

www.fst-usmba.ac.ma

Année Universitaire: 2015-2016

Master Sciences et Techniques CAC Agiq Chimiométrie et Analyse Chimique : Application à la gestion de la qualité

MEMOIRE DE FIN D'ETUDES Pour l'Obtention du Diplôme de Master Sciences et Techniques

La maitrise statistique du procédé de remplissage des boissons gazeuses dans des bouteilles en verres.

Présenté par:

Nom et prénom : OUMAI Youssef

Encadré par:

Pr. EL KHAMMAR FAHMI CBGN
 Pr. HICHAM CHTIOUI FST Fès

Soutenu Le 14 Juin 2016 devant le jury composé de:

- Pr.H.CHTIOUI	FST-Fès	Encadrant
- Pr. E. H. ALILOU	FST-Fès	Examinateur
- Pr. A.BOULAHNA	FST-Fès	Examinateur
- Pr. F. EL KHAMMAR	CBGN	Encadrant

Stage effectué à: la Compagnie des Boissons Gazeuses du Nord

Faculté des Sciences et Techniques - Fès B.P. 2202 – Route d'Imouzzer – FES

2 212 (0) 35 60 29 53 Fax : 212 (0) 35 60 82 14

www.fst-usmba.ac.ma

Dédicace

Je dédié ce modeste travail

A mes parents

Qui m'ont donné beaucoup de soutien et d'encouragement, symbolisant pour moi le sacrifice et la source d'où nait la lumière qui éclaire ma vie, et pour qui aucune dédicace n'exprimera la profondeur de mon amour.

A mes frères

Pour leur véritable et s'insère amour, je leur souhaite, une vie pleine de succès avec beaucoup de bonheur.

A mes formateurs

Qui m'ont dirigé vers le chemin de succès par leur compréhension et leur conseil, veuillez trouver dans ce travail, l'expression de mes profondes reconnaissances et mon grand estime.

A tous mes amis et collègues

Pour les moments forts et agréables passés ensembles, à tous ce qui m'aiment et me souhaitent le bonheur et à tous ceux qui ont contribué de près ou de loin à la réalisation de ce travail et à l'élaboration de ce rapport.

www.fst-usmba.ac.ma

Remerciements

Je tiens à remercier Monsieur **EL KHAOUTI** directeur de la CBGN pour le stage effectué au sein de la société, j'en profite pour adresser mes remerciement à le responsable du laboratoire et mon encadrant Mr. **FAHMI EL KHAMMAR** pour tout le savoir et savoir-faire inculqués et qui ont été nécessaire pour le bon déroulement de mon projet de fin d'étude ainsi que tout le personnel du laboratoire, toute l'équipe de production pour l'accueil et la convivialité qui a régné tout au long de ce stage.

Sur cette même lancée mes remerciements vont à l'endroit de mon encadrant Mr le professeur **CHTIOUI HICHAM** pour sa disponibilité et tout l'intérêt porté à mon rapport.

Professeur **EL Mustapha EL HADRAMI**, que je tiens à remercier pour m'avoir accueilli dans son master, je suis très reconnaissant pour la confiance qu'il m'avait accordée, sa gentillesse, sa disponibilité, et ses encouragements m'ont été indispensables.

Mes remerciements également aux membres de jury les professeurs :

- Pr.H.CHTIOUI	FST-Fès
- Pr. E. H. ALILOU	FST-Fès
- Pr. A.BOULAHNA	FST-Fès
- Pr. F. EL KHAMMAR	CBGN

D'avoir accepté de juger ce travail.

Il est évident que je ne peux oublier de remercier ma famille, notamment mes parents, mes frères, qui ont toujours répondu «présent» et ont été d'un grand secours moral en toutes situation.

www.fst-usmba.ac.ma

FST FES

www.fst-usmba.ac.ma

Liste des abréviations

C.B.G.N: la Compagnie des Boissons Gazeuses du Nord

N.A.B.C: North Africa Bottling Company.

E.C.C.B.C: Equatorial Coca-Cola Bottling Company

MSP: la maitrise statistique des procédés

Cp : la capabilité du procédé.

Ti: la tolérance inférieure

Ts: la tolérance supérieure

σ: L'écart-type

LSC: limite supérieure de contrôle, (UCL: upper control limit).

LIC: limite inférieure de contrôle. (LCL: lower control limit).

SCE : la somme des carrées des écarts.

CM : la moyennes des carrées.

LSD: Différence Significative Minimale

ddl: degré de liberté

PV: procès-verbal

RAS: Rien à signaler.

www.fst-usmba.ac.ma

Liste des figures	pages
Fig1 : organigramme de la société C.B.G.N	4
Fig2 : Fiche technique de la C.B.G.N	5
Fig3 : les étapes principales de productions	7
Fig4 : schéma de traitement d'eau	7
Fig5 : schéma des étapes de fabrications de sirop fini	9
Fig6 : schéma des étapes de l'embouteillage	10
Fig7 : schéma de processus de production	14
Fig8 : diagramme d'ISHIKAWA	15
Fig9 : exemple d'une carte de contrôle	16
Fig10: diagramme d'ISHIKAWA du contenu net	40

www.fst-usmba.ac.ma

Liste des tableaux

pages

Tableau-1 : les coefficients pour calculer les limites d'une carte de contrôle.	18
Tableau-2 : l'interprétation des cartes de contrôles.	20
Tableau-3: l'analyse de la variance (ANOVA)	22
Tableau-4: les données du contenu net des boissons de 1L	27
Tableau-5 : la table d'ANOVA pour les boissons d'1L	29
Tableau-6: les données du contenu net des boissons de 35Cl	30
Tableau-7 : la table d'ANOVA pour les boissons de 35Cl.	32
Tableau-8: les moyennes des trois produits de 35 Cl	33
Tableau-9 : les données du contenu net des boissons de 20Cl	35
Tableau-10 : la table d'ANOVA pour les boissons d'20Cl.	37
Tableau-11 : les moyennes des trois produits de 20 Cl	38
Tableau-12: la table des actions correctives	41
Tableau-13 : les données du contenu net des boissons de 1L	42
Tableau-14 : les données du contenu net des boissons de 35Cl	45
Tableau-15 : les données du contenu net des boissons de 20Cl	48

www.fst-usmba.ac.ma

Liste des Graphiques pages

Graphe-1 : la carte de contrôle de \overline{X} et \overline{R} pour les boissons d'1L.	28
Graphe-2 : la capabilité de la soutireuse pour les boissons d'1L.	29
Graphe-3 : la carte de contrôle de \overline{X} et \overline{R} pour les boissons de 35Cl.	31
Graphe-4 : la capabilité de la soutireuse pour les boissons de 35Cl.	32
Graphe-5 : la carte de contrôle de \overline{X} et \overline{R} pour les boissons de 20C1.	36
Graphe-6 : la capabilité de la soutireuse pour les boissons de 20Cl.	37
Graphe-7 : la carte de contrôle de \overline{X} et \overline{R} pour les boissons d'1L.	43
Graphe-8 : la capabilité de la soutireuse pour les boissons d'1L.	44
Graphe-9 : la carte de contrôle de \overline{X} et \overline{R} pour les boissons de 35Cl	46
Graphe-10 : la capabilité de la soutireuse pour les boissons de 35Cl	47
Graphe-11 la carte de contrôle de \bar{X} et \bar{R} pour les boissons de 20Cl.	49
Granhe-12 : la capabilité de la soutireuse pour les boissons de 20Cl	50

www.fst-usmba.ac.ma

SOMMAIRE

Introduction générale :	1
Première Partie : Présentation de la C.B.G.N	2
I. Coca-Cola au Maroc:	3
II. La compagnie des boissons gazeuses du Nord :	3
III. Organigramme de la société	4
IV. Fiche technique :	5
V. Missions et activités de la C.B.G.N	5
Deuxième Partie : Description de la chaine de production	6
I. Processus : Traitement d'eau	7
1-1 Chloration de l'eau:	8
1-2 Coagulation et floculation:	8
1-3 Filtration sur filtre à sable:	8
1-4 Décarbonatation:	8
1-5 Stockage dans le 2ème bassin:	8
1-6 Filtration sur charbon actif:	8
1-7 Filtration sur filtres polisseurs:	8
1-8 Adoucissement de l'eau:	8
II. La Siroperie :	9
2-1 Préparation du sirop simple:	9
2-2 Préparation du sirop fini :	9
Sanitation:	9
III. L'embouteillage :	10
3-1Dépalitisation et décaissement :	10
3-2 Lavage des bouteilles	10
3-3 Inspection des bouteilles lavées	10
3-4 Préparation de la boisson :(carbonation et refroidissement) :	10
3-5 Soutirage et bouchage de la boisson :	10
3-6 Codage des bouteilles:	10
3-7 Mirage plein	10
3-8 Etiquetage:	10
3-9 Encaissage:	10

www.fst-usmba.ac.ma

T	roisiè	me Partie : Généralité sur la maitrise statistique des procédés	. 12
١.	La	maitrise statistique du procédé	. 13
	1.	Définition de la maitrise statistique des procédés	. 13
	2.	Les avantages de la méthode maîtrise statistique des procédés	. 13
	3.	Les objectifs de la Maitrise Statistique des procédés	. 13
	4.	La Maitrise Statistique des Procédés et le processus de production	. 13
	II.	Cartes de contrôle	. 15
	1.	Définition de carte de contrôle	. 15
	2.	L'élaboration de la carte de contrôle	. 16
	3.	Causes communes – Causes spéciales	. 18
	3-	1 Les causes communes	. 18
	3-	2 Les causes spéciales	. 19
	III.	La capabilité d'un procédé (Cp et Cpk) :	. 21
	3-	1 Définition :	. 21
	3-	2 Les indices de capabilité Cp et Cpk :	. 21
	De	écision:	. 21
	IV.	L'analyse de la variance	. 22
	Table	eau-3 : d'analyse de la variance (ANOVA)	. 22
	V.	Analyse multiples des moyennes : [5]	. 23
	VI.	Contrôle sur le contenu net de 5 échantillons des bouteilles en verre:	. 24
	•	MESURE DU CONTENU NET: [6]	. 24
Q	uatriè	eme partie : Etude Expérimentale	. 25
١.	In ¹	troduction	. 26
II.	М	atériels et Méthodes	. 26
Ш		Résultats et discussion :	. 27
	1.	Traitement statistique de trois boissons de taille 1l	. 27
	a)	Les données :	. 27
	a)	Test sur moyenne-étendue :	. 28
	b)	Etude de Capabilité :	. 29
	•	l'analyse de la variance :	
	•	Traitement statistique de trois boissons de taille 35Cl	
	a)	Les données :	
	b)		

www.fst-usmba.ac.ma

	c)	Etude de capabilité	32
	d)	L'analyse de la variance	32
	e)	Comparaisons des trois moyennes.	33
3.	Tı	raitement statistique de trois boissons de taille 20Cl	35
	a)	Les données :	35
	b)	Test sur moyenne-étendue :	36
	c)	Etude de capabilité	37
	d)	L'analyse de la variance	37
	e)	Comparaisons des trois moyennes :	38
Int	rod	uction	40
IV.	P	V de réunion	40
1.	Tı	raitement statistique de trois boissons de taille 1L	42
	a)	Les données :	42
	b)	Test sur moyenne-étendue :	43
	c)	Etude de Capabilité :	44
2.	Tı	raitement statistique de trois boissons de taille 35Cl	45
	a)	Les données :	45
	b)	Test sur moyenne-étendue :	46
	c)	Etude de Capabilité	47
3.	Tı	raitement statistique de trois boissons de taille 20Cl	48
	a)	Les données :	48
	b)	Test sur moyenne-étendue :	49
	c)	Etude de Capabilité	50
Conc	lusi	on générale :	51

FST FES

www.fst-usmba.ac.ma

OUMAI Youssef : MST CAC : Agiq

www.fst-usmba.ac.ma

Introduction générale:

Le contrôle est généralement considéré comme la pierre essentielle de la qualité, c'est le filtre qui permet de ne livrer que les produits conformes.

Il faut détecter la non-conformité au plus près du poste ou elle a été produite, un défaut prévu coûte cent fois moins cher qu'un défaut constaté.

C'est dans ce cadre que s'inscrit le présent travail, effectué au sein de la société C.B.G.N, qui comme toute entreprise ambitieuse, a inscrit parmi ses objectifs, l'amélioration de ses performances, afin de développé son processus de fabrication, en effet l'objectif de notre projet s'inscrit pleinement dans cette politique, nous nous sommes intéressés à l'amélioration de procédé de remplissage des boissons gazeuses dans des bouteilles en verre en se basant sur des études statistiques.

Il existe deux concepts essentiels composant la maitrise statistique du procédé (MSP) :

- Suivi et pilotage des procédés par cartes de contrôles :
 - Echantillonnage
 - Pilotage des procédés par carte de contrôle.
 - Interprétation des cartes de contrôles.
- > Etude des indicateurs de capabilité :
 - Capabilité procédé (Cp et Cpk).

Par conséquent, le rapport sera scindé en quatre parties majeures :

- Partie 1 : une présentation générale de la C.B.G.N et ses activités principales.
- Partie 2 : une description totale de la chaine de production des boissons gazeuses en verre.
- ➤ Partie 3 : généralités sur la maitrise statistique des procédés, ensuite les notions de base sur les cartes de contrôles et la capabilité.
- Partie 4 : une présentation des résultats de l'étude ainsi que les interprétations correspondantes.

www.fst-usmba.ac.ma

Première Partie:

Présentation de la C.B.G.N

FST FES

www.fst-usmba.ac.ma

I. Coca-Cola au Maroc:

Le groupe dispose également de 5 sociétés d'embouteillage:

- La Société Centrale des Boissons Gazeuses à Casa et Salé (SCBG).
- La Compagnie des Boissons Gazeuses du Nord à Fès (CBGN).
- La Compagnie des Boissons Gazeuses du sud à Marrakech (CBGS).
- L'Atlas Bottling Company à Tanger et Oujda (ABC).
- La Société des Boissons Gazeuses du Sousse à Agadir (SGBS).

