énergie électrique ainsi qu'en énergie pneumatique. La Komax est destinée de traiter les extrémités des fils, pour tout genre de séries : petites, moyennes et grandes, la machine assure selon la configuration les applications suivantes (tableau 2) :

	Coupe à la longueur voulue	₩	Mesure de longueur de câble intégrée
	Dénudage avec extraction totale		Détection des épissures
	Dénudage avec semi-extraction		Câble double gain/coaxial/câble triaxial
komax © Hot stamp	Marquage à chaud	\odot	Derouleur
komax © Ink Jet)	Marquage au jet d'encre		Prefeeder
	Système de stockage	à	Hauteur de sertissage programmable
\bigcirc	Redressement du câble		
ÕÕ			Double sertissage
	Mesure de hauteur de sertissage intégrée		
			Fonction double course
AUTO	Mesure de force d'extraction		Montago de douilles
		=3=3 <mark>1</mark>]=1)	montage de douilles

Tableau 2 : les opérations effectuées par Komax

La machine Komax : c'est la machine la plus utilisée dans le domaine de câblage, l'usine de Ain Sebaâ contient 4 types de machine Komax qui sont : GAMMA 333, Alpha 455, Alpha 433 et Alpha 355.

2.4.2 Constitution de la machine komax :

La figure 17 et le tableau 3 présentent l'ensemble des éléments constituant une machine komax :

Figure 17: Vue d'ensemble d'une Komax (alpha355)

1	Face 1 : usinage de la 1ère face du câble	6	Tête de coupe : coupe et dénude le câble
2	Face2 : usinage de la 2ème face du câble	8.10	Les modules de douilles (joints)
3	Unité de dressage du câble	9,11	Presses de sertissage
4	Entrainement du câble : transporte et mesure la longueur du câble	12	Bande transporteuse du câbles : prend les câbles fabriqués et les transporte hors de la machine, vers le lieu de prélèvement
5,7	Unité de pivotement : pivote le câble et le positionne sur les stations d'usinage 1,2	14, 15,16	Armoire de commande

Tableau 3 : éléments de la machine komax (alpha 477)

2.4.3 Fonctionnement de la machine :

> Unité de dressage :

à l'aide d'un ensemble de poulies, l'unité de dressage dressent et tende le câble afin qu'il puisse être usiné correctement.au moyen du disque perforé, les nœuds se trouvant dans le câble sont détectés afin que les câble défectueux ne puissent pas être usinés. (voir figure 18)

Figure 18 : unité de dressage

Entraînement du câble :

Le but de cette unité est de transporter le câble et mesurer sa longueur exacte, en utilisant un servomoteur avec mesure de longueurs et détection de glissement ASC (Anti-Slip-Control) voir figure 19 et 20 ci-dessous.

NB : L'entraînement dans gamma se fait par des roues par contre l'entraînement alpha se fait par des courroies.

Figure 19 : Unité d'entrainement de la machine Alpha 455

Figure 20 : schéma bloc d'unité d'entrainement

Unité de pivotement et d'extraction face 1 :

Fait pivoter le câble et le positionne sur les stations d'usinage de la face 1 ; détermine la longueur d'extraction sur la première face du câble. Le mouvement de pivotement et d'extraction sont effectués par 2 servomoteurs, (figure 21).

Figure 21 : Unité de pivotement et d'extraction 1

> Tête de coupe :

La figure 22 présente la tête de coupe qui permet de couper ou dénuder les fils selon des longueurs précise et sections déterminées en utilisant un servomoteur, elle sépare en outre les contacts défectueux.

La tête de coupe dispose de trois types de couteaux : couteau de dénudage (voir figure 23), couteau de séparation et couteau de contact défectueux.

Figure 22 : tête de coupe

Figure 23 : Couteau de dénudage

Unité de pivotement et d'extraction face 2 :

Les fonctions de l'unité de pivotement et d'extraction sur la face 2 (figure 24) correspondent à celles de l'unité de pivotement et d'extraction sur face 1, sauf que le câble sur la face 2 ne continue plus à être transporté après l'usinage sur la station, mais est déposé dans la goulotte de câbles.

Figure 24 : Unité de pivotement et d'extraction 2

Bande transporteuse :

Les câbles produits sont déposés dans la goulotte basculante via la bande transporteuse, lorsque la taille de lot est atteinte, le bac fait basculer le câble dans le bac de sortie. Pour que le câble puisse être pris sans problème, le bac de sortie sort du recouvrement de protection, A partir d'une certaine longueur de câble, le bac de sortie ne sort plus.

Unité de commande

La surface utilisateur graphique est TOPWIN. Sa structure compréhensible permet à l'opérateur de commander la machine par un ordinateur dans son intégralité en très peu de temps. Les indications relatives à la commande sont représentées clairement dans les graphiques. Des stations d'usinage spécifiques au client peuvent être intégrées dans le cycle de production de la machine.

➢ Station joints 1 et 2

L'introduction du joint se fait par un appareil appelé Poste de joint (figure 25), cette installation fonction avec une carte électronique qui traite les signaux des capteurs et les transforme sous forme de commande afin de gérer un séquenceur pneumatique, l'installation contient aussi un élément principal qui réalise l'introduction du joint dans le fil. Cet élément appelé Kits-joint (figure 26).

Figure 25 : poste de joints

Figure 26 : Kits joint

➤Station de presse :

Cette station permet de réaliser le sertissage, c'est l'union d'un contact (connexion) avec un fil par compression, en vue de garantir une résistance à une certaine force d'arrachement. Le sertissage se fait à l'aide d'une presse (figure 27) commandé par une carte électronique, et d'un Mini-applicateur (figure 28) qu'est considéré comme élément principal de l'opération de sertissage.

Ils sont de plusieurs références, chaque référence destinée à un certain type de connexion.

Figure 27 : station presse

Figure 28 : Mini Applicateur (MAP)

Son fonctionnement est basé sur la transformation du mouvement de rotation du servomoteur en un mouvement latéral linéaire par un équipement engrené et un arbre excitateur.

2.5 CFA : Crimp Force Analyser :

2.5.1 Introduction :

La fiabilité des systèmes électroniques complexes peut être fortement influencée par les erreurs dans les éléments de liaison, c'est-à-dire les connexions, par exemple, pour les faisceaux électriques utilisées dans la construction automobile on peut trouver des problèmes tels que :

- Gaine de protection (isolant) étant inclus dans le sertissage.
- Brins manquants.
- Trop peu de cuivre dans le cuivre à sertir.

Ces types d'erreurs ne peuvent pas être totalement détectés par une simple vérification manuelle, et même si un contrôle de faisceau de câbles finals localise ces mécanismes défectueux, ils seraient détectés trop tard pour la production Juste à temps(JIT), c'est dans ce sens que le Control d'Effort de Sertissage (CFA) intervient.

CFA : Crimp Force Analyser, Control d'effort de sertissage : c'est un concept qui permet la détection et la séparation entre les bonnes et les mauvaises connexions serti, avec des informations détaillées sur l'erreur cela est à l'aide de deux capteurs piézo en céramique intégrés dans la station presse.

