

UNIVERSITE SIDI MOHEMAD BEN ABDELAH FACULTE DES SCIENCES ET TECHNIQUES FES

Département de Biologie

Licence Sciences & Techniques:

«Bioprocédés, Hygiène & Sécurité Alimentaires»

Projet De Fin d'Etudes

Sous le thème :

Vérification de l'application de la démarche HACCP au service Siroperie de la Compagnie des Boissons Gazeuses du Nord

<u>Présenté par</u> : Mlle EL ALLAM NOURA

Encadré par : Pr SFRIOUI SAMIRA Mr FAHMI EL KHMMAR

Soutenule : 06 juin 2018 Devant le jury composé de :

- > Mme SFRIOUI SAMIRA
- > Mr FAHMI EL KHMMAR
- > Mme FADEL FATIMA

Année Universitaire 2017/2018

Sommaire

Remerciements	2
Dédicace	
INTRODUCTION	
Chapitre I : Présentation de la société d'accueil	
1) Historique de la CBGN	7
2) La fiche technique de la CBGN	8
3) L'organigramme de la société	9
Chapitre II : Procédé de fabrication des Boissons Gazeuses	10
1) Traitement des eaux	11
2) Préparation du sirop	12
2-1) La préparation du sirop simple (SS)	
2-2) La préparation du sirop fini (SF)	12
Chapitre III : La démarche HACCP	15
1) Définition de la démarche HACCP	15
2) Les éléments de la démarche HACCP	15
3) Les avantages de l'étude critique de la démarche HACCP	16
4) Les principes de base de la démarche HACCP	16
5) Le plane d'action HACCP	18
Chapitre IV : La vérification de la démarche HACCP au service siroperie	19
1) Les étapes de mise en place de la démarche HACCP au niveau de la siroperie	19
1-1)Equipe chargée de la sécurité des denrées alimentaires	20
1-2)Caractéristiques du produit	20
1-3)Usage prévu	23
1-4) Diagramme du flux et sa vérification	24
1-5)Analyse des dangers	25
1-6) Détermination des points critiques (CCP)	26
1-7) Etablissement du plan HACCP	29
CONCLUSION	30

Remerciements

Avant d'entamer ce rapport, je profite de l'occasion pour exprimer mes vifs remerciements à tous ceux qui ont contribué de prés ou de loin à la réalisation de ce travail ainsi qu'au bon déroulement de mon stage dans les meilleures conditions, tout particulièrement :

Mr le directeur de la compagnie de boissons gazeuses du Nord (CBGN) à qui je tiens à présenter ma profonde gratitude de m'avoir accordé un stage au sein de son honorablesociété.

J'exprime mes sincères remerciements également à **Mme. SamiraSEFRIOUI** (FST Fès) pour m'avoir orienté judicieusement durant la période de stage .Je n'oublie pas de remercier aussi**Mme Fadel Fatima**pour avoir accepté de juger mon manuscrit.

Mes remerciements les plus chaleureux et les plus vifs vont surtout à mon encadrant professionnel **Mr. Elkhammar** FAHMI responsable contrôle qualité au sein de la CBGN qui n'a pas hésité un moment à nous donner toute l'information dont nous avions besoin. Nous le remercions également pour l'intérêt qu'il a apporté au sujet et pour ses précieux conseils. Et, je remercie également **Mme. FATIMA ZAHRAE EL MERNISSI** pour son aide à réaliser ce travail.

Je tiens à remercier l'équipe de Contrôle de qualité notamment **Mr OUAHIDE EL KHMAR**, **Mlle BARRAHOUSAFAE**, **Mr BENJALLIK DRISS**et toute l'équipe de production qui m'ont fourni les renseignements nécessaires durant toute ma période de stage.

Dédicace

Je dédie cet humble travail:

-A mes chers parents.

-A tous les membres de ma famille.

- A mes professeurs.
- -A tous mes proches.
- -A tous mes amís(es).

LISTE DES ABREVIATIONS:

-CBGN : Compagnie des Boissons Gazeuses du Nord.

-CCP: Critical Control Point - contrôle des points critiques.

-CQ: Contrôle Qualité

-ECCBC: Equatorial Coca-Cola Bottling Company.