II. La compagnie des boissons gazeuses du Nord :

❖ La C.B.G.N est la compagnie des boissons gazeuses du nord :

- En 1952 : c'est la mise en place de la C. B G N : embouteilleur franchisé de la compagnie coca cola, elle a été située à la place actuelle d'Hôtel Sofia.
- En 1971 : une nouvelle unité construite au quartier industriel SIDI BRAHIM.
- DE 1952 à1987 : la compagnie des boissons gazeuses du nord « C.B.G.N » ne fabriquait que Coca Cola et Fanta orange ; mais après et pour augmenter sa part de marché, la compagnie a décidé la diversification de ses produits, elle a commencé de produire Fanta Florida, Fanta Lemon et Sprite ; elle a lancée en 1992 les bouteilles en plastique PET, elle a même mis en marche une nouvelle machine avec une grande capacité (plus de 6000 bouteilles par heure, et qui effectue plusieurs taches en même temps (soufflage rinçage, soutirage, bouchage datage).
- En 1997 : elle a acquis la SIM (société industrielle marocaine) ; principale concurrent ; lui permettent ainsi d'augmenter sa capacité de production et d'élargir sa gamme de produits.
- En 2002 : la C.B.G.N devient filiale de l'ECCBC et par la suite de Coca-Cola holding.

La CBGN reste parmi les anciens embouteilleurs qui existent au Maroc.

www.fst-usmba.ac.ma

III. Organigramme de la société

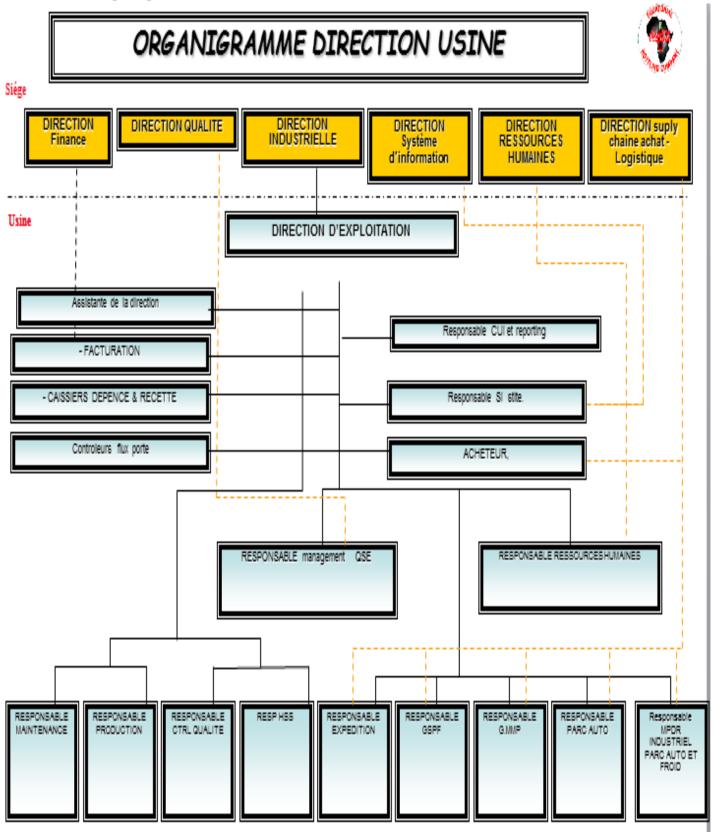


Fig1: organigramme de la société C.B.G.N [1]

www.fst-usmba.ac.ma

IV. Fiche technique:

Sigle: CBGN

Raison sociale: Compagnie des Boissons Gazeuses du Nord

Forme juridique: Société Anonyme

Activité: Embouteillage et distribution des Boissons

Gazeuses non alcoolisées

Secteur d'activité : Agroalimentaire

Adresse: Quartier Industriel Sidi Brahim-Fès

Téléphone: 05 35 96 50 00

Fax: 05 35 96 50 25

Boite postale: 2284

Superficie: environ 1 hectare

Fig2: fiche technique de la C.B.G.N [1]

V. Missions et activités de la C.B.G.N

La CBGN Fès, est constituée de deux unités, l'une est chargée à la fois de la production et de l'administration, l'autre est considérée comme centre de distribution.

En bref, les activités de la compagnie sont les suivantes :

- ✓ L'achat du concentré de la boisson.
- ✓ La production, la mise en bouteille et la commercialisation des différentes gammes des Boissons Gazeuses.
- ✓ Assurer la disponibilité des boissons gazeuses dans les cinq centres de distribution.
- ✓ Veiller au respect des prix au niveau des points de vente.
- ✓ L'exécution de commande, le stockage de la marchandise.
- ✓ En plus la vente de ces produits fabriqués localement, la compagnie a comme activité auxiliaire, la distribution des canettes, Miami et Ciel, provenant des autres sites de production.

www.fst-usmba.ac.ma

Deuxième Partie:

Description de la chaine de production

www.fst-usmba.ac.ma

✓ Le procédé en générale basé sur trois étapes fondamentales :

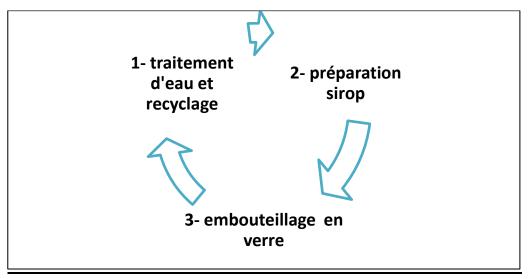


Fig3 : les étapes principales de production

I. Processus: Traitement d'eau

Suite à la politique du groupe NABC et ses engagements de garantir à ses clients un produit qui respecte les normes de qualité, toutes les matières utilisées par le processus de fabrication doivent respecter les normes d'hygiène et plus particulièrement l'eau qui représente l'élément majeur dans les boissons gazeuses d'où la nécessité du traitement des eaux provenant du réseau de distribution de la ville, afin d'éliminer les impuretés tels que : MES, Matière Organique, Substances sapides et Odorantes, etc......

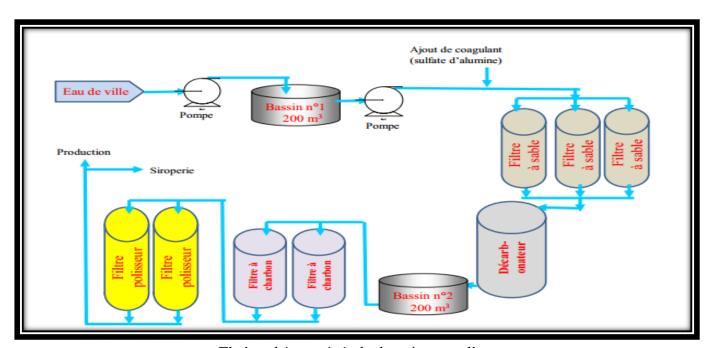


Fig4 : schéma générale de traitement d'eau

FST FES

www.fst-usmba.ac.ma

Les différentes étapes du traitement des eaux sont les suivantes :

1-1 Chloration de l'eau:

Cette première étape de désinfection s'impose pour réduire les germes pathogènes qui se trouvent dans l'eau.

1-2 Coagulation et floculation:

Cette étape est destiné à provoquer l'agglomération des particules en suspension en agrégats floconneux facilement décantables par l'injection d'un coagulant : sulfate d'alumine $Al_2(SO_4)_3$.

1-3 Filtration sur filtre à sable:

Cette étape suit celle de l'injection du coagulant afin d'éliminer les matières en suspension.

1-4 Décarbonatation :

Grâce à une résine échangeuse d'ions (RCOOH), les bicarbonates de calcium et de magnésium contenus dans l'eau échangent leurs cations par de l'hydrogène avec formation de CO₂. C'est ainsi qu'on réduit le taux d'alcalinité de l'eau.

1-5 Stockage dans le 2ème bassin:

L'eau issue du décarbonateur est stockée dans un deuxième bassin où une injection de l'eau de javel pour la désinfection.

1-6 Filtration sur charbon actif:

Sert à éliminer le chlore et les substances sapides et odorantes susceptibles qui donner un goût anormal au produit par adsorption sur charbon actif.

1-7 Filtration sur filtres polisseurs:

Consiste à éliminer les particules du charbon susceptibles d'échapper du filtre à charbon.

1-8 Adoucissement de l'eau:

L'adoucisseur possède une résine de type R-Na échangeuse d'ions qui permet de diminuer la dureté de l'eau par échange des ions Mg²⁺et Ca²⁺ contre Na⁺ pour éviter la formation du calcaire CaCO₃. L'eau adoucie est utilisée par la suite au niveau des chaudières et des laveuses de bouteilles etc.....

www.fst-usmba.ac.ma

II. La Siroperie:

2-1 Préparation du sirop simple:

Un mélange de l'eau traitée et de sucre tamisé est soumis à T°= 80°C pendant 40min en circuit fermé pour favoriser la dissolution complète du sucre, on obtient le sirop simple, ce dernier est pasteurise à une température de 85°C. Ensuite, le sirop est clarifié par ajout de quantités bien définies du charbon actif en poudre pour éliminer les impuretés et les mauvaises odeurs. Ces particules de charbon et les MES sont ensuite éliminés par filtration, le sirop est par la suite refroidi à 20°C avant d'être stocké.

2-2 Préparation du sirop fini :

Le sirop simple est mélangé avec des extrais de base (solide) et des concentré (liquide) de la boisson désirée pour obtenir un sirop fini.

Sanitation:

Pour obtenir un sirop conforme aux normes prédéfinies d'hygiène et de qualité, une opération de sanitation et de nettoyage s'impose pour détruire toutes les bactéries pathogènes des surfaces en contact avec le sirop. Le nettoyage des cuves de sirop fini est effectué chaque fois qu'il y a changement de produit ou épuisement du sirop.

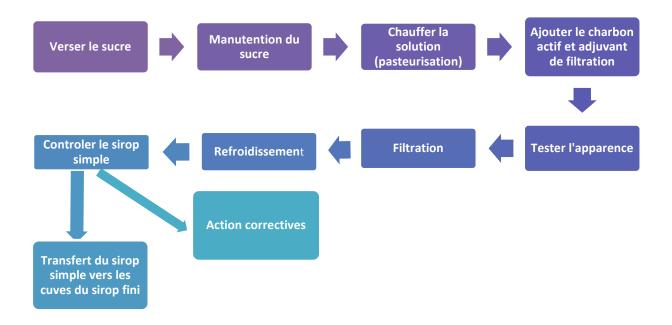


Fig5 : schéma des étapes de fabrications de sirop fini

www.fst-usmba.ac.ma

III. L'embouteillage :

3-1Dépalitisation et décaissement :

Dépalitisation c'est l'action de mettre les caisses, chargées de bouteilles vides en verre, sur le convoyeur qui les achemine vers la décaisseuse permettant d'enlever les bouteilles des caisses et de les poser sur un autre convoyeur qui alimente la laveuse.

3-2 Lavage des bouteilles : s'effectue alors selon les étapes suivantes :

- ✓ Lavage à la soude: deux bains sont utilisés pour enlever les étiquettes et pour la stérilisation. Le premier contient de l'eau chaude et la soude caustique (2 à 2.5 %) et le deuxième bain sodique (2 à 2.5 %) à 75°C.
- ✓ *Pré-rinçage* : par deux bains d'eau chaude afin de débarrasser les bouteilles de tout résidu de soude.
- ✓ *Rinçage final*: par l'eau froide et chlorée pour assurer la propreté.

3-3 Inspection des bouteilles lavées :

- *Mirage vide*: pré inspection visuelle des bouteilles lavées pour enlever celles présentant un certain défaut (bouteilles sales, ébréchées, très usées, contenant des traces de soude...)
- Inspection automatique: pour détecter les bouteilles présentant les défauts qui sont difficiles à vérifier par l'œil nue.

3-4 Préparation de la boisson :(carbonation et refroidissement) :

Mélange du sirop fini à l'eau traitée et CO₂ dans un mixeur pour obtenir un produit fini carbonaté et refroidi : la boisson gazeuse.

3-5 Soutirage et bouchage de la boisson :

La soutireuse assure le remplissage automatique des bouteilles par la boisson et la boucheuse assure le bouchage de chaque bouteille remplie.

3-6 Codage des bouteilles:

Indique la date de production, de préemption ou d'expiration, numéro de la ligne de production et de la première lettre de la ville où l'usine est installée.

3-7 Mirage plein:

Inspection des bouteilles pour éliminer celles qui sont mal remplies ou mal bouchées.

3-8 *Etiquetage*:

L'étiquetage est l'habillage de la bouteille par une étiquette contenant toutes les informations sur le produit.

3-9 Encaissage:

Encaissement des bouteilles en verre dans des caisses en plastique, par la suite vers le magasin produit fini à partir duquel commencera la distribution.

FST FES

www.fst-usmba.ac.ma

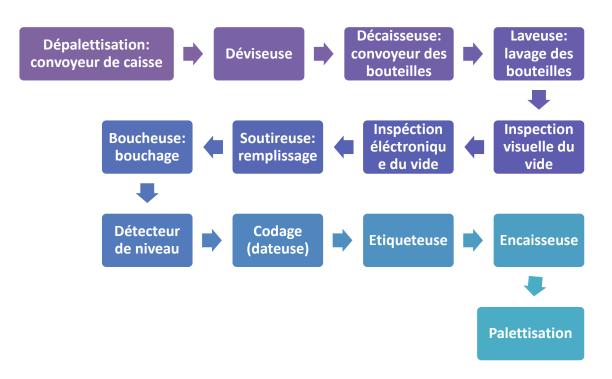


Fig6 : schéma des étapes de l'embouteillage

Remarque:

Un service « contrôle de qualité » est chargé de contrôler le processus de fabrication des boissons gazeuses du début jusqu'à obtenir une boisson prête à être consommée « boisson qui répond aux normes de qualité ». Le service est chargé aussi de l'étalonnage des différents appareils existant dans le laboratoire et veille sur leur bon fonctionnement.

www.fst-usmba.ac.ma

Troisième Partie:

Généralité sur la maitrise statistique des procédés

FST FES

www.fst-usmba.ac.ma

I. La maitrise statistique du procédé

1. Définition de la maitrise statistique des procédés

✓ <u>MSP</u>: c'est l'ensemble d'actions pour évaluer, régler et maintenir le processus de production en état de fabriquer des produits conformes aux spécifications et avec des caractéristiques stables dans le temps.