2.5.2 Fonctionnement de CFA :

Le CFA compare le courant module créé lors de la production avec une référence à sertir (maître de sertissage) Ce maître de sertissage est vérifiée manuellement, généralement par la réévaluation de la hauteur de sertissage et la force d'arrachement. Ces deux valeurs doivent être déterminées à l'avance pour chaque combinaison de Terminal/Wire, à l'aide d'un microscope. Le sertissage est alors déterminé à être bon ou mauvais en fonction de son écart par rapport à ces valeurs. Pour évaluer le sertissage, la machine enregistre une courbe de référence crée sur la base de plusieurs bons modules, cette phase s'appelle cycle d'apprentissage, après le lancement de la production la machine enregistre la force générée au cours de sertissage en fonction de l'angle de rotation, et non pas en fonction du temps à fin de ne pas influencer l'analyse dans le cas d'une fluctuation de voltage ou de fréquence.

Pour la mesure de la force de sertissage on utilise deux capteurs de force, intégrés dans l'adaptateur de RAM (l'élément qui permet de transformer le mouvement de rotation en translation), on sait que le transfert de force par l'intermédiaire de l'adaptateur de la RAM n'est pas nécessairement symétrique. Toutefois, afin de mesurer la totalité de la force, on utilise néanmoins deux capteurs montés en parallèle pour éliminer la possibilité de shunts de force. Cette disposition est absolument essentielle pour calibrer le système en kN.

2.5.3 paramètre CFA :

> décomposition de la courbe en 3 zones :

La comparaison de la courbe de référence avec la courbe de sertissage actuelle repose sur l'analyse des 3 zones voir figure 29 :

Figure 29 : les 3 zones

La largeur des zones 1 et 2 égale celle de la zone 4.

La largeur de la zone 3 est défini par l'intersection entre 80% de la force maximale (Fp : peak force) et le point de retour (Rp : Reversing point), ZF représente la zone finale d'analyse.

Le calcul de la largeur de la zone 4 est déterminé par l'intersection entre la droite qui passe par 20% et 40 % de la force maximale et le point de retour.

Les paramètres :

Un grand nombre de paramètres du système sont nécessaires pour assurer le bon fonctionnement de la CFA, pour les trois zones et pour la zone globale, il faut définir les largeurs, les sensibilités et les limites d'erreur lors de la production, les limites d'erreur au cours de référencement, ainsi que les limites de la dérive de compensation.

BLO (**Bad Limit Overall**) : c'est le paramètre le plus important, il présente la limite d'erreur au cours de la production, il permet le calcul des limites d'erreur de chaque zone (BL1, BL2 et BL3), ainsi que Teach limit , Stop limit et Drift limit en se basant sur le Teach factor, Stop factor and Drift factor, ces paramètres sont définit lors de l'installation .

Teach limit : la limite d'erreur pendant le cycle d'apprentissage

Stop limit : si sa valeur est dépassée la machine s'arrête

Drift limit : si sa valeur est dépassée la machine s'arrête

La figure 30 présente la méthode de calcul des déférents paramètres :

Figure 30 : méthode de calcul des paramètres

Remarque : normalement, avec les valeurs standards de CFA, une excellente séparation entre un bon et un mauvais sertissage peut être atteinte. La capacité de séparation dépend de la borne spécifique, matériau de fil et d'outil de sertissage.

Courbe de référence :

La courbe de référence est une courbe principale qui est comparée à la courbe de sertissage courant générée lors de la production. On peut faire une distinction entre la courbe de référence originale et la courbe de référence dérive compensée.

La courbe de référence originale est générée pendant le référencement. Elle doit comporter 3 sertissages ou plus.

Courbe de dérive compensée :

La température de l'outil de sertissage, l'épaisseur du matériau de la borne et divers autres paramètres, peuvent être modifiés lors de la production. Ces changements influencent les caractéristiques de sertissage.la comparaison de la courbe semble indiquer une déviation, même si la qualité du sertissage est bonne.

Pour éliminer les variables trompeuses comme celle-ci, l'Analyseur de Force de Sertissage Komax fonctionne avec compensation de la dérive. Dès que le référencement est terminé, la courbe de référence originale est copiée et enregistrée comme une courbe de dérive compensée. Chaque fois un bon sertissage est produit, cette courbe est corrigée pour être déplacé en petits incréments plus proches de la courbe de sertissage actuel. Cela compense les changements progressifs qui peuvent se produire.

Les résultats :

CFA donne des résultats pour chaque câble serti, qu'on peut les visualiser dans l'interface TOPWIN ou dans l'OMI (voir figure 31) :

Figure 31 : Résultats CFA

RU : Result Unsigned toujours positif

RS : Result Signed : il permet d'évaluer le type d'erreur

7

Problèmes détectés par CFA

On général CFA a été conçue pour détecter les problèmes communs suivants :

- Brins de fil manquants/pliés
- Bande d'isolation incorrecte
- Brins en dehors de sertissage principal
- Isolation dans le sertissage principal
- Défauts du sertissage sur isolant
- o Utilisation du fil incorrect

algorithme de décision :

Afin de designer entre un bon et un mauvais sertissage on calcule la différence d'aire dans les zones, on considère un bon sertissage si la différence en (0/00) est similaire aux limites d'erreurs (BL1, BL2, BL3 et BLO), pour plus de détail voir l'algorithme de décision page suivante (figure 32) :

Figure 32 Algorithme de décision

Chapitre 3 : Analyse du projet

Le chapitre « analyse » va nous permettre de découvrir les causes racines du problème. A la fin de ce chapitre, nous devrons être aptes à dégager les sources d'insatisfaction et les paramètres qui devront être modifiés et les actions à mettre en œuvre pour atteindre la performance attendue.

Chapitre 3 : Analyse du projet

Afin de bien mener le sujet de stage, on va évaluer le dégrée de criticité du problème CFA, rassembler les connexions qui présente plus de problème CFA, puis définir les paramètres optimaux pour chaque connexion.

3.1. Les déférents problèmes dans les machines KOMAX :

Pour déterminer les déférents problèmes qui causent l'arrêt de production, de la zone coupe/ sertissage et exactement les machines Komax, on a exploité les bons d'interventions des techniciens maintenance, cela nous a permet d'avoir une idée générale sur les problèmes d'arrêt, on les a regroupé dans le tableau suivant (tableau 4) :

Tableau 4 : les problèmes dans les machines Komax

3.2. Mesure du Degré de criticité des problèmes détectés par CFA :

Afin de mesurer le degré de criticité des problèmes CFA, on a effectué le suivi de deux machines (komax 21 et komax 15) pendant une semaine, un suivi qui nous a permet de

rassembler dans un seul tableau les problèmes détecter et leurs fréquence d'apparition .voir tableau 5 et 6 :

Cause d'arrêt	mercredi	jeudi	vendredi	samedi	dimanche	lundi	mardi
Axe couteau	5	0	3	0	0	1	0
machine	3	1	1	0	6	0	4
MCI711	0	0	1	1	0	1	1
CFA	15	27	26	31	2	59	41
Axe de l'unité pivotement1	0	1	3	2	0	1	15
MCI761	9	22	0	0	0	16	20
Axe de l'entrainement de cable1	3	4	5	1	3	5	10
Axe de l'unité pivotement2	1	1	0	0	0	0	0
Axe d'extraction1	1	0	0	0	0	0	0
Axe d'extraction2	0	0	0	0	0	0	0