-FAO: L'Organisation des Nations unies pour l'alimentation et l'agriculture

-HACCP: Hazard Analysis Critical Control Point - analyse des dangers et points critiques pour leur maîtrise.

-KORE : Coca Cola Operating Requirements.

-OMS : Organisation Mondiale de la santé.

-PR: Responsable Production

-RM: Responsable Maintenance

-SF: Sirop Fini.

-SIM: Société Industrielle Marocaine.

-SS: Sirop Simple.

Liste des figures:

Figure1 :Diagramme de fabrication des boissons gazeuses au sein de la CBGN.

Figure2 : Les étapes d'embouteillage en verre.

Figure 3 : diagramme du flux de sirop fini.

Figure4: Diagramme d'ISHIKAWA ou de causes à effets.

Liste des tableaux :

Tbleau1 : Les étapes de mise en place de la démarche HACCP au niveau de la siroperie

Tableau 2 : Description de sucre

Tableau 3: Description de l'eau

Tableau 4: Description de charbon actif (Norit CN1)

Tableau 5 : Description de célite

Tableau6: Description du produit fini

Tableau7: Identification des dangers

Tableau 8: La détermination des points critiques (CCP)

Tableau 9 : les limites critiques, le système de surveillance et les actions correctives pour

chaque CCP

INTRODUCTION

La sécurité des denrées alimentaires concerne la présence de dangers liés aux aliments au moment de leur consommation (ingestion par le consommateur). L'introduction de dangers relatifs à la sécurité des denrées alimentaires pouvant survenir à n'importe quelle étape de la chaîne alimentaire, il est essentiel de maîtriser de façon adéquate l'intégralité de cette chaîne. Par conséquent, la sécurité des denrées alimentaires est assurée par les efforts combinés de tous les acteurs de la chaîne alimentaire.

En effet, recommandée par la FAO et l'OMS, et exigée dans de nombreux pays notamment le Canada et l'union Européenne, comme au Maroc la méthode HACCP de par sa logique et son efficacité, est reconnue à l'échelle mondiale pour assurer la sécurité sanitaire et l'adaptabilité des produits pour l'alimentation humaine et dans le commerce international. Elle est donc incontournable dans ce contexte d'exigences et de concurrence croissante du secteur alimentaire.

Alors, la CBGN est parmi les sociétés qui ont déposé un ensemble de certifications et de normes ainsi que la démarche HACCP qui a comme objectif l'analyse des risques et d'identifier les points critiques (CCP)pour la maîtrise des dangers physiques, chimiques et microbiologiques, afin d'avoir un produit fini sûr à haute qualité et aussi pour gagner la confiance du consommateur, et respecter les normes exigées. C'est dans ce cadre que s'inscrit mon projet de fin d'étude afin de vérifier l'application de système HACCP au service siroperie.

Ce projet sera organisé en 3 grandes parties :

- -La première partie : concernent la présentation de la société de CBGN.
- -La deuxième partie : c'est la partie où on va traiter la démarche HACCP.
- -La troisième partie : c'est la vérification de la démarche HACCP au niveau de service de siroperie et l'interprétation des résultats obtenus.

Chapitre I : Présentation de la société d'accueil

1) Historique de la CBGN

La CBGN (Compagnie des Boissons Gazeuses du Nord) est une société qui a pour activité principal la fabrication et le conditionnement des boissons gazeuses. Nous dressons dans ce chapitre un historique bref de la CBGN :