REMARQUE: "Statistique Processus Control (SPC)" ≡ Maîtrise Statistique des Procédés

2. Les avantages de la méthode maîtrise statistique des procédés

L'utilisation de cette méthode Maitrise Statistique des procédés permet :

- a)- anticiper les problèmes.
- b)- réagir rapidement en cas d'apparition d'anomalies avant que celles-ci n'empirent.
- c)- éviter le sous ou le sur contrôle, uniquement réagir quand il le faut.
- d) améliorer la production et la productivité :
 - > par la constance des caractéristiques de produit
 - par la diminution des coûts (moins de rebuts, moins de retouches et rationalisation des plans de contrôle

3. Les objectifs de la Maitrise Statistique des procédés

La Maîtrise statistique des procédés MSP est une méthode simple de maitrise de la production basée sur l'analyse statistique. Elle peut être utilisée à différentes étapes du procédé (production, livraison ...) pour analyser ses variations avec comme objectifs réduire et maîtriser les variations.

''Maîtriser les variations aux différentes étapes du procédé, c'est garantir une qualité constante du produit final''

Actuellement, cette méthode MSP est utilisée dans de nombreux pays par diverses industries de production. Elle est devenue un outil de compétitivité sans équivalent et qui vise à :

- ✓ Garantir une même qualité du produit
- ✓ Assurer la stabilité dans le temps
- ✓ Satisfaire au mieux les exigences du client

4. La Maitrise Statistique des Procédés et le processus de production

PROCESSUS: l'ensemble des moyens et des activités liées qui transforment les éléments entrants en éléments sortants" (norme ISO 8402).

PROCESSUS DE FABRICATION peut comporter plusieurs étapes depuis les matières premières Jusqu'au le produit fini allant chez le client externe : chaque étape = processus avec interfaces fournisseur-client.

www.fst-usmba.ac.ma

PROCESSUS DE CONTROLE: le produit doit être conforme à des spécifications, exprimées par les tolérances. vérification du produit s'inscrit dans le processus de Contrôle constitué de plusieurs processus individuels de mesure (pour chaque spécification et chaque étape de fabrication). Le Processus individuel de mesure ne concerne pas uniquement l'appareil de mesure mais aussi la préparation d'élément de fabrication à tester.

PROCESSUS DE PRODUCTION : c'est l'ensemble de processus de fabrication plus le processus de contrôle.

Remarque : la notion de processus de fabrication est non limitée à la transformation de Matières ou d'objets. Le Processus de formation = processus de fabrication (acquisition des connaissances) + processus de contrôle (évaluations, tests).

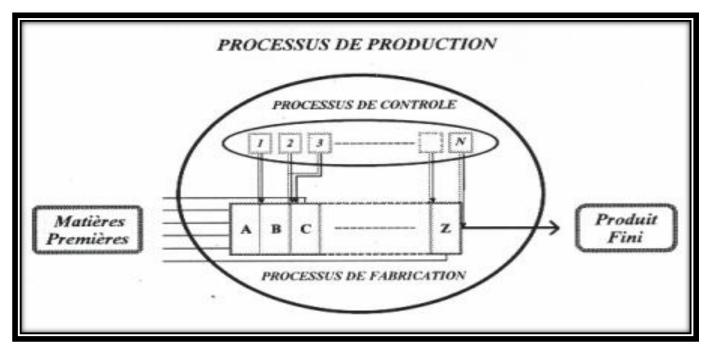


Fig7 : schéma de processus de production [2]

Toutefois, tous les procédés, qu'ils soient, sont incapables de produire toujours exactement le même produit. Lorsqu'on contrôle une des caractéristiques d'un produit, on observe une dispersion des valeurs mesurés autour de la valeur cible. Cette variabilité (dispersion) est incontournable et parfois il faut vivre avec.

Il existe une variation dite naturelle au procédé qui fait que la qualité varie :

C'est <u>la variation normale</u>. Cette variation se répercute sur la qualité du produit mais dans des proportions acceptables. Elle reste à l'intérieur des limites naturelles du procédé (exemple : variation due à l'usure régulière de l'outil). Elle est inhérente au procédé et est souvent difficile à réduire sans toucher au procédé lui-même

A côté de cette variation naturelle, il existe un autre type de variation lié à des causes spéciales qui vient s'ajouter à la variation naturelle : c'est <u>la variation anormale</u>. Cette dernière pousse les paramètres du

www.fst-usmba.ac.ma

procédé à sortir des limites de contrôle. Pour revenir à l'intérieur des limites, le procédé attend que les causes spéciales soient analysées pour être corrigés.

les causes probables pour cette variation anormale sont : Machine, Main d'œuvre, Matériau, Milieu et Méthode (les 5 M)

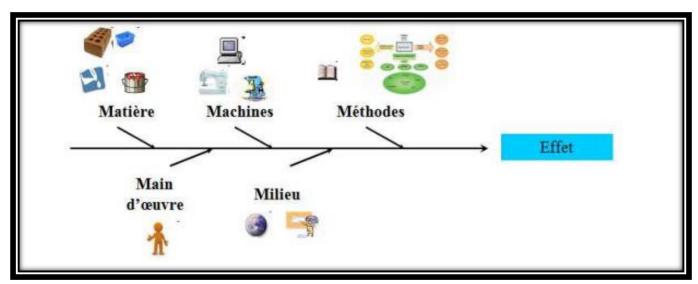


Fig8: diagramme d'Ishikawa [2]

Il existe deux concepts essentiels composant la M.S.P:

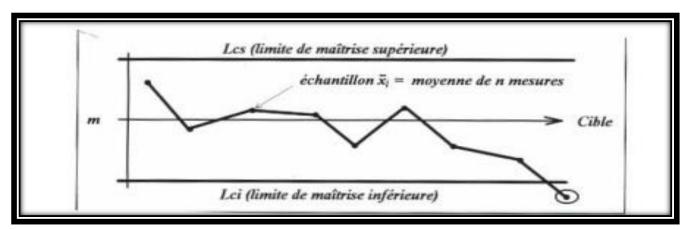
- Suivi et pilotage des procédés par cartes de contrôle :
- **Echantillonnage.**
- Pilotage des procédés par cartes de contrôle.
- Interprétation des cartes de contrôle.
- Etude des Capabilité :
- Capabilité machine.
- Capabilité procédé.

La Maîtrise Statistique des Processus a pour but de mettre en place des outils statistiques de surveillance des processus de fabrication. Les deux outils de base de la MSP que nous étudierons c'est la carte de contrôle et la capabilité du processus.

II. <u>Cartes de contrôle</u>

1. Définition de la carte de contrôle

Une carte de contrôle est un outil permettant de déterminer le moment où apparaît une cause assignable entraînant une dérive du processus de fabrication. Ainsi, le processus sera arrêté au bon moment, c'est-à-dire avant qu'il ne produise des pièces non conformes (hors de l'intervalle de tolérance).



www.fst-usmba.ac.ma

Classement des cartes de contrôle en 2 grands groupes :

CARTE DE CONTROLE PAR MESURES : caractérisant le processus mesurable par le centrage d'échantillon et sa dispersion. On trouve les cartes \bar{X} (moyenne), s (écart-type) et w ou R (étendue) groupées normalement par 2 : cartes (\bar{X} , w) ou cartes (\bar{X} , s).

Fig9 : exemple d'une carte de contrôle [2]

CARTE DE CONTROLE PAR ATTRIBUTS: l'information portée sur la carte en fonction du nombre d'individu de l'échantillon qui possèdent un ou de plusieurs caractères dont on ne peut que constater la présence ou l'absence. On distingue cartes p (pourcentage ou proportion de non-conformes), cartes np (nombre d'unités non-conformes), cartes c (nombre de non-conformités), cartes u (nombre moyen de non-conformités par unité), cartes D (démérites = comptage pondéré du pourcentage de non-conformités).

2. L'élaboration de la carte de contrôle

Les étapes à suivre pour l'élaboration des cartes \overline{X} et \overline{R} :

2-1 Modalités de prélèvements des échantillons

a-Taille de l'échantillon à prélever: Il est fréquent d'utiliser 5 comme taille d'échantillon.

Carte $\bar{\mathbf{X}}$ et $\mathbf{R}: 2 \le \text{taille de l'échantillon} \le 9$

b-Fréquence de contrôle : La fréquence de contrôle peut être toutes les 30minutes, toutes les heures....

2-2 Calcul des moyennes et des étendues :

Suite à l'enregistrement des données, on doit calculer pour chaque échantillon la moyenne \bar{X} et l'étendue R .On a

$$\overline{X} = (X_1 + X_2 + ... + X_n)/n$$

www.fst-usmba.ac.ma

Avec:

n : taille de chaque sous-groupe (échantillon)

 $X_1+X_2+...+X_n$: valeurs observées du sous-groupe

 $R = X_{max} - X_{min}$ avec

X_{max}: valeur maximale du sous-groupe

X_{min}: valeur minimale du sous-groupe

2-3 Représentation graphique des moyennes et des étendues :

on indiquant en ordonnée (l'axe vertical) Les moyennes des échantillons et en abscisse (l'axe horizontale) l'identification de l'échantillon (numéro, heure de l'échantillon,...).Relier les points entre eux. On effectue le même en reportant les étendues (en ordonnée) sur la carte R et en abscisse l'identification de l'échantillon; relier les points entre eux.

2-4 Calcul des limites provisoires de contrôle:

a) calculer la moyenne globale \overline{X} de l'ensemble des données enregistrées ainsi que l'étendue moyenne \overline{R} . Pour k sous-groupe, on a :

$$\overline{\overline{X}} = \frac{\overline{X} \ 1 + \overline{X} \ 2 + \cdots \overline{X} \overline{K}}{\kappa}$$

$$\overline{\overline{R}} = \frac{\overline{R} \ 1 + \overline{R} \ 2 + \cdots \overline{Rk}}{K}$$

 $\overline{X}_1 + \overline{X}_2 + \ldots + \overline{X}_k$: représente les moyennes respectives des k sous-groupes.

 $\overline{R}_1 + \overline{R}_2 + ... + \overline{R}_k$: représente les étendues des k sous-groupes.

b) calculer les limites provisoires de contrôle supérieure et inférieure pour la carte \overline{X} et la carte \overline{R} .

$$LSC\overline{x} = \overline{X} + A_2\overline{R}$$
 (limite supérieure de contrôle)

$$LSC\overline{x} = \overline{X} - A_2\overline{R}$$
 (limite inférieure de contrôle)

www.fst-usmba.ac.ma

Où le coefficient A_2 est obtenu de la table ci-après.

 $LSC\bar{r}=D_4\bar{R}$ (limite supérieure de contrôle)

 $LSC\bar{r}=D_3\bar{R}$ (limite inférieure de contrôle)

Où les coefficients D_4 , D_3 sont obtenues d'après la table ci-dessous.

N.B: Tous les coefficients dépendent de la taille d'échantillon n.

Tableau-1 : les coefficients pour calculer les limites d'une carte de contrôle. [3]

n	2	3	4	5	6	7	8	9	10
A2	1,88	1,02	0,73	0,58	0,48	0,42	0,37	0,34	0,31
D3	0	0	0	0	0	0,07	0,14	0,18	0,22
D4	3,27	2,57	2,28	2,11	2	1,92	1,86	1,82	1,78
d2	1,13	1,69	2,06	2,37	2,53	2,7	2,85	2,97	3,08

3. Causes communes – Causes spéciales

On sait que dans une production, deux pièces ne sont jamais parfaitement identiques. Les dimensions précises d'une pièce usinée sur une machine-outil dépendent de nombreux facteurs. Il s'ensuit une dispersion sur la cote que l'on peut séparer en deux catégories :

- les dispersions dues aux causes communes,
- les dispersions dues aux causes spéciales.

Cette dichotomie entre les causes de dispersion est une des bases fondamentales de la méthode MSP. Il convient donc de les expliciter davantage.

3-1 Les causes communes

Ce sont les nombreuses sources de variation attribuables au hasard qui sont toujours présentes à des degrés divers dans différents processus. Les statistiques étant l'étude des phénomènes perturbés par le hasard, on sait modéliser le comportement des causes aléatoires, et par conséquent, prévoir la performance d'un processus qui n'est soumis qu'à des causes communes de dispersion. De toutes manières, ces causes étant toujours présentes et de plus, en grand nombre, il faudra « vivre avec ». L'ensemble de ces causes communes forme la variabilité intrinsèque du processus. Si toutes les nombreuses causes qui agissent sont d'un ordre de grandeur équivalent, alors la caractéristique doit suivre une répartition en forme de cloche. Le but de la MSP sera de ne laisser subsister que les dispersions dues aux causes communes. On parlera alors de processus « sous contrôle »

www.fst-usmba.ac.ma

Exemples de causes communes :

- Variation normale de la matière première
- Variabilité de la mesure
- Fluctuations normales de température, pression, etc.

3-2 Les causes spéciales

Ce sont les causes de dispersion identifiables, souvent irrégulières et instables, et par conséquent difficiles à prévoir. L'apparition d'une cause spéciale nécessite une intervention sur le processus. Contrairement aux causes communes, les causes spéciales sont en général peu nombreuses.