Tableau 5 : tableau de suivi de la machine komax 21

Cause d'arrêt	mercredi	jeudi	vendredi	samedi	dimanche	lundi	mardi
Axe couteau	0	0	0	0	0	0	0
machine	9	11	2	3	5	13	2
MCI711	0	2	5	0	0	0	0
CFA	19	41	62	24	19	33	24
Axe de l'unité pivotement1	0	0	0	0	0	0	0
MCI761	0	0	0	7	0	2	3
Axe de l'entrainement de cable1	0	12	3	11	4	10	5
Axe de l'unité pivotement2	0	0	0	0	0	0	0
Axe d'extraction1	0	0	0	0	0	0	0
Axe d'extraction2	8	0	3	5	0	4	0

Tableau 6 : tableau de suivi de la machine komax 15

Après avoir remplir les tableaux et afin de mieux visualiser le problème, on a opté à utiliser l'outil « Diagramme de PARETO » qui permet de classer les données par catégorie et par ordre de grandeur. Voir figures 33 et 34.

Figure 34 : diagramme Pareto Komax 15

✤ Interprétation des résultats :

On peut voir facilement que le problème de CFA est le plus important entre tous les problèmes.

3.3. L'identification et l'analyse des causes :

Après avoir visualisé le problème le plus important, on passe à la visualisation de l'importance relative des différentes causes d'un problème, et ainsi de sélectionner celles qu'il faudra résoudre en premier.

Nous avons utilisé l'historique de la chaque machine (voir l'annexe3 : historique d'erreur machine) afin de classer les problèmes détecter par CFA dans deux tableaux 7 et 8) puis nous avons tracé le « Diagramme de PARETO » des deux machine (figure 35 et figure36).

Colonne1	mercredi	jeudi	vendredi	samedi	dimanche	lundi	mardi
seuil arrêt dépassé	13	25	19	28	2	57	29
NB max de contacts défectueux avec limite d'erreur d'attente	2	1	7	3	0	0	11
signal détecteur trop élevé	0	0	0	0	0	2	1
press is et on learn mode	0	0	0	0	0	0	0
signal détecteur trop faible	0	1	0	0	0	0	0

Tableau 7 : Les types d'erreur CFA détecté dans la machine Komax 21

Causes	mercredi	jeudi	vendredi	samedi	dimanche	lundi	mardi
seuil arrêt dépassé	16	40	61	21	16	29	15
NB max de contacts défectueux avec limite d'erreur d'attente	2	1	0	1	2	4	9
signal détecteur trop élevé	0	0	1	0	0	0	0
press is et on learn mode	0	0	0	0	0	0	0
signal détecteur trop faible	1	0	0	2	1	0	0

Tableau 8 : Les types d'erreur CFA détecté dans la machine Komax 15

Figure 36 : Diagramme de Pareto types d'erreur CFA KOMAX 15

* Interprétation des résultats :

D'après cette étude on peut conclure que le problème de seuil d'arrêt dépassé présente un problème majeur par rapport aux autres, le seuil d'arrêt dépassé signifier que le nombre maximum toléré d'arrêt dû aux paramètres CFA a été dépassé cela est causé en premier lieu

par l'utilisation des paramètres CFA par défaut ou aléatoire, la qualité de connexion ainsi que celle des câbles.

Pour mieux cerner les causes on va identifier les connexions à problème CFA.

3.4. Identification des connexions à problème CFA

Cette étape consiste à identifier les connexions qui présentent plus des problèmes CFA, cette étude va nous permettre de classer les connexions utilisé dans l'usine en deux liste, une standard et une notre critique. Pour ce faire, on a utilisé la méthode de « Brainstorming », qui consiste à rassembler les idées en un minimum du temps, dans notre cas on a posé des questions aux opératrices, techniciens de maintenance ainsi qu'aux agents de qualité pendant une semaine.

La liste complète des connexions est donnée dans l'annexe 3.

Pour la liste des connexions qui présente des problèmes CFA, on les a classées par ordre de criticité selon 3 couleurs (voir tableau 9), en se basant sur la figure 37 :

Rouge : Très critique Orange : Moyen Jeune : Faible

Тгор	Moyen	faible
140073000	1400568500	1400390400
W000001524	1450068300	1450068500
W00000067	W000002601	1400450300
W000000627	1400442400	1450066100
1800317200	14500616000	1450050100
W000002930	1800334200	14001915

Tableau 9 : connexion à problème CFA

Figure 37 : Classification des connexions à problème CFA

Chapitre 4 : Solutions

Le but de ce chapitre est de mettre en œuvre les actions et les solutions adéquates pour résoudre la problématique de mon projet.

Chapitre 4 : Solutions

Apres avoir effectué le diagnostic des différentes caractéristiques ayant un impact direct sur le sujet en question, nous avons eu une meilleur visibilité sur les actions adéquates à effectuer.

Pour déterminer les paramètres optimaux aux connexions à problème CFA, il faut tout d'abord choisir une presse stable, pour cela, on va vérifier la stabilité CFA des presses en utilisant un analyseur CFA. Après il faut mettre en œuvre une méthode de détermination des paramètres CFA puis figer l'accès aux paramètres CFA aux opératrices et aux techniciens en adoptant des session de travail pour chacun. Pour le transfert automatique des paramètres CFA dans les machines on va manipuler des fichiers XML

4.1 Etude de stabilité CFA des presses :

Avant de commencer la détermination des paramètres CFA adéquats à chaque type de connexion, il faut s'assurer sur la stabilité de la presse utilisée. Pour cela, on a commandé un outil qui permet l'étude de stabilité des presses, il s'appelle Analyseur CFA, dans ce sens je suis amené à réaliser un mode opératoire pour ce dernier.

4.1.1 Analyseur CFA :

Figure 38 : Analyseur CFA

Il s'agit d'un outil Komax (ci-dessus figure 38) qui permet le contrôle et le test de stabilité de la station presse, son fonctionnement se base sur l'analyse des variations de Peakforce pendant un cycle de teste qui peut varier entre 100 et 1000 coup de sertissage. L'analyseur se compose d'une partie soft et hard, pour la partie soft, il s'agit d'une application Komax Crimp Module Analyzer (figure 39) qui permet de simuler en temps réel les variations de Peakforce et l'enregistrer sous forme de rapport. Pour la partie matérielle elle est composée d'un outil de mesure (figure 40) et un ensemble de câble qui permet la liaison entre le pc/laptop et la station presse.

Figure 39 : application Komax Crimp Module Analyzer

Figure 40 : Outil de mesure

La figure 41 présente le rapport délivré à la fin de l'analyse, il nous permet de validé la stabilité de la presse, dans le cas échéant les techniciens doivent trouver et régler la défaillance.