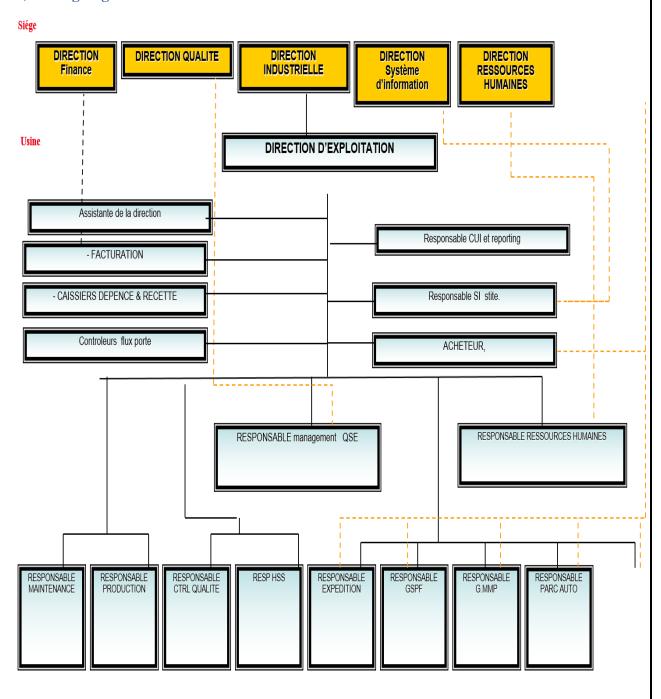
.En 1952 : C'est la mise en place de la CBGN : embouteilleur franchisé delà compagnie coca-cola, elle a été située à la place actuelle de l'hôtel Sofia.

.En 1971 : une nouvelle unité construite au quartier industriel Sidi Brahim.De 1952 à 1987 : La CBGN ne fabriquait que Coca-Cola et Fanta orange ,mais après, et pour augmenter sa part de marché, la compagnie a décidé la diversification de ses produits, elle a commencée de produire Fanta Florida, Fanta Limon , Hawaï et Sprite , elle a lancée en 1992 les bouteilles plastique PET, elle a même achetée une nouvelle machine avec une grande capacité (plus de 6000 bouteilles par heure, rapide et qui effectue plusieurs taches au même temps (soufflage, rinçage, soutirage, bouchage et datage).

.En 1997 : elle acquiert la SIM (Société industrielle marocaine) ; principal concurrent lui permettent ainsi d'augmenter sa capacité de production et d'élargir sa gamme de produits.

.En 2002 : la CBGN devient filiale de l'ECCBC et par la suite de Coca-Cola Holding.

Actuellement, la CBGN dispose de 4 lignes de production (2 lignes de verre et 2 lignes PET) ; son territoire s'étend sur 64.260 pour km2 une population de 4.9 millions d'habitants et avec 5 centres de: Fès, Meknès, Khénifra, Er-Rachidia, et Sidi Slimane.


La CBGN reste parmi les anciens embouteilleurs qui existent au Maroc, actuellement son

capital dépasse les 3 720 000,00 DHs dépasse les 3 720 000,00 DHs.

2) La fiche technique de la CBGN

Sigle:	CBGN
Raison sociale :	Compagnie des boissons Gazeuses du Nord
Date de création :	26 juin 1953
Capitale:	3720000DH
Forme juridique :	Société anonyme
Activité :	Embouteillage et distribution des Boissons
	Gazeuses non alcoolisées
Secteur d'activité :	Agroalimentaire
Adresse:	Quartier Industriel Sidi Brahim
Téléphone :	0535965000
Fax:	0535965025
Boite Postale :	2284
Superficie :	Environ 1 hectare
N d'enregistrement :	102054

3) L'organigramme de la société.

Chapitre II : Procédé de fabrication des Boissons Gazeuses

Le processus de fabrication des boissons gazeuses au sein de la CBGN passe par trois grandes phases(**Figure1**):

- Traitement, adoucissement et recyclage des eaux
- Préparation du sirop
- Embouteillage en verre