Exemple de causes spéciales :

- Lot de mauvais matériaux
- > Erreur humaine
- ➤ Pièce d'équipement défectueuse
- > Testeurs mesurant de façon très différente
- ❖ Dans la page suivante on a un tableau représentatif qui traite les interprétations des cartes de contrôles aux niveaux des moyennes et des étendues.

OUMAI Youssef : MST CAC : Agiq

FST FES

www.fst-usmba.ac.ma

Tableau-2 : L'interprétation des cartes de contrôles [4]

		CORRECTION	
RESULTAT DU CONTROLE		INTERPRETATION	
1 LCS X	Pas de grande variation de la moyenne,	Processus réglé et stable,	Pas de correction à envisager.
2 LCS X	La dernière moyenne est trop grande et sort des limites de contrôle.	Le processus dérive, il faut en trouver la cause commune pour le corriger durablement.	Intervenir et régler le processus. Voir le journal de bord pour trouver la cause et corriger.
X LCI	On constate une série de sept points consécutifs du même coté de la moyenne.	Le processus dérive, ce qui peut être du à un mauvais réglage initial,	Intervenir et régler le processus. Voir le journal de bord pour trouver la cause et corriger.
4 LCS X LCI	Série de sept points consécutifs en dérive constante.	Processus en dérive constante, risque de production mauvaise.	Régler le processus. Chercher la cause, sans doute spéciale (usure d'outil par exemple).
S LCS X LCI	Les 2/3 des points sont en dehors d'une zone centrée autour de la moyenne,	Forte probabilité de dérive due à une cause aléatoire,	Renforcer la surveillance, Modifier les conditions de production pour trouver la cause aléatoire,

R	RESULTAT DU CONTROLE	CONSTAT	INTERPRETATION	CORRECTION
R	.cs	Pas de grande variation de l'étendue.	Processus réglé et stable.	Pas de correction à envisager.
R	.cs	L'étendue d'un échantillon sort des limites de contrôle.	Etendue trop grande, le processus n'est plus capable, il produit des mauvaises pièces.	Arrêt immédiat du processus, recherche de la cause, voir le journal de bord.

www.fst-usmba.ac.ma

III. <u>La capabilité d'un procédé (Cp et Cpk) :</u>

Le contrôle en cours de fabrication consiste non seulement à diagnostiquer des situations où le procédé n'est pas maitrisé statistiquement et intervenir pour appliquer les mesures correctives mais également à déterminer si le procédé de fabrication adopté permet de fabriquer un produit dont les caractéristiques de qualité sont compatibles avec les spécifications.

3-1 Définition:

- **Cp** = capabilité processus : la Cp représente bien l'aptitude d'un processus à produire de manière précise et répétable.
 - ✓ Un **Cp** élevé indique que toutes les pièces produites vont se ressembler.
 - ✓ Un **Cp** faible désigne une production dispersée.

Remarque:

Un bon Cp peut aussi correspondre à une production en dehors des limites de la tolérance. En effet la conformité industrielle d'une population de fabrication va dépendre de l'étendue, non seulement de sa dispersion, mais aussi de la position de sa moyenne par rapport à l'intervalle de tolérance.

- ❖ Le **Cpk** représente le centrage de la production par rapport aux limites de la tolérance.
 - ✓ Un **Cpk** élevé indique non seulement que la production est répétable, mais qu'elle est également bien centrée dans l'intervalle de tolérance et qu'il y aura peu de risque de voir des pièces produites en dehors des tolérances.

3-2 Les indices de capabilité Cp et Cpk:

a)L'indice de capabilité **Cp** est le rapport entre l'intervalle de tolérance et la dispersion globale du procédé de fabrication :

$$Cp = \frac{Ts - Ti}{6\sigma}$$

Ts: la tolérance supérieure

Ti : la tolérance inférieure.

σ: L'écart-type

b) L'indice de capabilité C_{pk} la valeur minimale obtenue de l'écart respectif entre la moyenne du procédé \bar{X} et chacune des limites T_i et T_s des spécifications, cet écart étant divisé par 3σ :

$$C_{pk} = min \left[\frac{Ts - \overline{X}}{3\sigma} ; \frac{\overline{X} - Ti}{3\sigma} \right]$$

Décision:

- ➤ Si Cp et Cpk>1,33 alors le procédé est capable.
- ➤ Si Cp et Cpk<1, 33, alors le procédé n'est pas capable.

www.fst-usmba.ac.ma

Remarque:

ightharpoonup L'indice C_{pk} est toujours inférieur ou égale à l'indice $Cp:Cpk \le Cp$

IV. L'analyse de la variance

L'analyse de la variance permet d'étudier le comportement d'une variable quantitative par rapport à une ou plusieurs facteurs différents.

Tableau-3: d'analyse de la variance (ANOVA)

Source de variation	ddl	SCE	CM	F _{obs}	F _{crit}
Entre les groupes A l'intérieur des groupes	p-1 n-p-1	, ,	$CM_{\text{fact}} = \sum_{i=1}^{n} (\widehat{X} - \overline{X}) \frac{2}{p-1}$ $CM_{\text{resi}} = \sum_{i=1}^{n} (\overline{X}i - \widehat{X})^{2} \frac{n-p-1}{n-p-1}$	CMm CMr	-ddl1 -ddl2 -α -uni
Totale	n-1	$ SCE_{tot} = \sum_{i=1}^{n} (\overline{X}i - \overline{X})^2$			

Avec:

SCE Totale = SCE facteur + SCE résidu

Xi= la moyenne d'échantillon.

 \overline{X} = la moyenne globale des échantillons.

 \hat{X} = la moyenne prédicte.

n= la taille totale de la population

p= nombre de groupe

ni= la taille de chaque groupe

CMm= carré moyenne du modèle

CMr= carré moyenne des résidus

www.fst-usmba.ac.ma

Test de Fisher:

$$\mathbf{H}_0$$
: $\overline{X}_1 = \overline{X}_2 = \overline{X}_3$

$$\mathbf{H}_1: \overline{X}_1 = \overline{X}_2 \neq \overline{X}_3$$

$$F_{obs} = \frac{CMm}{CMr}$$

F_{crit}= (ddl₁, ddl₂, α, unilatérale).

Décision:

- ❖ Si **F**_{crit}>**F**_{obs}, H₀ est accepté, il n'existe pas une déférence entre les moyennes.
- \bullet Si $\mathbf{F_{crit}} < \mathbf{F_{obs}}$, $\mathbf{H_1}$ est accepté, il existe une déférence entre les moyennes.

V. Analyse multiples des moyennes : [5]

Si H_0 est fausse donc il existe i et j tel que : $\bar{X}i \neq \bar{X}j$

- ✓ Pour résoudre ce problème nous allons utiliser la méthode **LSD** (méthode du minimum de déférence significative).
- ✓ Le test LSD permet la détection des groupes déférents par la comparaison des moyennes des groupes deux à deux :

Pour chaque couple (i, j) on a: $\mathbf{H0}: \overline{X}\mathbf{i} = \overline{X}\mathbf{j}$

H1: \overline{X} i $\neq \overline{X}$ j

LSD=
$$t_{\alpha/2}$$
, n-p× $S\overline{x}_i$; \overline{x}_j

On compare cette valeur à $|\overline{X}i-\overline{X}j|$ pour tous couples (i, j)

Avec:

$$S^2 \overline{x}_i, \overline{x}_j = (\frac{1}{ni} + \frac{1}{nj}) \times S^2_{résidus}$$

Et $S^2_{r\text{\'e}sidus}=CM_{r\text{\'e}sidus\ (table\ d'ANOVA)}$; \overline{X} i= la moyenne d'un \'echantillon i.

Décision:

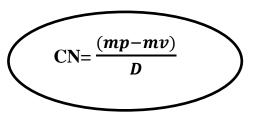
ightharpoonup Si $LSD < |\overline{X}i - \overline{X}j|$ alors, on rejette H_0 , c'est-à-dire il existe une différence significative entre $\overline{X}i$ et $\overline{X}j$.

www.fst-usmba.ac.ma

VI. Contrôle sur le contenu net de 5 échantillons des bouteilles en verre:

• MESURE DU CONTENU NET: [6]

Ce contrôle permet d'évaluer le fonctionnement de la soutireuse et le remplissage des bouteilles. On mesure la masse de cinq bouteilles pleines (m_p) et leur masse vide (m_v) , on injecte la boisson gazeuse dans le densimètre électronique qui mesure le Brix et en fonction de celui-ci on détermine la densité correspondante (par la table Brix-Densité) et on déduit le contenu net des bouteilles gazeuses (en volume) selon la formule suivante.


Avec:

CN: le contenu net

m_p: La masse (g) de la bouteille pleine

m_v: La masse (g) de la bouteille vide

D: La densité

www.fst-usmba.ac.ma

Quatrième partie:

Etude Expérimentale

www.fst-usmba.ac.ma

I. Introduction

Le remplissage des boissons gazeuses est une étape critique dans la chaîne de production parce qu' il faut avoir un volume de boisson bien défini suivant la taille de la bouteille, bien sûr avec les tolérances correspondantes, c'est pour cela il est nécessaire de respecter les fréquences de contrôle pour faire des actions correctives et éviter toute sorte de non-conformité s'il y a lieu.

II. Matériels et Méthodes

La maitrise statistique des procédés est un élément d'assurance qualité, son objectif est de maitriser un processus mesurable par un suivi graphique basé sur des fondements statistiques :

- ✓ Les cartes de contrôles moyenne-étendue.
- ✓ La capabilité
- ✓ La comparaison des moyennes

Notre étude a été faite sur les : 20Cl, 35Cl et le litre avec produits finis différents, on prend 5 échantillons toutes les heures, on mesure le contenu net de chaque échantillon :

$$CN = \frac{(mp - mv)}{D}$$

CN: le contenu net

m_p: La masse de la bouteille pleine en (g)

m_v: La masse de la bouteille vide en (g)

D: La densité

Le matériel utilisé pour le calcul du contenu net :

- ➤ Une balance : mesure de la masse pleine et vide des bouteilles en gramme.
- Densimètre électronique : mesure de Brix des boissons.
- > Table de correspondance Brix-Densité.

www.fst-usmba.ac.ma

III. Résultats et discussion :

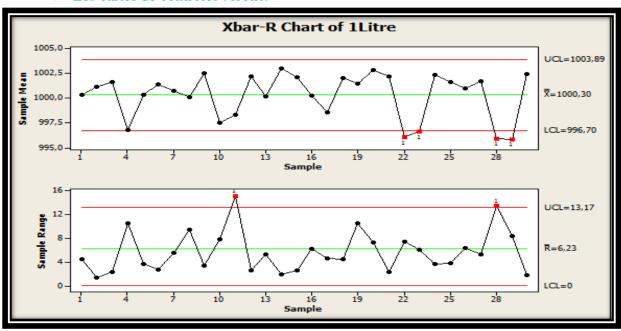
1. Traitement statistique de trois boissons de taille 11.

a) Les données:

Je viens d'effectuer un tableau si dessous concernant tous les donnes du contenu net des boissons d'1L.

Tableau-4: les données du contenu net des boissons d'1L

le produit	l'heure	X1	X2	Х3	Х4	X5
CoCa 1L	08 :00	999,16	998,18	1001,18	1002,82	1000,21
CoCa 1L	09 :00	1003,23	999,51	1000,56	1001,23	1003,09
CoCa 1L	10 :00	999,15	1003,79	998,82	1007,08	1003,23
CoCa 1L	11 :00	1001,51	1001,1	1002,78	999,55	999,48
CoCa 1L	12 :00	998,7	1001,08	997,55	996,56	1002,06
CoCa 1L	13 :00	1001,42	995,35	1002,43	1005,72	999,62
CoCa 1L	14 :00	1000,03	996,95	1002,77	998,82	998,65
CoCa 1L	15 :00	1001,42	1000,62	1004,33	1006,05	1005
CoCa 1L	16 :00	1001,47	1004,77	1002,91	1002,78	999,71
CoCa 1L	17 :00	1001,43	1002,64	1002,44	1000,83	1002,01
Hawai 1L	08 :00	1002,12	1002,39	1000,58	1001,21	998,93
Hawai 1L	09 :00	1001,73	1002,14	1001,41	1001,82	1002,36
Hawai 1L	10 :00	1001,04	1001,35	1002,74	1002,63	1000,84
Hawai 1L	11 :00	1002,72	1004,77	1003,18	1001,7	1004,27
Hawai 1L	12 :00	1000,43	1001,8	1002,62	1003,54	1001,91
Hawai 1L	13 :00	1002,77	1001,7	1001,55	1000,89	1001,01
Hawai 1L	14 :00	998,4	997,54	999,09	993,47	997,74
Hawai 1L	15 :00	992,85	993,83	1004,26	995,68	995,48
Hawai 1L	16 :00	997,54	999,09	998,4	993,47	997,74
Hawai 1L	17 :00	992,29	995,31	998,05	996,73	987,52
Fanta 1L	08 :00	1001,81	1000,15	1000,88	1000,78	999,64
Fanta 1L	09 :00	999,69	993,2	1000,83	996,37	991,92
Fanta 1L	10 :00	998,09	999,39	996,35	995,5	1000,33
Fanta 1L	11 :00	1001,5	1006,99	996,23	995,69	992,98
Fanta 1L	12 :00	1000,49	991,85	998,63	994,63	994,21
Fanta 1L	13 :00	1002,86	1001,24	999,63	1002,59	1002,01
Fanta 1L	14 :00	1000,14	1002,27	1004,11	1001,55	1001,43
Fanta 1L	15 :00	1001,73	1003,83	1002,47	1000,47	1002,31
Fanta 1L	16 :00	1001,55	1002,03	1002,05	1004,13	1002,99
Fanta 1L	17 :00	1000,77	1001,61	1001,93	1002,83	1003,27



www.fst-usmba.ac.ma

a) Test sur moyenne-étendue:

Le graphe suivant représenté la carte de contrôle moyenne-étendue du contenu net pour les boissons d'1L.