Figure 41 : Rapport d'étude de stabilité

4.1.2 Mode opératoire :

Le mode opératoire est un document qui permet la description des déférentes étapes à suivre pour une bonne utilisation d'un outil ou un appareil, ainsi que les précautions d'utilisation.

INSTRUCTION DE TRAVAIL Utilisation d'Analyseur CFA

PRECAUTIONS D'UTILISATION

- Couper l'alimentation avant d'installer le Crimp Simulator SET.
- Vérifier le centrage et la fixation du Crimp Simulator SET.
- Vérifier s'il y a présence des brins dans le Crimp Simulator SET.
- Vérifier la connectivité des câbles.

SEWS CABIND MAROC S.A.S

- Ne pas couper l'alimentation lors de changement de station d'analyse de presse dans la même machine.
- Vérifier le niveau d'alimentation du PC/laptop avant de commencer l'analyse, veiller à ce que le pc ne se mette pas en mode veille.

Côté matériel

- 1 : Crimp Simulator SET (AMP Compatible).
- 2 : Adapter (serial Link kit)
- 3 : Chargeur
- 4 : Power Câble
- 5 : Câble MCI
- 6 : Adaptateurs RS232/USB
- 7 : Barreau de serrage (utilisé pour le serrage du Crimp Simulation SET)

 Introduir le Crimp Simulator SET(AMP compatible) dans la presse.

3- Relier le port « Supply port » de l'adapter(serial link kit) avec le chargeur d'alimentation en utilisant le « Power cable »

2- Relier le port de sortie de l'adapter(serial link kit) avec le port du PC/laptop en utilistant l'adaptateur RS232/USB

4- Relier le port « Target » de l'adapter(serial link kit) avec le port « MCI » de la presse à l'aide du câble MCI

		Approuve par
and the state of t	and the second	

4.2 Détermination des paramètres CFA :

SEWS CABIND MAROC S.A.S

Après avoir s'assurer sur la stabilité de la station presse de chaque machine, et dans le but de déterminer les paramètres CFA (c'est-à-dire le BLO, les largeurs des zones (Z1 et Z2) et les Sensibilités (S1, S2 et S3) adéquates à chaque connexion qui présente un problème de seuil d'arrêt dépassé, il faut suivre les quatre étapes suivantes :

4.2.1 Etape 1 : Ajuster les Zones (Z1 et Z2) :

La largeur de la zone 3 (Z3) est déterminée d'une manière automatique par la machine, pour les zones 2 et 3 il faut suivre les sous étapes suivantes :

1) Apprentissage CFA (courbe de référence).

2) Sertissage à vide (sans fil).

3) Déterminer Z1 et Z2 tel que Z1 commence au point d'influence (entre la courbe de sertissage vide et la courbe de référence).

4) Calcule du Head Room (HR) avec la relation suivante :

 $HR = 1 - \frac{FP Empty Crimp}{FP Reference} 100 \%$

Avec FP Empty Crimp désigne force maximale de sertissage à vide.

Et FP reference désigne force maximale de sertissage de référence.

5) Apprentissage du new CFA.

4.2.2 Etape 2 : Ajustement du BLO et les Sensibilités S1, S2 et S3 :

- 1) Fixer les sensibilités S1, S2 et S3 à 1, le BLO à 200, désactiver le CFA Drift et fixer Stop limite à 1.
- 2) Apprentissage CFA.
- 3) Produire 30 échantillons et noter le maximum de RU1, RU2, RU3 et RUO.
- 4) Mettre la valeur du BLO à 1.05*max (RUO).
- 5) Apprentissage CFA.
- 6) Produire 30 échantillons et noter le maximum des résultats RU1, RU2 et RU3 entre les si un mauvais sertissage détectés.
- 7) Calcule des nouveaux valeurs des sensibilités tel que :

$$S1new \leq \frac{Max(RU1)}{BL1} \qquad S2new \leq \frac{Max(RU2)}{BL2} \qquad S3new \leq \frac{Max(RU3)}{BL3}$$

4.2.3 Etape 3 : Définition du point de détection pour sertissage sur isolant :

Figure 44 : point de détection pour sertissage sur isolant

Dans ce qui suit les X désignent les longueurs à dénuder et les Y les forces d'arrachement.

SEWS CABIND MAROC S A S

- 1) Calculer la force d'arrachement pour un sertissage parfait et noter X1 et Y1.
- 2) Raccourcir la longueur de dénudage de sorte que l'isolant sera à l'intérieur du fil à sertir et noter X2 et Y2.
- 3) Raccourcir encore la longueur de dénudage tel que la force d'arrachement sera toujours >0 et noter X3 et Y3.
- 4) Calculer la force d'arrachement et la longueur de dénudage à l'aide des formules suivantes :

$$Y0 = 0,7 * Y1 \qquad X0 = \frac{Y0 - Y3}{Y2 - Y3}(X2 - X3) + X3$$

4.2.4 Validation des nouveaux paramètres CFA :

- 1) Apprentissage CFA avec les nouveaux paramètres CFA.
- 2) Tester 30 échantillons avec 10% des brins (détection de manque de brin).
- 3) Tester 30 échantillons avec X0 (détection su sertissage sur isolant).
- 4) Tester 10 échantillons avec +0.05 et -0.05 dans la hauteur de sertissage.
- 5) Tester 1000 échantillons (sertissage parfait). Anciens valeurs

4.2.5 Nouveaux paramètres CFA :

Les paramètres par défaut dans les machines Komax sont donnés dans le tableau 9 ci-dessous, ainsi les figures 45, 46 et 47 présentent les paramètres CFA avec lesquels les connexions W000001255, 1450073000 etW00000627 respectivement fonctionnent :

Paramètres CFA demandés		Largeur	Sensibilité
	Zone1	0.5	0.5
BLO : 60	Zone2	0.5	0.5
	Zone3		1

🖷 W000001255			Coté 2 🖾
Contact Usinage Spécification	s Contrôleur CFA		
Utiliser détection CFA			Défaut
			Auto-adjust-
Seuil de production (BLO):		60	1.0
Seuil d'apprentissage (facteur re	elatif au BLO):	1.0	
Seull d'arrêt (facteur relatif à BL	O):	3.0	1000
Seuil de décalage (facteur relati	fāBLO):	3.0	
	Largeur	Sensibilité	
Zone 1:	0.5	0.5	
Zone 2 :	0.5	0.5	Щ
Zone 3 :		0.5	bei
		Fer	mer Aide

Tableau 10 : paramètres CFA par défaut

Figure 46 : paramètre CFA connexion 1450073000

Figure 47 : paramètre CFA connexion W00000627

Le tableau (tableau 11) suivant présente les anciennes et les nouvelles valeurs des paramètres CFA des connexions identifiées comme critique, en utilisant la méthode de détermination décrite ci-dessus.