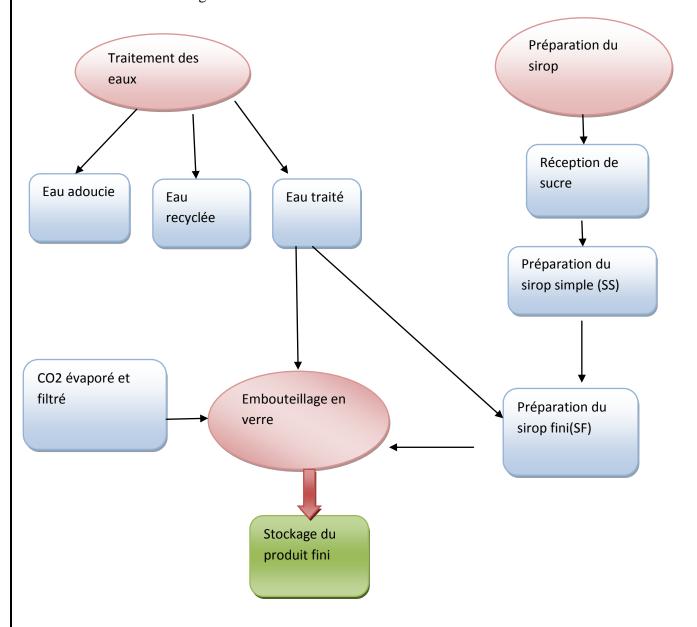


Figure 1 : Diagramme de fabrication des boissons gazeuses au sein de la CBGN.

1)Traitement des eaux

1-1)Eau traitée :

Le traitement d'eau chez la CBGN à pour objectif :

- -L'élimination des impuretés susceptibles d'affecter le gout, l'aspect et l'odeur du produit.
- -l'élimination des substances colloïdes.
- -l'élimination des matières en suspension pouvant être présente dans l'eau de ville.
- -L'élimination de toute coloration. Afin d'avoir une eauayant des caractéristiques physique, chimique et microbiologique requises pour la préparation des boissons de bonne qualité. L'eau de ville passe par plusieurs étapes :

Stockage de l'eau de ville : L'eau de ville stockée dans le bassin subit une injection de hypochlorite(NaOCl) avec une concentration de 1-3 ppm afin de réduire la croissance des germes pathogènes.

Coagulation et filtration à sable : la coagulation se fait à l'aide de sulfate d'aluminium (Al2(SO4)3). Cette opération a pour but de former des flocs qui sont éliminés après le passage d'eau dans le filtre à sable, donc on aura une réduction de la turbidité d'eau.

Décarbonatation : le décarbonateur sert à réduire l'alcalinité d'eau grâce à une résine échangeuse d'ions faiblement acide de type RCOOH.

Les réactions ayant lieu au niveau du décarbonateur sont :

Stockage d'eau traitée : se fait par l'ajout de l'eau de javel ou l'hypochlorite (Nao Cl) avec une concentration entre 1-2 ppm pour but d'inactiver l'action des germes pathogènes.

Filtration sur Charbon actif : afin d'éliminer l'eau de javel, les goûts et les odeurs anormal par la réaction d'adsorption qui se fait à l'aide de charbon actif.

Filtration au niveau de filtre polisseur : il a pour rôle de capter toute particule de charbon qui s'échapper du filtre à charbon.

1-2) L'eau adoucie :

L'eau utilisée pour le lavage des bouteilles en verre, dans les chaudières subit un adoucissement pour diminuer sa dureté. En effet, le calcium et le magnésium doivent être réduits pour éviter le colmatage au niveau de la laveuse et des chaudières en particulier la formation de carbonate de calcium (CaCO3).

L'eau traverse une résine échangeuse de cations, de type R-Na2 (échange entre Na et Mg

et Ca), dont le rôle est de fixer les cations Mg ²⁺ et Ca²⁺ qui se trouvent dans l'eau et diminuer leur concentration.

1-3) L'eau recyclée :

L'eau provenant du rinçage final des bouteilles en verre est suivi d'une succession d'étapes, la première étape est la filtration sur un filtre à poche afin d'éliminer des corps étrangers suivi par l'étape de l'injection de CO2 pour neutraliser les traces de la soude contenus dans les eaux des laveuses. Après, l'eau est injectée par l'eau de javel pour éviter toute contamination par les germes pathogènes, alors que dans la 4éme étape, il y a l'injection de sulfate d'aluminium comme un coagulant qui favorise la coagulation et la floculation des particules en suspension , qui sont éliminés enfin lors de passage d'eau sur le filtre à sable.

2) Préparation du sirop

2-1) La préparation du sirop simple(SS)

La préparation du sirop simple commence par le tamisage du sucre en suite ce dernier subit une dissolution qui se traduite par le mélange de sucre avec l'eau traitée en continu dans un CONTIMOL. Ce mélange est pasteurisé dans une température de 80 à 85°C pour détruire les germes pathogènes, ensuite le sirop simple est passé dans une cuve de réaction où il y a l'ajout de charbon actif (Norit CN1) sous forme de poudre qui sera mélangée avec le sirop simple pendant 30min afin d'éliminer les mauvais odeurs, les impuretés et clarifier le sirop simple.