 \bullet Les cartes de contrôles : \bar{X} et \bar{R} .

Graphe-1: la carte de contrôle \overline{X} et \overline{R} pour les boissons d'1L.

Les mesures :

1) Caractéristique Carte de la moyenne :

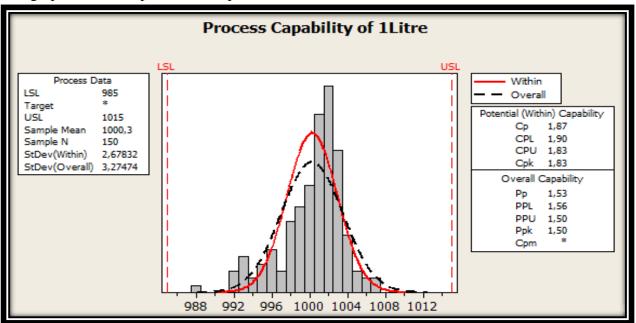
LCI (LCL)	LCS(UCL)	$ar{ar{X}}$
996.70	1003.89	1000.30

2) Caractéristique Carte de l'Etendue :

LCI (LCL)	LCS(UCL)	$\overline{\overline{R}}$
0	13.17	6.23

Commentaires des résultats :

- ➤ On remarque qu'on a des points en dehors des limites de contrôles.
- ➤ Ce Procédé n'est pas sous contrôle statistique. La présence du plusieurs points au-delà de l'une ou autre des limites de contrôle constitue une preuve évidente d'absence de maitrise en ces points cela d'une part ; d'autre part une cause assignable est responsable de la valeur extrême observé et ceci doit déclencher le signal d'une analyse immédiate pour chercher les causes racines.



www.fst-usmba.ac.ma

b) Etude de Capabilité:

Le graphe suivant représenté la capabilité de la soutireuse au niveau des boissons d'1L.

Graphe-2 : la capabilité de la soutireuse pour les boissons d' 1L.

Caractéristiques de la Capabilité :

Ti	Ts	Ecart-type	Moyenne
985	1015	2.67	1000.3

Donc:

Cp = 1.87>1.33, alors le procédé est d'une capabilité acceptable.

Cpk= 1.83>1.33, le procédé est d'une capabilité acceptable.

d) l'analyse de la variance :

* Tableau d'ANOVA:

Tableau-5: la table d'ANOVA pour les boissons d'1L

Source des	Somme des	Degré de	Moyenne des		Valeur critique
variations	carrés	liberté	carrés	F	pour F
Entre Groupes	69,2629	2	34,63145		
A l'intérieur des					
groupes	1528,597596	147	11,3986231	3,038	3,058
Total	1597,860496	149			

> Test de Fisher :

 $F_{obs} = 3.038$

 $F_{crit} = 3,058$

www.fst-usmba.ac.ma

✓ On a $\mathbf{F_{obs}} < \mathbf{F_{crit}}$, alors l'hypothèse H_0 est accepté, c'est-à-dire que les trois moyennes sont égales. Ce qui signifier que les trois produits finis sont dans les normes et que ne sont pas une source d'une cause assignable sur le procédé.

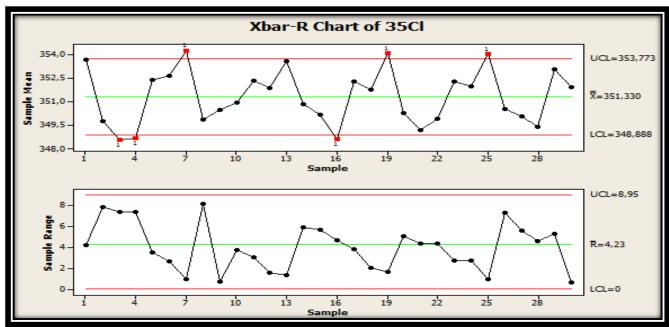
2. Traitement statistique de trois boissons de taille 35Cl.

a) Les données :

Je viens d'effectuer un tableau si dessous concernant tous les donnes du contenu net des boissons de 35Cl.

Tableau-6: les données du contenu net des boissons de 35Cl.

Tableau-6 : les données du contenu net des boissons de 35Cl.								
Le produit	l'heure	X1	X2	Х3	X4	X5		
Hawai 35Cl	08 :00	355,19	354,78	354,03	354,29	354,19		
Hawai 35Cl	09 :00	354,32	354,31	353,82	353,81	354,19		
Hawai 35Cl	10 :00	353,65	354,62	353,81	354,9	353,87		
Hawai 35Cl	11:00	354,36	354,02	352,71	354,43	354,53		
Hawai 35Cl	12:00	351,01	353,84	353,63	353,26	353,62		
Hawai 35Cl	13 :00	353,34	354,05	354,45	352,84	353,34		
Hawai 35Cl	14 :00	347,44	345,93	350,35	347,83	346,06		
Hawai 35Cl	15 :00	345,55	348,17	349,37	348,81	350,34		
Hawai 35Cl	16 :00	350,94	350,32	348,6	350,3	350,32		
Hawai 35Cl	17 :00	351,47	350,95	351,43	351,52	352,56		
Fanta 35Cl	08 :00	351,8	350,6	350,48	350,99	351,16		
Fanta 35Cl	09 :00	344,5	350,75	346,13	346,98	346,6		
Fanta 35Cl	10 :00	349,66	350,16	350,73	351,33	349,27		
Fanta 35Cl	11 :00	349,71	350,1	351,69	347,68	351,16		
Fanta 35Cl	12 :00	347,24	350,8	351,75	348,97	352,17		
Fanta 35Cl	13 :00	350,28	349,83	346,8	349,05	349,09		
Fanta 35Cl	14 :00	347,17	353,53	349,05	351,13	350,84		
Fanta 35Cl	15 :00	351,8	350,6	350,48	350,99	351,16		
Fanta 35Cl	16 :00	344,5	350,75	346,13	346,98	346,6		
Fanta 35Cl	17 :00	349,66	350,16	350,73	351,33	349,27		
Sprite 35Cl	08 :00	350,47	352,43	352,56	352,21	352,04		
Sprite 35Cl	09 :00	350,75	352,48	350,5	352,24	353,94		
Sprite 35Cl	10 :00	353,56	351,97	351,05	352,64	349,86		
Sprite 35Cl	11 :00	353,3	350,94	354,29	353,61	354,44		
Sprite 35Cl	12 :00	353,94	353,92	353,07	350,94	355,14		
Sprite 35Cl	13 :00	353,42	351,96	352,79	353,73	351,99		
Sprite 35Cl	14 :00	351,6	352,95	350,8	351,15	351,88		
Sprite 35Cl	15 :00	351,94	351,55	352,41	351,04	352,29		
Sprite 35Cl	16 :00	352,11	351,38	351,51	351,7	351,7		
Sprite 35Cl	17 :00	354,22	351,74	351,34	352,43	351,83		



b) Test sur moyenne-étendue:

Le graphe suivant représenté la carte de contrôle moyenne-étendue du contenu net pour les boissons d'35Cl.

***** Les cartes de contrôles : \overline{X} et \overline{R}

Graphe-3: la Carte de contrôle \overline{X} et R pour les boissons d'35Cl.

Les mesures

1) Caractéristique carte de la moyenne :

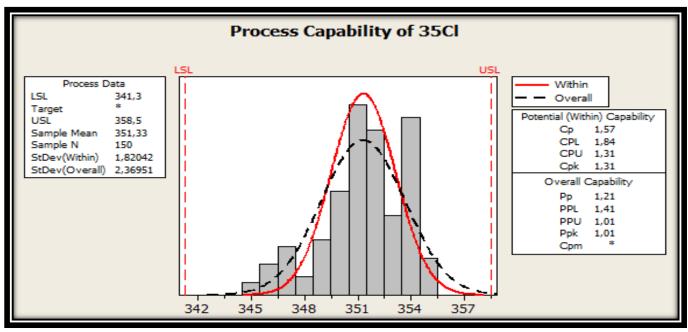
LCI(LCL)	LCS(UCL)	$ar{ar{X}}$
348,888	353,773	351,330

2) Caractéristique carte de l'étendue :

LCI(LCL)	LCS(UCL)	$\overline{\overline{R}}$
0	8,95	4,23

Commentaires des résultats :

- ✓ On remarque qu'on a des points en dehors des limites de contrôles.
- ✓ Ce Procédé n'est pas sous contrôle statistique. La présence du plusieurs points au-delà de l'une ou autre des limites de contrôle constitue une preuve évidente d'absence de maitrise en ces points cela d'une part ; d'autre part une cause assignable est responsable de la valeur extrême observé et ceci doit déclencher le signal d'une analyse immédiate pour chercher les causes racines.



www.fst-usmba.ac.ma

c) Etude de capabilité

Le graphe suivant représenté la capabilité de la soutireuse au niveau des boissons de 35Cl.

Graphe-4: la capabilité de la soutireuse pour les boissons de 35 Cl.

Caractéristique de la capabilité :

Ti	Ts	Ecart-type	Moyenne
341,3	358,5	1,82	351,33

Donc:

Cp=1.57>1.33, le procédé est d'une capabilité acceptable.

Cpk=1.31<1.33, le procédé est dérèglé et n'est pas bien centré.

d) L'analyse de la variance

Tableau-7: la table d'ANOVA pour les boissons de 35Cl

Source des variations	Somme des carrés	Degré de liberté	Moyenne des carrés	F	Valeur critique pour F
Entre Groupes	223,5643053	2	111,7821527		
A l'intérieur des groupes	613,011084	147	4,170143429	26,805	3,058
Total	836,5753893	149			

OUMAI Youssef : MST CAC : Agiq Page 32

www.fst-usmba.ac.ma

> Test de Fisher:

 $F_{obs} = 26.805$

 $F_{crit} = 3.058$

✓ On a F_{obs}>F_{crit}, alors l'hypothèse H₁ est accepté, c'est-à-dire que au moins une moyen est significativement différentes des autres. Ce qui signifier qu'il existe un produit fini hors maitrise et qu'il peut être un cause assignable sur le procédé. C'est pour cela il faut identifier exactement la moyenne aberrantes afin de le corrigé.

e) Comparaisons des trois moyennes.

Tableau-8: les moyennes de trois produits de 35Cl:

Le produit	La moyenne
Hawaï	M1=352.109
Fanta	M2=349.606
Sprite	M3=352.275

• Soient les hypothèses suivantes : H0 :M1=M2

H1: M1≠M2

On a
$$S^2 \bar{\chi}_{1-\bar{\chi}_2} = (\frac{1}{n1} + \frac{1}{n2}) \times S^2_{\text{résidus}}$$

= $(\frac{1}{50} + \frac{1}{50}) \times 4.171$
= 0.167

LSD=
$$t_{\alpha/2, \text{ n-p}} \times S \overline{x}_{1} \cdot \overline{x}_{2}$$

= $t_{0.025; 147 \times} \sqrt{0.167}$
= $1,976 \times \sqrt{0.167}$

=0.808

$$ET[X1-X2] = |352.109-349.606| = 2.503$$

✓ On remarque que LSD< $|\bar{X}1 - \bar{X}2|$ donc l'hypothèse H₁ est accepté et M1≠M2.

■ Soient les hypothèses suivantes : H0 : M2=M3

H1: M2≠M3

On a LSD=0.808

Et $|\bar{X}2 - \bar{X}3| = |349.606 - 352.275| = 2.669$

✓ On remarque que LSD<| $\bar{X}2 - \bar{X}3$ | donc l'hypothèse H1 est accepté et M2≠M3

Soient les hypothèses suivantes : H0 : M1=M3

H1: M1≠M3

On a LSD=0.808

Et $|\bar{X}1 - \bar{X}3| = |352.109 - 352.275| = 0.166$

- ✓ On remarque que LSD> $|\bar{X1} \bar{X3}|$ donc l'hypothèse H0 est accepté et M1=M3.
 - **♣** Après le test statistique on a arrivé à déterminer que M2 (Fanta) est la moyenne aberrante et que le procédé n'arrive pas à être sous contrôle aux niveaux de cette dernière.

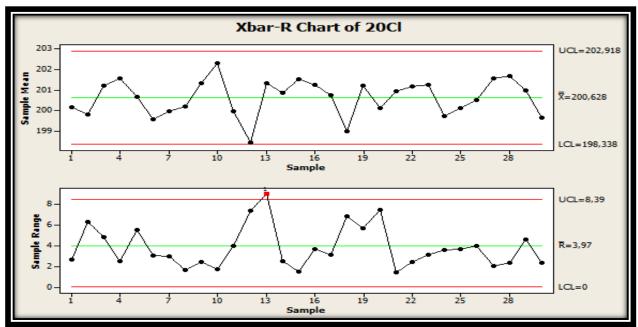
3. Traitement statistique de trois boissons de taille 20Cl

a) Les données:

Je viens d'effectuer un tableau si dessous concernant tous les donnes du contenu net des boissons de 20Cl.

Tableau-9: les données du contenu net des boissons de 20Cl.