	Anciennes valeurs								Nouvelles valeurs									
Connexions	ions Z1 Z2 S1 S2 S3 BLC		BLO	Z1	Z2	S 1	S2	S 3	BLO									
1450073000	DOD 0.5 0.5 0.5 0.5 0.5		80	0.5	0.5	0.5	0.5	1	80									
W00001524	0.5 0.5 0.5 0.5 1		50	0.5	0.5	0.5	0.5	1	60									
W0000067	0.5	0.5	0.5	0.5	1	60	0.5	0.5	0.5	0.5	0.5	80						
W00000627	0.0	0.0	0.5	0.5	0.5	60	0.5	0.5	0.5	0.5	1	60						
1800317200	0.5	0.5	0.5	0.5	0.5	70	0.5	0.5	0.5	0.5	1	60						
W00001255	0.5	0.5	0.5	0.5	0.5	50	0.5	0.5	0.5	0.5	1	70						
1400568500	0.5	0.5	0.5	0.5	0.5	60	0.5	0.5	0.5	0.5	1	60						
1450068300	0.5	0.5	0.5	0.5	1	60	0.5	0.5	0.5	0.5	1	60						
W00002601	0.5	0.5	0.5	0.5	0.5	60	0.5	0.5	0.5	0.5	0.5	70						
1400442400	0.5	0.5	0.5	0.5	0.5	50	0.5	0.5	0.5	0.5	1	65						
1450061600	0.5	0.5	0.5	0.5	0.5 1 5		0.5	0.5	0.5	0.5	1	60						
1800334200	0.5	0.5	0.5	0.5	0.5	70	0.5	0.5	0.5	0.5	1	65						

Tableau 11 : anciennes et nouvelles paramètre CFA

◆ Exemple des nouveaux paramètres CFA pour la connexion 1800317200 figure 48 :

Figure 48 : Nouveaux paramètres CFA connexion 1800317200

4.3 Détermination des droits d'accès :

Pour éviter que les opératrices et les techniciens changent les paramètres CFA, on a opté à mettre en œuvre des sessions de travaille protégées par mot de passe et avec des droits d'accès bien précisent, dans un premier lieu on a déterminé 3 sessions qui sont : Administrateur, maintenance et user, pour ce faire on a utilisé les propriétés proposées par l'interface Top Win en suivant les étapes suivantes :

4.3.1 Création de groupe :

Un groupe de travail présente un ensemble d'utilisateur qu'ont les mêmes droits d'accès, pour créer un groupe de travail outils, on suit les étapes de la figure 49ci-dessous :

Figure 49 : Etape de création de groupe de travail

4.3.2 Création d'utilisateur :

Un utilisateur présente une session de travail protégé par un mot de passe et il a les mêmes droits que le groupe dans lequel il fait partie, voir la figure 50 pour créer un utilisateur :

Figure 50 : Etape de création d'utilisateur

4.3.3 Les droits d'accès :

En général on peut classer les droits d'accès en trois catégories, ceux en relation avec la gestion de la machine, la gestion de la production et la gestion de qualité, la partie qui nous concerne c'est celle en relation avec CFA.

Droits d'accès Administrateur :

Il a accès à toutes les fonctionnalités de la machine, inclue les paramètres CFA, il est capable de les modifier manuellement. (Figure 51).

Figure 51 : Droits d'accès Administrateur

Droits d'accès maintenance :

Pour les techniciens, ils ont droit à tout ce qu'est en relation avec le control et la commande de la machine sauf ce qui concerne la qualité et la gestion générale. Pour les paramètres CFA, ils ont droit juste de voir les valeurs des paramètres, ils ne peuvent pas les modifier, (Figure 52).

Figure 52 : Droits d'accès maintenance

Droits d'accès opératrice :

Pour les opératrices c'est-à-dire Users, on les a données accès juste à ce qu'est production, plus d'accès aux paramètres CFA. (Figure 53).

Figure 53 : Droits d'accès opératrice

4.3.4 Sauvegarde des droits d'accès :

Afin de gagner du temps et appliquer cette gestion de droit d'accès à toutes les machines de l'usine on peut exporter cette configuration et l'importer voir figure 54 cidessous :

Figure 54 : exporter et importer fichier de gestion des droits d'accès

4.4 Transfert automatique des paramètres CFA :

4.4.1. Introduction sur WPCS :

WPCS : Wire Processing Communication Standard : est un standard de communication utilisé par les machines komax (voir figure 55), il se base sur un mécanisme de transfert de fichiers. Chaque machine dispose de deux répertoires WPCS :

- Répertoire IN : il permet le transfert des données vers les machines komax, la définition et chargement des articles et des pièces (fils, joints, terminaux, etc), les paramètres de traitement CFA, ainsi il permet le traitement des données de terminal (hauteur de sertissage, la force d'arrachement).
- Répertoire out : il permet le transfert des données de la machine vers le server, telles que statut, erreur rapport qualité... .

4.4.2. WPCS données de description du serveur :

les données dans le server sont définies dans des fichiers *. Dds (Description data from Server), en général on trouve 5 fichiers :

- Jobs : fichier de travail c'est-à-dire le travail que l'opératrice doit accomplir.
- Articles : c'est les repères à produire
- Wire : description de type de fil utilisé.

- Terminal : description de type de connexion utilisé.
- Seal : description de type de joint utilisé.

L'exemple suivant (figure 56) montre comment spécifier un article, le fil référencé, joint et le terminal. Dans le fichier de travail (Jobs), cet article est référencé à définir un grand nombre de 1000 pièces de production.

Figure 57 : WPCS Description de données (job, article, wire, seal and terminal)

4.4.3. Manipulation des fichiers XML :

Pour transférer et charger les paramètres CFA qu'on a déjà déterminer précédemment (tableau 11) à savoir les largeurs des zones 1 et 2 les sensibilités S1, S2 et S3 et le BLO, le

WPCS permet ceci tout en utilisant un fichier XML. Mon travail est de créer un fichier XML qui va contenir les paramètres à transférer,

Ce fichier doit être référencié dans le fichier « Terminal.DDS »dans le bloc [NewTerminal] par l'attribut "ProcessData".

Introduction sur les fichiers XML :

XML eXtensible Markup Language, Langage à balises étendu, ou Langage à balises extensible : est un langage de **balisage générique** qui permet de structurer des données afin qu'elles soient lisibles aussi bien par les humains que par des programmes de toute sorte. Il est souvent utilisé pour faire des échanges de données entre un programme et un serveur ou entre plusieurs programmes.

Un **langage de balisage** est un langage qui s'écrit grâce à des **balises**. Ces balises permettent de structurer de manière hiérarchisée et organisée les données d'un document. Les **balises** sont les éléments de base d'un document XML. Une balise porte un nom qui est entouré de **chevrons**. Une balise commence donc par un < et se termine par un >. Par exemple :
balise> définit une balise qui s'appelle "**balise**". Le terme générique signifie que nous allons pouvoir créer nos propres balises. Nous ne sommes pas obligés d'utiliser un ensemble de balises existantes comme c'est par exemple le cas en HTML.

Pour écrire un fichier en XML il faut utiliser un éditeur XML en effet il existe plusieurs éditeur XML tel que : <u>XMLSpy</u>, <u>Editix</u>, ou <u>XML Copy Editor</u> pour moi j'ai choisis EditiX version 2008 figure 58 :

Figure 58 : interface EditiX

Définition des balises :

Pour répondre à mon besoin, on a contacter les responsables Komax pour nous donner les noms de balise utilisés dans leurs machine komax, voilà l'ensemble des balises à utilisées : ProcessData, Accessories, CFA, UseCFA, Limit, Zone1, Zone2, Zone3, Bad, Learn, Stop, Drift, Width, et Sens.