L'ajoute de 2 sacs de célite dans une cuve d'adjuvant forme une pate filtrante, qui favorise l'élimination de charbon actif et les particules en suspension dans le sirop simple. Après, ce dernier passe dans un filtre à poche afin d'éliminer les résidus du charbon actif, le sirop simple subit un refroidissement à l'aide d'un échangeur thermique afin de diminuer sa température de 85°C à 22±5°C. Enfin, le sirop simple obtenu est stocké dans une cuve(1h et 24H).

2-2) La préparation du sirop fini (SF):

Le sirop simple est mélangé avec des ingrédients qui sont soit des extraits de base soit des concentrés selon le type de parfum demandé et enfin ce sirop est stocké pendant un intervalle de 24 à 72°C.

3) L'embouteillage en verre :

L'embouteillage en verre passe par les étapes suivant(**Figure2**)

- **a. Dé-palettisation :** Cette étape presque automatisée concerne la mise des caisses sur convoyeurs.
- **b. Dévissage :** Cette étape concerne uniquement les Bouteilles de verre 1L, elle consiste à dévisser les bouteilles reçues.
- **c. Décaissage**: Cette étape consiste à décaisser les bouteilles vides des caisses et les poser sur le convoyeur qui alimente la laveuse des bouteilles, et laisse échapper les caisses en destination de la laveuse des caisses.
 - d. Lavage: Cette étape se fait sur plusieurs phases:
 - <u>Le prélavage</u>: Assuré par l'eau recyclée tiède (45°C) qui permet l'élimination des résidus (pailles, insectes, bouchons pliés...), évitant ainsi la contamination des bains principaux de lavage.
 - <u>Le lavage à la soude caustique :</u> il s'effectue en deux bains différents : le premier bain contient NAOH avec une concentration environ 1.5 à 2ppm, et le deuxième bain contient la soude avec une concentration environ 2 2.5 ppm, les deux ont une température de 70°C.

<u>Le pré-rinçage</u> : il sert à éliminer les traces du détergent, se fait en trois bains contenant une eau adoucie chaude, tiède et froide.

<u>Le rinçage final</u>: est réalisé par l'eau froide adoucie et chlorée 1 à 3 ppm pour éliminer les résidus caustiques, et refroidir les bouteilles jusqu'à la température ambiante pour éviter le choc thermique.

- **e.** Inspection visuelle et électronique des bouteilles lavées : il a pour but d'enlever des bouteilles ébréchées, cassées, sales ou contenant du liquide qui reste après lavage.
- **f.** Soutirage et bouchage/ vissage: Les boissons sont remplies au niveau de la soutireuse et sont bouchées automatiquement juste après la sortie de la soutireuse par la boucheuse.
- g. Codage et contrôle du remplissage:Un dateur est programmé à chaque début de production dont l'opération est d'imprimer sur les bouchons des bouteilles pleines: la date de production, date de péremption, numéro de ligne de remplissage des bouteilles et l'heure de production, puis les bouteilles vont passer par un détecteur pour rejeter les bouteilles anormales : sur-pleines, mal remplies et ébréchées.
- **h. Etiquetage :** mise des étiquettes sur la bouteille sauf pour celle de Coca Cola en étant sérigraphique.

i. Encaissage et stockage: C'est l'étape finale de la mise en caisse des bouteilles pleines et leur stockage.