Le produit	l'heure	X1	X2	Х3	X4	X5
CoCa 20Cl	08 :00	201,3	200,35	198,05	197,77	199,42
CoCa 20Cl	09 :00	198,7	200,65	207,01	202,45	200,25
CoCa 20Cl	10 :00	200,86	200,85	200,21	203,37	198,91
CoCa 20Cl	11 :00	198,92	199,98	200,03	201,28	199,42
CoCa 20Cl	12 :00	200,96	197,91	201,31	201,21	202,55
CoCa 20Cl	13 :00	200,25	200,8	199,63	195,77	197,9
CoCa 20Cl	14 :00	195,51	199,62	200,88	197,23	199,87
CoCa 20Cl	15 :00	201,44	199,53	200,73	201,86	201,35
CoCa 20Cl	16 :00	200,07	201,17	201,05	202,48	201,84
CoCa 20Cl	17 :00	201,8	199,85	202,12	203,22	201,63
Fanta OR	08 :00	202,37	202,43	202,05	200,73	200,6
Fanta OR	09 :00	202,01	202,33	201,73	201,29	201,36
Fanta OR	10 :00	203,31	200,03	201,51	201,27	202,62
Fanta OR	11:00	198,54	201,26	200,58	200,03	201,29
Fanta OR	12 :00	199,89	200,55	201,73	201,45	201,91
Fanta OR	13 :00	202,58	203,2	200,51	200,02	201,77
Fanta OR	14 :00	202,37	202,43	202,05	200,73	200,6
Fanta OR	15 :00	200,91	202,1	202,79	201,52	202,89
Fanta OR	16 :00	202,01	202,33	201,73	201,29	201,36
Fanta OR	17 :00	200,1	201,48	199,18	202,42	201,91
Schwe,Tonic	08 :00	200,6	197,84	199,8	201,48	198,06
Schwe, Tonic	09 :00	197,79	201,8	201,14	201,69	201,54
Schwe,Tonic	10 :00	199,12	200,35	199,14	199,38	202,11
Schwe,Tonic	11:00	203,31	200,03	201,51	201,27	202,62
Schwe,Tonic	12 :00	202,58	199,69	202,23	202,49	200,52
Schwe, Tonic	13 :00	200,97	202,72	203,2	199,23	200,62
Schwe,Tonic	14 :00	198,19	195,42	196,42	198,47	198,33
Schwe,Tonic	15 :00	199,54	198,19	199,34	202	199,15
Schwe,Tonic	16 :00	198,02	196,46	197,83	199,32	200,03
Schwe,Tonic	17 :00	201,07	199,37	197,99	199,67	200,05



b) Test sur moyenne-étendue :

Le graphe suivant représenté la carte de contrôle moyenne-étendue du contenu net pour les boissons d'20Cl.

\$ Les cartes de contrôles : \overline{X} et \overline{R}

Graphe-5: la Carte de contrôle \overline{X} et \overline{R} pour les boissons d'20Cl.

Les mesures

1) Caractéristique carte de la moyenne :

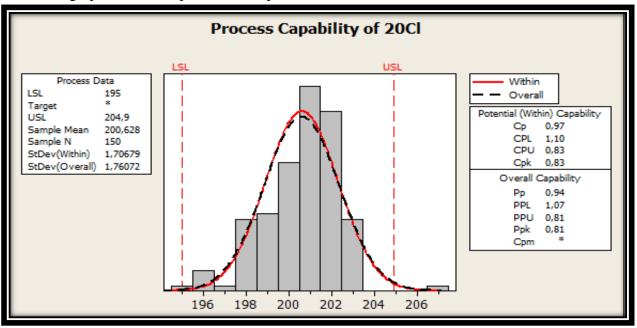
LCI(LCL)	LCS(UCL)	$\overline{\overline{X}}$
198.338	202.918	200.628

2) Caractéristique carte de l'étendue :

LCI(LCL)	LCS(UCL)	$\overline{\overline{R}}$
0	8.39	3.97

Commentaires des résultats :

- ✓ On remarque qu'on a un point en dehors des limites de contrôles.
- ✓ Ce Procédé n'est pas sous contrôle statistique. La présence d'une point au-delà de l'une ou autre des limites de contrôle constitue une preuve évidente d'absence de maitrise en ce point cela d'une part ; d'autre part une cause assignable est responsable de la valeur extrême observé et ceci doit déclencher le signal d'une analyse immédiate pour chercher les causes racines.



www.fst-usmba.ac.ma

c) Etude de capabilité

Le graphe suivant représenté la capabilité de la soutireuse au niveau des boissons de 20Cl.

Graphe-6: la capabilité de la soutireuse pour les boissons de 20Cl.

Caractéristique de la capabilité :

Ti	Ts	Ecart-type	Moyenne
195	204.9	1.70	200.628

Donc:

Cp=0.97<1.33, le procédé a une capabilité insuffisante.

Cpk=0.83<1.33, le procédé est dérèglé et n'est pas bien centré.

d) L'analyse de la variance

Tableau-10: la table d'ANOVA pour les boissons d'20Cl.

Source des variations	Somme des carrés	Degré de liberté	Moyenne des carrés	F	Valeur critique pour F
Entre Groupes	57,00384933	2	28,50192467		
A l'intérieur des groupes	404,91518	147	2,754525034	10,347	3,058
Total	461,9190293	149		, -	,

OUMAI Youssef : MST CAC : Agiq Page 37

www.fst-usmba.ac.ma

> Test de Fisher :

$$F_{obs} = 10.347$$

$$F_{crit}=3.058$$

❖ On a F_{obs}>F_{crit}, alors l'hypothèse H₁ est accepté, c'est-à-dire que au moins une moyen est significativement différentes des autres. Ce qui signifier qu'il existe un produit fini hors maitrise et qu'il peut être un cause assignable sur le procédé. C'est pour cela il faut identifier exactement la moyenne aberrantes afin de le corrigé.

e) Comparaisons des trois moyennes :

Tableau-11: les moyennes de trois produits de 20Cl:

Le produit	La moyenne
CoCa	M1=200.426
Fanta OR	M2=201.463
Schwe.tonic	M3=199.994

Soient les hypothèses suivantes : H0= M1=M2

 $H1 = M1 \neq M2$

On a
$$S^2 = \frac{1}{X_1} = \frac{1}{n_1} + \frac{1}{n_2} \times S^2_{résidus}$$

= $\left(\frac{1}{50} + \frac{1}{50}\right) \times 2.755$

$$=0.110$$

LSD=
$$t_{\alpha/2, n-p} \times S_{\overline{X}1-\overline{X}2}$$

$$=$$
t_{0.025}; $_{147\times}\sqrt{0.110}$

$$=1,974\times\sqrt{0.110}$$

$$ET[X1-X2] = |200.426-201.463|=1.037$$

✓ On remarque que LSD< $|\bar{X}1 - \bar{X}2|$ donc l'hypothèse H₁ est accepté et M1≠M2

www.fst-usmba.ac.ma

Soient les hypothèses suivantes : H0 : M2=M3

H1 : M2≠M3

On a LSD=0,655

Et
$$|\bar{X}2 - \bar{X}3| = |201.463 - 199.994| = 1.469$$

✓ On remarque que LSD<|X2 - X3| donc l'hypothèse H0 est accepté et M2 \neq M3

Soient les hypothèses suivantes : H0 : M1=M3

H1: M1≠M3

On a LSD=0,655

Et
$$|\bar{X}1 - \bar{X}3| = |200.426 - 199.994| = 0.432$$

- ✓ On remarque que LSD> $|\bar{X}1 \bar{X}3|$, donc l'hypothèse H1 est accepté et M1=M3.
 - **♣** Après le test statistique on a arrivé à déterminer que M2 (Fanta) est la moyenne aberrante et que le procédé n'arrive pas à être sous contrôle aux niveaux de cette dernière.
- Récapitulatif :
- le procédé de remplissage des bouteilles en verre doit avoir une amélioration.
- * après chaque changement de produit ou de taille le remplissage s'éloigne de la valeur cible
- **On a trouvé une grande variation autour de la moyenne cible.**
- Le test LSD indique que le problème se trouve au niveau du remplissage de :
 - Fanta 35Cl et 20Cl (M2).
- Apres l'analyse des cartes de contrôles et des paramètres de capabilités (Cp et Cpk), le problème c'est au niveau du remplissage des bouteilles de 1L, 35Cl et 20Cl, ce qui engendre un procédé incapable. C'est pourquoi l'équipe qualité est amenée à planifier une réunion pour chercher les causes racines afin de palier à ce faux problème.

FST FES

www.fst-usmba.ac.ma

Introduction

L'objectif de la réunion c'est de trouver un outil de qualité pour ciblé les causes principales qui sont à l'origine des écarts du remplissage et sur lesquelles il faut se focaliser en établissant des plans d'action adéquates pour résoudre définitivement le problème.

IV. PV de réunion

\L'équipe qualité:

- > El Khammar Fahmi : Responsable contrôle qualité
- > Hamid Moubakkir : Responsable production
- Oaziz Mohamed : LaborantinOumai Youssef : stagiaire

❖ Constat :

Les résultats des capabilité du procédé : Cp et Cpk< à 1,33.

1- Analyse de Cause:

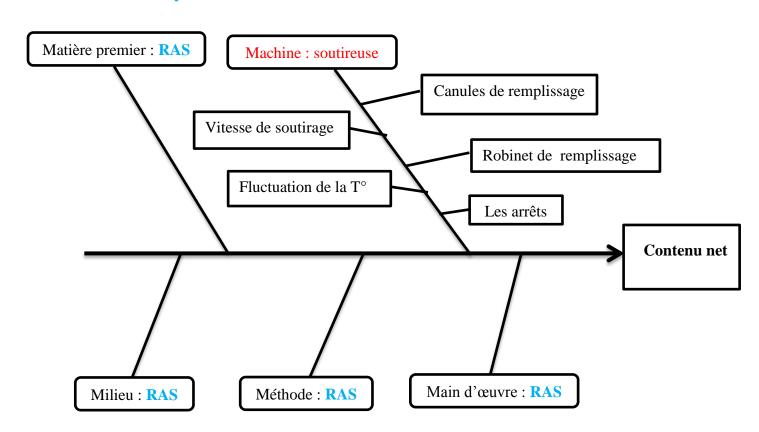


Fig-10: diagramme d'ISHIKAWA du contenu net

www.fst-usmba.ac.ma

- ➤ Lors de la réunion de l'équipe, les causes probables qui peuvent avoir un impact sur le Contenu net sont :
 - ✓ Les canules de remplissage.
 - ✓ Vitesse de soutirage.
 - ✓ Robinet de remplissage.
 - ✓ Fluctuation de la T°.
 - ✓ Les arrêts.

2- Actions correctives immédiate.

Tableau-12: la table des actions correctives

Anomalie	Analyse de cause	Actions	Délai	Statues
	Canules de remplissage	Revue de hauteur des cannules de remplissage surtout de la 200ml	Immédiat	Fait
Contenu	Vitesse de soutirage	Revoir la vitesse de soutirage	En continu	Fait
Net	Robinet de remplissage	Vérification et changement des joints d'étanchéité des robinets et des cannules de remplissage	En continu	Fait
	Fluctuation de la T°	Contrôler à temps réel la T° au niveau de la ligne de production et au niveau de compresseur	En continu	Fait

Apres l'analyse de cause des actions correctives ont été établie ; Une vérification et un suivi de ces actions ont été instaurés :

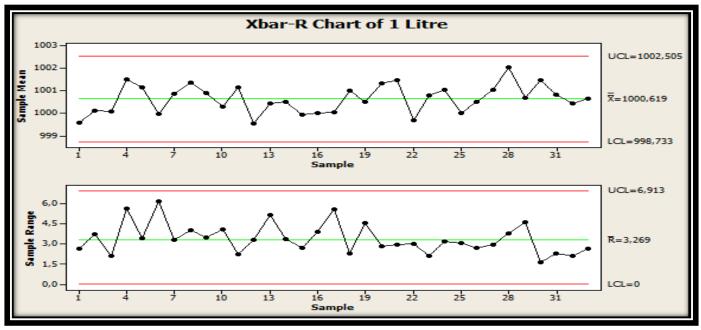
1. Traitement statistique de trois boissons de taille 1L

a) Les données:

Je viens d'effectuer un tableau si dessous concernant tous les donnes du contenu net des boissons d'1L.

Tableau-13: les données du contenu net des boissons d'1L.

					1 405 001550115	
le produit	l'heure	X1	X2	Х3	X4	X5
Sprite	08 :00	1000,59	999,51	1001,83	1000,01	1000,42
Sprite	09 :00	998,71	1000,56	1001,88	1000,16	1001,36
Sprite	10 :00	998,43	1001,43	1000,92	1000,94	1002,93
Sprite	11 :00	999,02	1002,41	999,29	1003,07	1002,41
Sprite	12 :00	1001,06	998,75	998,48	1000,78	1004,23
Sprite	13 :00	998,93	1001,37	999,42	1002,33	1001,18
Sprite	14 :00	1002,39	1002,76	1000,69	998,23	1001,82
Sprite	15 :00	998,69	999,87	1001,18	1001,23	1000,5
Sprite	16 :00	999,76	1001,94	999,91	998,49	998,77
Sprite	17 :00	1000,69	1000,13	1002,01	1000,72	999,65
Sprite	18 :00	1000,67	1002,94	1000,66	999,71	1000
Coca	08 :00	1001,05	999,47	999,17	999,81	1001,6
Coca	09 :00	998,96	1002,46	1000,03	1001,92	1003,33
Coca	10 :00	999,47	998,39	998,12	1001,68	1002,12
Coca	11 :00	1000,26	1000,46	999	1000	1001,82
Coca	12 :00	1004,38	999,26	1003,69	1000,44	1000,51
Coca	13 :00	1001,1	1000,88	998,16	1000,82	1001,92
Coca	14 :00	998,75	1000,75	998,96	999,59	1000,87
Coca	15 :00	1002,36	1002,37	1000,41	1001,15	1000,47
Coca	16 :00	1000,85	1001,24	1000,88	1000,73	1000,71
Coca	17 :00	1002,42	1001,02	1002,25	1002,77	1002,31
Coca	18 :00	1000,33	1000,17	999,99	999,41	1000,06
Hawaï	08 :00	1001,84	999,72	101,73	998,99	1000,53
Hawaï	09 :00	1002	999,65	1000	998,82	1000,93
Hawaï	10 :00	999,05	1000,85	1000,98	1001,88	999,42
Hawaï	11 :00	997,89	999,86	1003,05	1000,92	999,73
Hawaï	12 :00	998,49	997,57	998,53	1000,57	1000,51
Hawaï	13 :00	998,97	1000,95	998,56	999,1	1001,49
Hawaï	14 :00	1000,38	1000,65	1001,34	1001,78	1000,77
Hawaï	15 :00	1004,02	1000,78	1002,82	1000,76	1000,39
Hawaï	16 :00	1000,23	997,31	1000,92	1000,23	999,27
Hawaï	17 :00	1002,76	1002,46	1001,26	1000,03	1001,88
Hawaï	18 :00	1001,24	998,55	1001,5	1000,41	1000,88



www.fst-usmba.ac.ma

b) Test sur moyenne-étendue:

Le graphe suivant représenté la carte de contrôle moyenne-étendue du contenu net pour les boissons d'1L.