L'arborescence du fichier :

L'arborescence du fichier permet de définir l'enchainement des déférentes balises, voir figure 59 :

Figure 59 : arborescence du fichier XML

Le fichier « Terminal.DDS » :

la figure ci-dessous (figure 60) présente un fichier Terminal.dds, dans ce fichier on a rajouté l'attribut ProcessData et on lui spécifier le chemin de notre fichier XML qui contient les données CFA.

Figure 60 : fichier Terminal.dds

Ie fichier XML :

Le fichier XML final généré est le suivant (figure 61) :

Image: Section of the University of Construction Image: Construction Image: Construction Image: Construction Image: Construction Image: Construction Image: Construction Image: Construction Image: Construction Image: Construction Imag
<pre>CPU-US0200000 CPU-US0200000 CPU-US0200000 CPU-US0200000 CPU-US0200000 CPU-US020000 CPU-US0200000 CPU-US020000 CPU-US0200000 CPU-US0200000 CPU-US0200000 CPU-US0200000 CPU-US0200000 CPU-US02000000 CPU-US02000000 CPU-US02000000000000 CPU-US0200000000 CPU-US0200000000 CPU-US020000000000000</pre>
C - C - C - C - C - C - C - C - C -
<pre></pre>
<pre></pre>
<pre></pre>
<pre></pre>
(/Tone3)

Remarque : il faut créer un fichier XML pour chaque connexion qui présente un problème paramètre CFA, pour les connexions standards on utilisera un seul fichier XML nommé « CFA_standard_parametre.xml ».

55

Chapitre 5 : Bilan général

Après avoir effectué toutes les étapes planifiées, ce chapitre sera consacré au suivi et visualisation des résultats obtenus.

Chapitre 5 : Bilan général

Après avoir réalisé l'ensemble des actions et solutions, il faut chercher à voir leur reflet réel. Un bilan général s'avère une phase essentielle, ce dernier nous aidera à la recherche des points d'amélioration qui permettront de satisfaire les objectifs que nous avons fixés. Cependant, quels sont les axes qu'il faudra évaluer ?

Afin de répondre à cette question, nous devons connaitre et faire le suivi des états des indicateurs de performance, à savoir la productivité et le temps d'arrêt.

5.1. Etats des indicateurs de performance :

5.1.1. Productivité :

La productivité est l'indicateur principal de la situation de la ligne. Pour cela, nous sommes basé sur l'historique des 4 mois afin d'avoir une idée globale. Le tableau 12 résume la productivité de chaque machine de la zone coupe/sertissage pendant la période de stage :

		é en %							
N° machine	Type de Machine	Mars	AVRIL	MAI	I JUIN				
kx 04	ALPHA 455	71.4%	66%	66,20%	78,70%				
kx 05	ALPHA 455	62%	62,60%	62%	75,40%				
kx 06	ALPHA 455	62%	60,40%	85,10%	70,10%				
kx 07	ALPHA 455	72%	69,50%	80,00%	77,40%				
kx 08	ALPHA 433	75%	75,50%	78,60%	77,60%				
kx 09	ALPHA 433	71%	78,40%	66,80%	74,60%				
kx 12	GAMMA 333	114%	94,80%	101,40%	109,30%				
kx 13	kx 13 GAMMA 333		96,30%	100,00%	101,50%				
kx 14	GAMMA 333	80%	80,00%	85,20%	78,20%				
kx 15	GAMMA 333	93%	103,90%	111,6%	86,40%				
kx 16	ALPHA 433	66%	66,20%	72,60%	70,80%				
kx 17	ALPHA 455	94%	106,40%	112,70%	90%				
kx 18	ALPHA 433	66%	66,90%	67,00%	69,30%				
kx 19	ALPHA 455	82%	84,60%	85,70%	82,10%				
kx 20	ALPHA 456	89%	86,70%	96,80%	88,60%				
kx 21	ALPHA 433	69.3 %	67.2%	68,20%	71,80%				
kx 23	ALPHA 433	48%	45,50%	46,40%	50,20%				
Productivité	totale :	68,82%	73,16%	74,98%	79,53%				

Tableau 12 : Productivité

Le graphique suivant (figure 63) illustre l'évolution de la productivité de la zone coupe/sertissage pendant les 4 mois de stage :

Figure 62 : évolution de la productivité

5.1.2. Temps d'arrêt :

Le temps d'arrêt des machines influence directement la production, d'ailleurs il présente l'objectif principal de notre projet ; le tableau suivant (tableau 13) présente le temps d'arrêt de chaque machine pendant la période de mon stage :

temps d'arrêt en heur														
N° machine	Type de Machine	Mars	AVRIL	MAI	JUIN									
kx 04	ALPHA 455	133	120	100	89									
kx 05	ALPHA 455	94	59	54	50									
kx 06	ALPHA 455	38	41	33	30									
kx 07	ALPHA 455	72	61	68	65									
kx 08	ALPHA 433	80	69	85	80									
kx 09	ALPHA 433	100	84	86	84									
kx 12	GAMMA 333	51	70	86	70									
kx 13	GAMMA 333	98	123	112	94									
kx 14	GAMMA 333	31	41	42	40									
kx 15	GAMMA 333	79	104	108	90									
kx 16	ALPHA 433	62	75	89	60									
kx 17	ALPHA 455	72	109	86	76									
kx 18	ALPHA 433	42	41	38	30									
kx 19	ALPHA 455	86	90	71	77									
kx 20	ALPHA 456	34	48	51	42									
kx 21	ALPHA 433	48	37	32	20									
kx 23	ALPHA 433	29	44	49	39									
temps d'ar	rêt total :	1149	1216	1190	1036									
temps d'ar	rêt moyen :	68	72	70	61									

Tableau 13 : temps d'arrêt par machine

Figure 63 : évolution de temps d'arrêt moyen et total des machines

***** Interprétation de la figure 63 :

D'après ce diagnostic on voit très bien que, la productivité est passée de 74.98% à 79.53% après l'implantation de nos solutions, soit une augmentation de 4.55 % ; ainsi que le temps d'arrêt moyen a eu une baisse de moins 9% ; certainement ces résultats ne présentent pas que mon travail mais la volonté de tous les personnels et les responsables.

Conclusion

Lors de ce stage effectué au sein du Sews cabind Maroc, j'ai eu l'opportunité d'avoir une vue d'ensemble sur les sociétés multinationale, de travailler en équipe, de faire face à des situations nouvelles et intéressantes ainsi de développer mon esprit d'initiative, d'innovation et de recherche.

Mon projet a porté sur le control de qualité de sertissage, ce dernier rentre dans le cadre du progrès continu dans lequel s'implique plusieurs services, en particulier le service maintenance, qualité et production. Ma mission était de proposer des solutions pour remédier aux différentes causes rencontrées durant l'implantation du contrôle de force de sertissage (CFA). Ces aboutissements ont fait l'objet d'un contrôle et d'une estimation des gains. Le résultat se manifeste par l'augmentation de la productivité par 4% ainsi qu'une diminution de temps d'arrêt par 5% et bien évidement une augmentation au niveau de qualité de produit.