\Less Les cartes de contrôles : \overline{X} et \overline{R} :

Graphe-7: la carte de contrôle \overline{X} et \overline{R} pour les boissons d'1L.

Les mesures :

3) Caractéristique Carte de la moyenne.

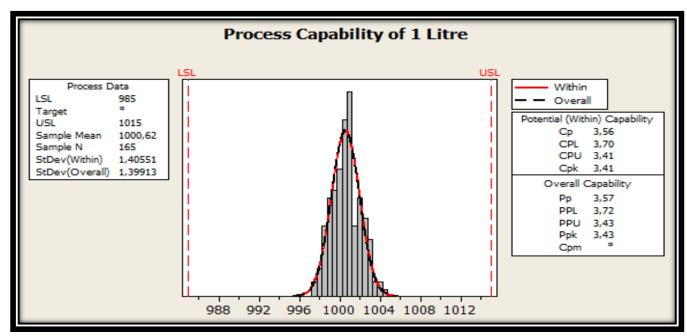
LCI (LCL)	LCS(UCL)	$\overline{\overline{X}}$
998.733	1002.505	1000.619

4) Caractéristique Carte de l'Etendue.

LCI (LCL)	LCS(UCL)	$\overline{ar{R}}$
0	6.913	3.269

Commentaires des résultats :

✓ On remarque que les moyennes et les étendues sont à l'intérieure des limites de contrôles ce que signifier que le processus est stable et sous contrôle statistique, aussi l'absence des causes assignable.



www.fst-usmba.ac.ma

c) Etude de Capabilité :

Le graphe suivant représenté la capabilité de la soutireuse au niveau des boissons d'1L.

Graphe-8 : la capabilité de la soutireuse pour les boissons d'1L.

Caractéristiques de la Capabilité :

Ti	Ts	Ecart-type	Moyenne
985	1015	1.40	1000.62

Donc:

Cp = **3.56**>**1.33**, alors le procédé est d'une capabilité acceptable.

Cpk= 3.41>1.33, le procédé est d'une capabilité acceptable.

www.fst-usmba.ac.ma

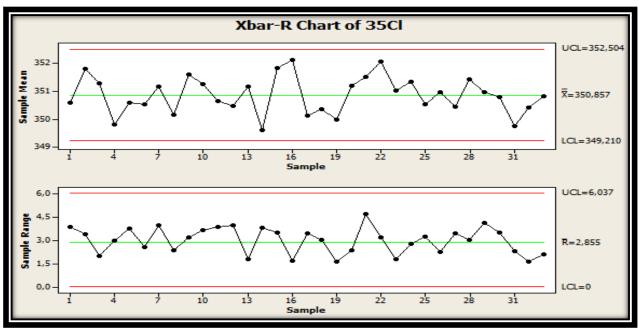
2. Traitement statistique de trois boissons de taille 35Cl

a) Les données:

Je viens d'effectuer un tableau si dessous concernant tous les donnes du contenu net des boissons de 35Cl.

Tableau-14 : les données du contenu net des boissons de 35Cl.

Le produit	l'heure	X1	X2	Х3	X4	X5
Sprite	08 :00	348,43	350,5	351,43	352,7	348,66
Sprite	09 :00	350,77	353,96	347,63	354,83	350,3
Sprite	10 :00	352,27	350,6	349,48	350,58	352,09
Sprite	11 :00	350,95	351,48	350,37	350,16	351,52
Sprite	12 :00	350,53	349,13	351,65	351,14	350,34
Sprite	13 :00	350,41	349,33	351,26	350,83	350,12
Sprite	14 :00	353,79	350,2	351,9	352,15	353,12
Sprite	15 :00	351,3	355,48	353,88	354,11	354,46
Sprite	16 :00	353,21	352	350,41	351,51	352,52
Sprite	17 :00	352,46	351,8	351,29	350,91	350,87
Sprite	18 :00	350,75	350,5	352,95	351,62	348,39
Fanta OR	08 :00	352,37	353,4	352,23	351,34	351,29
Fanta OR	09 :00	350,38	351,34	351,69	350,36	351,73
Fanta OR	10 :00	351,59	353,31	352,46	352,14	350,87
Fanta OR	11:00	351,35	350,97	350,41	350,37	349,63
Fanta OR	12 :00	350,62	349,68	350,27	350,91	349,9
Fanta OR	13 :00	350,79	350,95	348,03	352,87	353,11
Fanta OR	14:00	350,25	350,53	351,46	351,18	350,49
Fanta OR	15 :00	349,53	352,37	350,48	351,88	350,67
Fanta OR	16 :00	347,82	352,36	350,76	350,11	350,21
Fanta OR	17 :00	351,61	348,5	350,73	350,62	348,4
Fanta OR	18 :00	348,58	349,4	349,55	350,41	350,2
Hawai TR	08 :00	352,34	349,23	348,86	350,59	349,31
Hawai TR	09 :00	350,5	351,2	351,88	351,88	349,71
Hawai TR	10 :00	349,94	349,5	350,1	351,07	351,35
Hawai TR	11 :00	349,68	349,26	348,92	348,67	349,72
Hawai TR	12 :00	350,98	353,18	349,88	350,22	349,95
Hawai TR	13 :00	349,15	351,21	350,46	352,45	351,31
Hawai TR	14 :00	351,7	351,27	350,53	350,64	349,49
Hawai TR	15 :00	351,16	352,08	351,32	351,05	351,26
Hawai TR	16 :00	349,98	350,33	350,91	350,51	351,3
Hawai TR	17 :00	351,36	350,87	350,37	350,21	351,56
Hawai TR	18 :00	350,01	349,05	350,62	350,99	350,44



www.fst-usmba.ac.ma

b) Test sur moyenne-étendue:

Le graphe suivant représenté la carte de contrôle moyenne-étendue du contenu net pour les boissons de 35Cl.

Les cartes de contrôle : \overline{X} et \overline{R} .

graphe-9: la carte de contrôle \bar{X} et \bar{R} pour les boissons de 35 Cl.

Les mesures :

1) Caractéristique Carte de la moyenne :

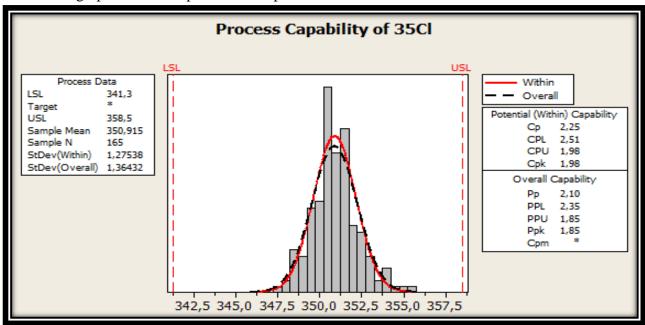
LCI(LCL)	LCS(UCL)	$\overline{\overline{X}}$
349.204	352.626	350.915

2) Caractéristique Carte de l'Etendue :

LCI(LCL)	LCS(UCL)	$\overline{ar{R}}$
0	6.273	2.967

Commentaires des résultats :

✓ On remarque que les moyennes et les étendues sont à l'intérieure des limites de contrôles ce que signifier que le processus est stable et sous contrôle statistique, aussi l'absence des causes assignable.


é des Sciences et Techniques www.fst-usmba.ac.ma

The state of the s

c) Etude de Capabilité

Le graphe suivant représenté la capabilité de la soutireuse au niveau des boissons de 35Cl.

Graphe-10 : la capabilité de la soutireuse pour les boissons de 35Cl.

Caractéristique de la Capabilité :

Ti	Ts	Ecart-type	Moyenne
341.3	358.5	1.36	350.915

Donc:

Cp=2.25>1.33, alors le procédé est d'une capabilité acceptable.

Cpk= 1.98>1.33, le procédé est d'une capabilité acceptable.

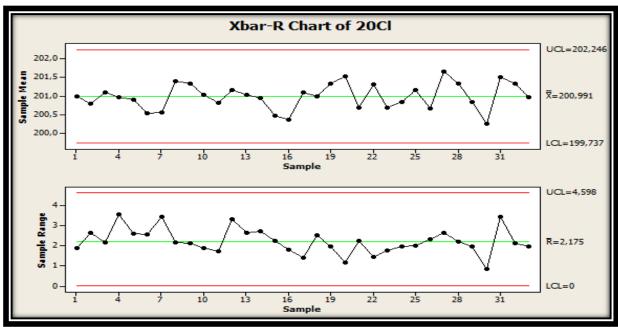
3. Traitement statistique de trois boissons de taille 20Cl.

a) Les données:

Je viens d'effectuer un tableau si dessous concernant tous les donnes du contenu net des boissons de 20Cl.

Tableau-15: les données du contenu net des boissons de 20Cl

le produit	l'heure	X1	X2	ХЗ	Х4	X5
CoCa	08 :00	201,43	201,48	202,3	201,88	200,31
CoCa	09 :00	201,72	199,04	200,07	200,6	201,37
CoCa	10 :00	199,86	201,56	201,92	200,92	201,35
CoCa	11 :00	200,6	201,9	199,61	199,87	201,3
CoCa	12 :00	201,3	201,96	201,83	202,1	201,86
CoCa	13 :00	201,8	199,81	199,6	199,98	202,1
CoCa	14 :00	199,19	201,78	199,89	201,3	201,51
CoCa	15 :00	201,29	200,01	201,01	201,06	199,9
CoCa	16 :00	200,71	201,2	200,04	201,4	200,93
CoCa	17 :00	200,99	202,1	200,31	202,1	201,75
CoCa	18 :00	201,5	201,3	201,3	200,67	200,6
Fanta OR	08 :00	202,33	202,11	199,59	200,1	201,17
Fanta OR	09 :00	200,18	199,77	199,5	201,66	199,8
Fanta OR	10 :00	200,64	201,63	201,15	201,66	200,61
Fanta OR	11:00	200,89	201,61	200,66	200,12	200,27
Fanta OR	12 :00	201,2	200,85	200,3	199,9	200,35
Fanta OR	13 :00	202,81	201,3	201,67	200,46	199,78
Fanta OR	14:00	199,3	201	201,54	200,2	200,3
Fanta OR	15 :00	200,26	201,57	201,3	202,15	203,1
Fanta OR	16 :00	201,3	200,13	202,1	200,77	199,7
Fanta OR	17 :00	201,6	199,86	199,6	200,58	201,86
Fanta OR	18 :00	200,19	201,55	200,62	201,16	200,79
Schwe,Tonic	08 :00	199,56	201,92	201,13	201,29	202,1
Schwe,Tonic	09 :00	202,14	202,5	201,51	201,96	201,35
Schwe,Tonic	10 :00	201,07	200,2	201,8	201,42	201,86
Schwe,Tonic	11 :00	199,59	201,99	201,74	199,96	201,92
Schwe,Tonic	12 :00	199,5	199,22	201,3	200,3	199,8
Schwe,Tonic	13 :00	202,03	201,5	199,96	202,18	201,78
Schwe,Tonic	14 :00	201,62	200,13	201,89	199,9	201,4
Schwe,Tonic	15 :00	199,99	199,6	200,97	200,32	199,7
Schwe,Tonic	16 :00	200,46	202,23	201,51	200,65	200,6
Schwe,Tonic	17 :00	199,39	201,7	201,24	202,92	201,63
Schwe,Tonic	18 :00	202,45	200,88	202,11	202,33	201,5



b) Test sur moyenne-étendue :

Le graphe suivant représenté la carte de contrôle moyenne-étendue du contenu net pour les boissons de 20Cl.

riangle Les cartes de contrôle : \overline{X} et \overline{R} .

graphe-11 : la carte de contrôle \bar{X} et \bar{R} pour les boissons de 20 Cl.

Les mesures :

3) Caractéristique Carte de la moyenne :

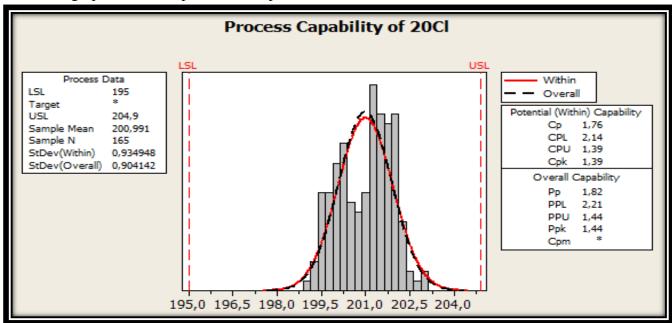
LCI(LCL)	LCS(UCL)	$\overline{\overline{X}}$
199.737	202.246	200.991

4) Caractéristique Carte de l'Etendue :

LCI(LCL)	LCS(UCL)	$\overline{\overline{R}}$
0	4.598	2.175

Commentaires des résultats :

✓ On remarque que les moyennes et les étendues sont à l'intérieure des limites de contrôles ce que signifier que le processus est stable et sous contrôle statistique, aussi l'absence des causes assignable.



www.fst-usmba.ac.ma

c) Etude de Capabilité

Le graphe suivant représenté la capabilité de la soutireuse au niveau des boissons de 20Cl.

Graphe-12 : la capabilité de la soutireuse pour les boissons de 20Cl.

Caractéristiques de la Capabilité :

Ti	Ts	Ecart-type	Moyenne
195	204.9	0.935	200.991

Donc:

Cp = 1.76>1.33, alors le procédé est d'une capabilité acceptable.

Cpk= 1.39>1.33, le procédé est d'une capabilité acceptable.

www.fst-usmba.ac.ma

Conclusion générale:

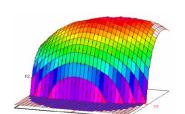
De nos jours, la qualité devient à la fois un enjeu et un défi majeurs, les entreprises ayant comme objectif de palier à la concurrence doivent mettre en place une politique qualité pour défendre ses produits sur le marché et aller vers l'excellence. C'est dans ce contexte que le présent rapport qui a pour thème : la maitrise statistique du procédé de remplissage des boissons gazeuses dans des bouteilles en verres puisse sa raison d'être et traite les étapes à suivre toute en utilisant des outils statistiques et des outils de qualité pour chercher les anomalies et en contrepartie trouver les solutions adéquates.

Une étude au niveau de la soutireuse en utilisant les cartes de contrôles révélé que le remplissage des bouteilles de boissons gazeuses en verres représente des anomalies puisqu'on dépasse les tolérances acceptables pour les différentes tailles 20Cl, 35Cl et 1 litre.

Pour résoudre à ce problème une équipe qualité-production s'est réuni pour chercher les causes racines en utilisant l'outil qualité : diagramme d'ISHIKAWA et par la suite établir un plan d'action avec des responsabilités et deadline pour corriger les anomalies.

Dans ce sens des interventions faites au niveau :

- ✓ De la hauteur des cannules de remplissage (immédiate)
- ✓ De la vitesse de soutirage (continu)
- ✓ Vérification et Changement des joints d'étanchéité des robinets de remplissage (continu)
- ✓ Contrôler la fluctuation de la température (continu).


Pour vérifier l'efficacité de ces actions on a réalisé un nouveau suivi statistique sur les paramètres de capabilité Cp et Cpk.

Les résultats qu'on a eu des Cp et Cpk sont supérieurs à 1.33 pour les différentes tailles à savoir le 20 Cl ,35 Cl et le 1 litre, ce qui signifier que la soutireuse a une grande fiabilité, donc pour rester dans cette amélioration, il faut toujours se repérer à la roue de Deming (PDCA) qui est aussi un outil de la qualité pour l'amélioration continue.

Master ST CAC Agiq

Mémoire de fin d'études pour l'obtention du Diplôme de Master Sciences et Techniques

Nom et prénom: OUMAI Youssef

Année Universitaire: 2015/2016

Titre: la maitrise statistique du procédé de remplissage des bouteilles gazeuses.

Résumé

Le présent sujet est consacré à l'étude de la capabilité des processus (Cp et Cpk) de fabrication et plus précisément de l'étape de remplissage dans des bouteilles en verre au sein de la CBGN. Comme première étape nous avons essayé de déterminer les anomalies qui 'ont un impact sur le niveau de remplissage et par la suite mettre en place des actions idéales pour redresser la situation. Toute en utilisant des outils de qualité à savoir le Diagramme d'ISHIKAWA, Roue de Deming.

Ce suivi s'est basé sur une étude statistique par l'intermédiaire des cartes de contrôles, le calcul de la capabilité mais aussi la comparaison des moyennes.

Un suivi de capabilité de processus de remplissage a été réalisé après avoir effectué des actions correctives dont l'objectif est de vérifier leur efficacité qui est approuvée par des valeurs de Cp & Cpk qui sont nettement supérieur à 1.33.

Tout ceci c'est pour mieux répondre aux exigences de la compagnie CoCa Cola vis-à-vis de ses produits en termes de contenu net.

www.fst-usmba.ac.ma

Mots clés: MSP- capabilité- carte de contrôle-ANOVA-Ishikawa

ANNEXES

Annexe1:

TABLE DE FISHER

QUANTILES D'ORDRE 0.95 DE LA LOI DE FISHER Degrés de liberté du numérateur sur la première ligne Degrés de liberté du dénominateur sur la colonne de gauche

	1	2	3	4	5	6	7	8	9	10
1	161.4	199.5	215.7	224.6	230.2	234.0	236.8	238.9	240.5	241.9
2	18.51	19.00	19.16	19.25	19.30	19.33	19.35	19.37	19.38	19.40
3	10.13	9.552	9.277	9.117	9.013	8.941	8.887	8.845	8.812	8.786
4	7.709	6.944	6.591	6.388	6.256	6.163	6.094	6.041	5.999	5.964
5	6.608	5.786	5.409	5.192	5.050	4.950	4.876	4.818	4.772	4.735
6	5.987	5.143	4.757	4.534	4.387	4.284	4.207	4.147	4.099	4.060
7	5.591	4.737	4.347	4.120	3.972	3.866	3.787	3.726	3.677	3.637
8	5.318	4.459	4.066	3.838	3.687	3.581	3.500	3.438	3.388	3.347
9	5.117	4.256	3.863	3.633	3.482	3.374	3.293	3.230	3.179	3.137
10	4.965	4.103	3.708	3.478	3.326	3.217	3.135	3.072	3.020	2.978
11	4.844	3.982	3.587	3,357	3.204	3.095	3.012	2.948	2.896	2.854
12	4.747	3.885	3.490	3.259	3.106	2.996	2.913	2.849	2.796	2.753
13	4.667	3.806	3.411	3,179	3.025	2.915	2.832	2.767	2.714	2.671
14	4.600	3.739	3.344	3.112	2.958	2.848	2.764	2.699	2.646	2.602
15	4.543	3.682	3.287	3.056	2.901	2.790	2.707	2.641	2.588	2.544
16	4.494	3.634	3.239	3.007	2.852	2.741	2.657	2.591	2.538	2.494
17	4.451	3.592	3.197	2.965	2.810	2.699	2.614	2.548	2.494	2.450
18	4.414	3.555	3.160	2.928	2.773	2.661	2.577	2.510	2.456	2.412
19	4.381	3.522	3.127	2.895	2.740	2.628	2.544	2.477	2.423	2.378
20	4.351	3.493	3.098	2.866	2.711	2.599	2.514	2.447	2.393	2.348
21	4.325	3,467	3.072	2.840	2.685	2.573	2.488	2.420	2.366	2.321
22	4.301	3.443	3.049	2.817	2.661	2.549	2.464	2.397	2.342	2.297
23	4.279	3.422	3.028	2.796	2.640	2.528	2.442	2.375	2.320	2.275
24	4.260	3.403	3.009	2.776	2.621	2.508	2.423	2.355	2.300	2.255
25	4.242	3.385	2.991	2.759	2.603	2.490	2.405	2.337	2.282	2.236
26	4.225	3.369	2.975	2.743	2.587	2.474	2.388	2.321	2.265	2.220
27	4.210	3.354	2.960	2.728	2.572	2.459	2.373	2.305	2.250	2.204
28	4.196	3.340	2.947	2.714	2.558	2.445	2.359	2.291	2.236	2.190
29	4.183	3.328	2.934	2.701	2.545	2.432	2.346	2.278	2.223	2.177
30	4.171	3.316	2.922	2.690	2.534	2.421	2.334	2.266	2.211	2.165
40	4.085	3.232	2.839	2,606	2.449	2.336	2.249	2.180	2.124	2.077
50	4.085	3.183	2.790	2.557	2.449	2.286	2.199	2.130	2.073	2.026
60	4.001	3.150	2.758	2.525	2.368	2.254	2.167	2.097	2.040	1.993
70	3.978	3.128	2.736	2.503	2.346	2.231	2.143	2.074	2.017	1.969
80	3.960	3.111	2.719	2.486	2.329	2.214	2.126	2.056	1.999	1.951
90	3.947	3.098	2.706	2.473	2.316	2.201	2.113	2.043	1.986	1.938
100	3.936	3.087	2.696	2.463	2.305	2.191	2.113	2.032	1.975	1.927
150	3.904	3.056	2.665	2.432	2.274	2.160	2.071	2.001	1.943	1.894
200	3.888	3.041	2.650	2.417	2.259	2.144	2.056	1.985	1.927	1.878
400	3.865	3.018	2.627	2.394	2.237	2.121	2.032	1.962	1.903	1.854
	3.000	3.013		2.00-1				1.002	1.300	1.00-

www.fst-usmba.ac.ma

Annexe2:

TABLE DE STUDENT

Loi de Student avec k degrés de liberté Quantiles d'ordre $1-\gamma$

						γ					
k	0.25	0.20	0.15	0.10	0.05	0.025	0.010	0.005	0.0025	0.0010	0.0005
1	1.000	1.376	1.963	3.078	6.314	12.71	31.82	63.66	127.3	318.3	636.6
2	0.816	1.061	1.386	1.886	2.920	4.303	6.965	9.925	14.09	22.33	31.60
3	0.765	0.978	1.250	1.638	2.353	3.182	4.541	5.841	7.453	10.21	12.92
4	0.741	0.941	1.190	1.533	2.132	2.776	3.747	4.604	5.598	7.173	8.610
5	0.727	0.920	1.156	1.476	2.015	2.571	3.365	4.032	4.773	5.893	6.869
6	0.718	0.906	1.134	1.440	1.943	2.447	3.143	3.707	4.317	5.208	5.959
7	0.711	0.896	1.119	1.415	1.895	2.365	2.998	3.499	4.029	4.785	5.408
8	0.706	0.889	1.108	1.397	1.860	2.306	2.896	3.355	3.833	4.501	5.041
9	0.703	0.883	1.100	1.383	1.833	2.262	2.821	3.250	3.690	4.297	4.781
10	0.700	0.879	1.093	1.372	1.812	2.228	2.764	3.169	3.581	4.144	4.587
11	0.697	0.876	1.088	1.363	1.796	2.201	2.718	3.106	3.497	4.025	4.437
12	0.695	0.873	1.083	1.356	1.782	2.179	2.681	3.055	3.428	3.930	4.318
13	0.694	0.870	1.079	1.350	1.771	2.160	2.650	3.012	3.372	3.852	4.221
14	0.692	0.868	1.076	1.345	1.761	2.145	2.624	2.977	3.326	3.787	4.140
15	0.691	0.866	1.074	1.341	1.753	2.131	2.602	2.947	3.286	3.733	4.073
16	0.690	0.865	1.071	1.337	1.746	2.120	2.583	2.921	3.252	3.686	4.015
17	0.689	0.863	1.069	1.333	1.740	2.110	2.567	2.898	3.222	3.646	3.965
18	0.688	0.862	1.067	1.330	1.734	2.101	2.552	2.878	3.197	3.610	3.922
19	0.688	0.861	1.066	1.328	1.729	2.093	2.539	2.861	3.174	3.579	3.883
20	0.687	0.860	1.064	1.325	1.725	2.086	2.528	2.845	3.153	3.552	3.850
21	0.686	0.859	1.063	1.323	1.721	2.080	2.518	2.831	3.135	3.527	3.819
22	0.686	0.858	1.061	1.321	1.717	2.074	2.508	2.819	3.119	3.505	3.792
23	0.685	0.858	1.060	1.319	1.714	2.069	2.500	2.807	3.104	3.485	3.767
24	0.685	0.857	1.059	1.318	1.711	2.064	2.492	2.797	3.091	3.467	3.745
25	0.684	0.856	1.058	1.316	1.708	2.060	2.485	2.787	3.078	3.450	3.725
26	0.684	0.856	1.058	1.315	1.706	2.056	2.479	2.779	3.067	3.435	3.707
27	0.684	0.855	1.057	1.314	1.703	2.052	2.473	2.771	3.057	3.421	3.690
28	0.683	0.855	1.056	1.313	1.701	2.048	2.467	2.763	3.047	3.408	3.674
29	0.683	0.854	1.055	1.311	1.699	2.045	2.462	2.756	3.038	3.396	3.659
30	0.683	0.854	1.055	1.310	1.697	2.042	2.457	2.750	3.030	3.385	3.646
40	0.681	0.851	1.050	1.303	1.684	2.021	2.423	2.704	2.971	3.307	3.551
50	0.679	0.849	1.047	1.299	1.676	2.009	2.403	2.678	2.937	3.261	3.496
60	0.679	0.848	1.045	1.296	1.671	2.000	2.390	2.660	2.915	3.232	3.460
80	0.678	0.846	1.043	1.292	1.664	1.990	2.374	2.639	2.887	3.195	3.416
100	0.677	0.845	1.042	1.290	1.660	1.984	2.364	2.626	2.871	3.174	3.390
120	0.677	0.845	1.041	1.289	1.658	1.980	2.358	2.617	2.860	3.160	3.373
∞	0.674	0.842	1.036	1.282	1.645	1.960	2.326	2.576	2.807	3.090	3.291

www.fst-usmba.ac.ma

Références Bibliographique

- [1] CoCa Cola Maroc. Le système CoCa Cola [en ligne].Disponible sur : http:/fr.CoCa-Colamaroc.ma (consulté le 22/04/2016).
- [2] INSA de Lyon. Contrôle Qualité [en ligne].Disponible sur : http:/infoqualité.accordance.fr (Consulté le 20/04/2016).
- [3] Gérald Baillargeon. Méthodes statistiques: Avec applications en gestion,production,marketing,relations industrielles et Sciences Comptables.3éme Ed.Switzerland.SMG.2006,586p.ISBN2890941876.
- [4] Optima europe.Carte de Contrôle [en ligne]. Disponible sur :http://optima-europe.com (Consulté le 10/05/2016).
- [5] Tim Stapenhurst.Mastering Statistical ProcessControl.USA.Elsevier Butterworth-Heinemann, 2005, 497p.ISBN0750665297
- [6] Derek Bissel., Chris Chatfield., Jim V.Zidek, et al. Statistical Méthodes for SPC and TQM. New Delhi . Sprizer-Science+Business MEDIA, BV . 1994.374p, ISBN 978-0-412-39440-9.

www.fst-usmba.ac.ma

._____