En perspective, et dans le but d'augmenter d'avantage la productivité des chaînes de production, mon travail pourra être extrapolé aux autres lignes.

Pour conclure, cette expérience a été en tous points bénéfique, tant sur le plan professionnel que technique, pratiquement j'ai pu acquérir des nouvelles méthodes d'analyse et de résolution de problèmes, ainsi apprendre un nouveau langage de description de donnée XML.

Liste des figures

Figure 1 : POLITIQUE DU GROUPE SEWS	9
Figure 2 : Implantation de SEWS au Maroc	. 10
Figure 3 : Familles de produits	. 11
Figure 4 : Organigramme de SEWS CABIND Maroc	. 11
Figure 5 : Schéma des faisceaux électriques d'une voiture	. 12
Figure 6 : les fils électrique avec les joints et les boitiers	. 13
Figure 7 : La chaîne de production	. 13
Figure 8 : Fils torsadés Figure 9 : Robot de Torsadage	. 14
Figure 10 : partie isolant (RBK)	. 15
Figure 11 : SALD	. 15
Figure 12 : poste de pré montage des faisceaux électriques	. 15
Figure 13 : planche de montage des faisceaux électriques	. 16
Figure 14 : Planche de test électrique des faisceaux	. 16
Figure 15: poste de contrôle final	. 16
Figure 16 Machine Komax	. 19
Figure 17: Vue d'ensemble d'une Komax (alpha355)	. 20
Figure 18 : unité de dressage	. 21
Figure 19 : Unité d'entrainement de la machine Alpha 455 Figure 20 : schéma bloc d'unit	té
d'entrainement	. 21
Figure 21 : Unité de pivotement et d'extraction 1	. 22
Figure 22 : tête de coupe Figure 23 : Couteau de dénudage	. 22
Figure 24 : Unité de pivotement et d'extraction 2	. 23
Figure 25 : poste de joints Figure 26 : Kits joint	. 24
Figure 27 : station presse Figure 28 : Mini Applicateur (MAP)	. 24
Figure 29 : les 3 zones	. 26
Figure 30 : méthode de calcul des paramètres	. 27
Figure 31 : Résultats CFA	. 28
Figure 32 Algorithme de décision	. 29
Figure 33 : diagramme Pareto Komax 21	. 33
Figure 34 : diagramme Pareto Komax 15	. 33
Figure 35 : Diagramme de Pareto types d'erreur CFA KOMAX 21	. 35
Figure 36 : Diagramme de Pareto types d'erreur CFA KOMAX 15	. 35
Figure 37 : Classification des connexions à problème CFA	. 36
Figure 38 : Analyseur CFA	. 38
Figure 39 : application Komax Crimp Module Analyzer Figure 40 : Outil de mesure	. 39
Figure 41 : rapport d'étude de stabilité	. 39
Figure 42 : les trois zones	. 43
Figure 43 : calcule de BLO, BL1, BL2 et BL3	. 44
Figure 44 : point de détection pour sertissage sur isolant	. 44
Figure 45 : paramètre CFA connexion W000001255 Figure 46 : paramètre CFA connexion	
1450073000	. 45
Figure 47 : paramètre CFA connexion W00000627	. 46
Figure 48 : Nouveaux paramètres CFA connexion 1800317200	. 47
Figure 49 : Etape de création de groupe de travail	. 47

48
48
49
49
50
51
52
52
53
54
54
55
58
59

Liste des tableaux

Tableau 1 : Fiche D'identification (SEWS-CABIND MAROC)	10
Tableau 2 : les opérations effectuées par Komax	19
Tableau 3 : éléments de la machine komax (alpha 477)	20
Tableau 4 : les problèmes et les causes dans les machines Komax	31
Tableau 5 : tableau de suivi de la machine komax 21	32
Tableau 6 : tableau de suivi de la machine komax 15	32
Tableau 7 : Les types d'erreur CFA détecté dans la machine Komax 21	34
Tableau 8 : Les types d'erreur CFA détecté dans la machine Komax 15	34
Tableau 9 : connexion à problème CFA	36
Tableau 10 : paramètres CFA par défaut	45
Tableau 11 : anciennes et nouvelles paramètre CFA	46
Tableau 12 : Productivité	57
Tableau 13 : temps d'arrêt par machine	59

Glossaire des abréviations

- **SWS :** Sumitomo Wiring System LTD.
- SEWS-CM : SEWS-CABIND MAROC.
- **SEWS :** Sumitomo Wiring Systems Ltd (Japon) : Un groupe spécialisé dans l'équipement électrique et leader dans le domaine de câblage automobile ;
- CABIND S.P.A (Italie) : Groupe connu par son savoir-faire dans le domaine de câblage automobile, et le privilège que lui donne un grand constructeur tel que FIAT Auto Italie.
- **CFA** : Crimp Force Analyser
- **Fp** : Peak Force **Rp** : reversing point
- **FP** Empty Crimp
- **BLO** : Bad Limit Overall
- **HR**: Head Room
- RU: Result Unsigned toujours positif
 RS: Result Signed : il permet d'évaluer le type d'erreur
- **Tl** : Teach limit : la limite d'erreur pendant le cycle d'apprentissage
- SL : Stop limit : si sa valeur est dépassée la machine s'arrête
- DI : Drift limit : si sa valeur est dépassée la machine s'arrête
- **OMI :** Operator Machine Interface

Bibliographié

- GUIDE DU SALARIE SEWS CABIND MAROC (EDITION DU 10 AVRIL 2014)
- How To Adjust CFA
- Welcome to CFA training
- <u>http://www.sews-cabind.it/it</u>
- <u>http://www.komaxgroup.com/en/</u>
- <u>http://www.w3.org/XML/</u>
- <u>www.siteduzero.com/</u>
- <u>http://fr.wikipedia.org/wiki/Sertissage</u>
- www.circuitmaster.co.uk/cfa1000b.html
- <u>http://www.assemblymag.com/articles/86473-crimp-force-monitoring</u>
- <u>http://fr.openclassrooms.com/informatique/cours/structurez-vos-donnees-avec-</u> <u>xml/les-elements-de-base-4</u>

Annexe 2 : diagramme de Gantt

4)	GanttProject [planing de stage.gan] *														×									
Projet Édition Affichage Tâches Ressources Aide																								
	k 🖪 🐂 🌬																							
🔚 Gantt 🕼 Ressources																								
GANTT project	févr	ier 201	4	mars	2014			avril	2014		_	m	ai 201	4			juin 2	2014		_	juille	ət 2014		
Nom	Date de début	Date de fin	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28
découverte de l'usine et relationnel	17/02/14	02/04/14							_	h														
····inventaire magasin de piece de rechange	03/03/14	08/03/14					h																	
gestion des mouvements des mini-aplicateurs et des kits joints	10/03/14	20/03/14						h																
assiter et participer au maintenance préventifs des machines Komax	20/03/14	27/03/14							h															
préparation d'audit (PK)	27/03/14	02/04/14							Ľ															
cahier de charge	02/04/14	08/04/14								1 E	h													
etude de la machine komax	02/04/14	04/04/14								Ľ.														
etude de la presse	04/04/14	08/04/14								Ē														
analyse du sujet	08/04/14	22/04/14											Ъ											
collecte des références du connexions a probléme de CFA	08/04/14	15/04/14										h												
analyse CFA des presses de sertissage	15/04/14	22/04/14																						
plan d'action	22/04/14	13/06/14											i.											
figer l'accée au paramétres CFA aux operatrices et aux techniciens	22/04/14	30/04/14												1										
définitions des paramétres CFA pour chaque connexion par des tests	30/04/14	13/05/14																-	-					
manipulation des fichiers XML	14/05/14	30/05/14																						
intégration des paramétres CFA automatiquement sur les machines	02/06/14	07/06/14																		H_				
mettre en oeuvre un module de formation : opératrices / techniciens	09/06/14	13/06/14																						

Annexe3 : liste de connexion

IHS	m OU w	IHS	m OU w	IHS	m OU w	IHS	m OU w	IHS	m OU w	IHS	m OU w	IHS	m OU w	IHS	m OU w
140040	M00000	140037	M2351	140041	M00000	1400529	W00000	140040	M00000	1450071	M62801	145005	M2060	1410125	W00000
2600	0064	6900	810	8100	3748	800	1179	0000	2653	900	80	3700	160	700	1863
140040	M00000	M23520	M2352	140041	M00000	1400531	W00000	140040	M00000	1450071	M62801	145006	M2080	1410123	W00000
3700	0220	50	050	8600	3771	000	1198	8500	2676	100	90	9100	110	300	1864
180031	M00000	180036	M2352	140041	M00000	1800282	W00000	140040	M00000	1450040	M63500	140042	M2100	W00000	W00000
7200	0473	0300	060	8900	3775	400	1203	7900	2677	900	20	0100	020	1866	1866
145006	M00000	180037	M2352	140041	M00000	1800281	W00000	140038	M00000	1450070	M63500	140042	M2130	W00000	W00000
5500	0486	5500	280	7600	3784	700	1204	8800	2978	500	40	5100	010	1867	1867
145006	M00000	M23525	M2352	140041	M00000	1800333	W00000	140039	M00000	1400434	M63501	145007	M2160	1400455	W00000
9900	0762	00	500	7700	3785	100	1205	0400	2979	100	10	1800	010	900	1905
145007	M00000	145004	M2352	140042	M00000	1400532	W00000	180033	M00000	1400437	M63501	140040	M2160	1450073	W00000
8100	0857	3000	590	5500	3792	400	1221	9300	2994	400	20	6200	030	200	2075
145006	M00000	140039	M2352	140041	M00000	1400533	W00000	140039	M00000	1450074	M82400	140042	M2180	W00000	W00000
6000	0858	4100	630	7900	3801	300	1247	3500	2995	100	60	0200	010	2085	2085
145006	M00000	145004	M2352	140023	M00000	1400533	W00000	180031	M00000	1450070	M82400	140046	M2180	1400582	W00000
6100	0859	9800	730	3600	3802	400	1248	8900	3004	400	70	8800	020	200	2131
145006	M00000	145004	M2352	140043	M00000	W00000	W00000	140046	M00000	1450040	M82400	140038	M2210	W00000	W00000
6200	0860	7500	740	8300	3836	1251	1251	1600	3060	600	90	9700	030	2149	2149
145006	M00000	145005	M2352	140043	M00000	8100444	W00000	180031	M00000	1450055	M82401	140043	M2220	W00000	W00000
7900	0894	0100	830	8500	3856	400	1252	0700	3067	800	30	3400	020	2150	2150
145006 1000	M00000 0911	145004 9900	M2352 840	140050 9300	M00000 3900 W00000 2065	8100444 500	W00000 1253	140013 6900	M00000 3200	1450074 200	M82401 70	140038 9000	M2220 060	W00000 2355	W00000 2355
145004	M00000	140052	M3010	140048	M00000	1400533	W00000	140042	M00000	1400390	M82402	145004	M2240	W00000	W00000
4300	1007	0600	120	9200	3902	600	1254	5800	3207	700	10	2100	110	2357	2357
140038	M00000	140039	M3010	140048	M00000	1400533	W00000	180033	M00000	1400399	M82402	145005	M2240	W00000	W00000
0400	1154	9600	140	5300	3978	700	1255	9400	3208	400	20	3200	150	2358	2358
145006	M00000	140043	M3010	140012	M00000	1800353	W00000	140042	M00000	1400390	M82800	145005	M2240	W00000	W00000
8200	1207	6200	220	5700	4046	100	1258	6300	3209	300	10	4000	160	2359	2359
145006	M00000	140039	M3010	140048	M00000	1800353	W00000	140042	M00000	1400388	M82800	140038	M2240	W00000	W00000
1400	1209	2100	340	1900	4059	000	1259	5900	3210	500	20	7500	190	2364	2364
145006	M00000	140039	M3010	140037	M20101	1800298	W00000	180029	M00000	1400408	M83500	140041	M2260	W00000	W00000
8300	1211	2000	370	9000	80	300	1260	6700	3211	400	40	5800	010	2435	2435
140019	M00000	140039	M6010	140039	M20102	1800298	W00000	140048	M00000	1400421	M83500	145007	M2260	W00000	W00000
1300	1261	8000	090	9800	10	400	1261	0200	3212	600	50	6500	020	2456	2456
140047	M00000	140038	M6030	145007	M20102	W00000	W00000	140039	M00000	1400392	M83900	140040	M2260	W00000	W00000
0200	1318	9200	030	0300	70	1262	1262	6600	3346	300	20	8000	030	2475	2475
145007	M00000	140039	M6030	145008	M20103	8100380	W00000	140039	M00000	W00000	W00000	145007	M2270	1400613	W00000
8200	1330	2800	050	2100	60	700	1264	5200	3389	0063	0063	1400	040	500	2537
145007	M00000	140045	M6050	140039	M20104	1400534	W00000	140039	M00000	1400493	W00000	145007	M2270	W00000	W00000
9800	1421	2100	020	1900	70	000	1266	4500	3390	400	0067	2200	050	2601	2601
145007	M00000	145004	M6050	140040	M20105	1400533	W00000	140038	M00000	1400491	W00000	145007	M2270	W00000	W00000
3500	1455	2000	040	2300	60	900	1267	4100	3391	900	0087	2200	050	2610	2610
140045	M00000	140039	M6080	140040	M20107	1400141	W00000	140039	M00000	W00000	W00000	145007	M2270	W00000	W00000
6000	1489	7600	040	1000	30	300	1370	5300	3392	0236	0236	2300	060	2637	2637
180029	M00000	140039	M6080	145006	M20108	1410123	W00000	140039	M00000	W00000	W00000	180032	M2270	W00000	W00000
5700	1515	0800	060	8600	10	500	1437	5400	3393	0259	0259	2600	100	2638	2638