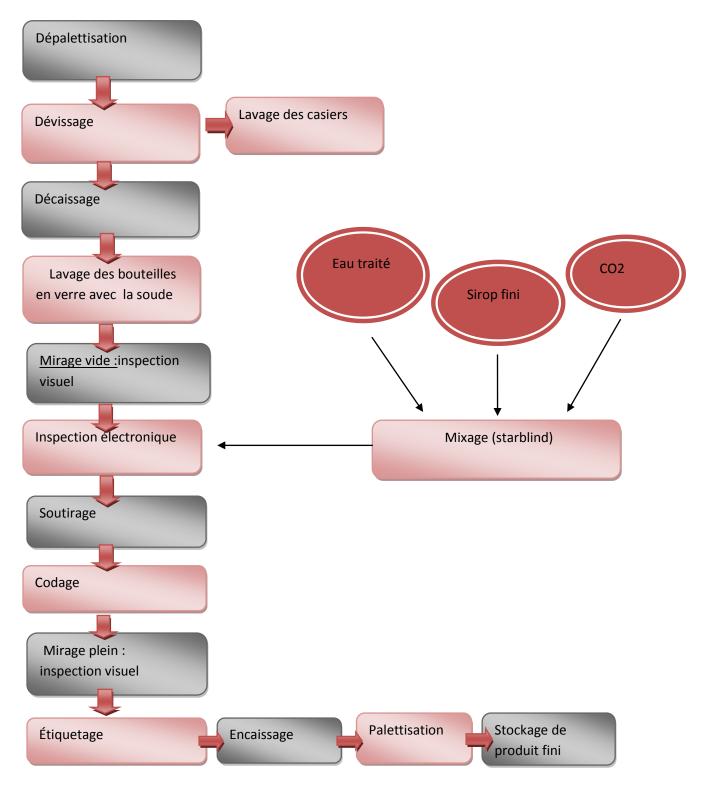


Figure2 : Les étapes d'embouteillage en verre

Chapitre III: La démarche HACCP

1) Définition de la démarche HACCP[1]

Le système HACCP : (Hasard Analyse Critical Control Point) ou traduit par, l'analyses des dangers-point critiques pour leur maîtrise, est né vers la fin des années soixante dans l'industrie chimique. Cette méthode a été reprise et adapté au secteur alimentaire en 1972. Il est considéré comme l'un des meilleurs outils permettant d'assurer la maîtrise des dangers :

- physiques, chimiques et microbiologiques dans les aliments

Le système HACCP est une méthode qui permet :

- ➤ D'identifier et d'analyser les dangers associés aux différents stades du processus de production d'une denrée alimentaire.
- De définir les moyens nécessaires à leur maîtrise.
- De s'assurer que ces moyens sont mis en œuvre de façon effective et efficace.

2) Les éléments de la démarche HACCP[2].

Un système HACCP efficace comporte deux éléments :

- **a. Programmes préalables**: Conçus pour assurer le contrôle des risques liés au personnel et à l'environnement de fabrication des aliments, en vue de créer des conditions favorables à la production de produits alimentaires sûrs, il faut assurer:
- la gestion de pratiques personnelles appropriées.
- la gestion de pratiques relatives à l'expédition, à la réception et à l'entreposage.
- l'entretien du matériel et des installations.
- la salubrité de l'approvisionnement en eau.
- l'exécution d'activités d'assainissement et de contrôle des insectes et animaux nuisibles.
- la formation appropriée du personnel.

Les programmes préalables sont mis en œuvre avant les plans HACCP parce qu'ils permettent de contrôler un grand nombre de risques généraux qui, pour cette raison, n'ont pas à être visés dans un plan HACCP, ce qui rend le système

plus efficace et plus facile à appliquer. Les programmes préalables jettent les bases de plans HACCP efficaces.

b. Plans HACCP: Un plan HACCP est conçu pour contrôler les risques qui sont reliés directement au produit, aux ingrédients ou au processus de fabrication et qui ne sont pas contrôlés par les programmes préalables.

Le plan doit contenir, pour chaque point critique pour la maitrise (CCP),les informations suivantes :

- a)-le ou les dangers liées à la sécurité des alimentaires devant être maîtrisés pour le CCP
- b)- la ou les mesures de maîtrise
- c)-La ou les limites critiques
- d)-la ou les procédures de surveillance
- e)-la ou les actions correctives et la ou les corrections à entreprendre en cas de dépassement des limites critiques.

3) Les avantages de l'étude critique de la démarche HACCP[3]

- > Moyen de prévention
- Meilleur outil pour répondre aux exigences de consommateurs en matière d'assurance de la qualité sanitaire des produits alimentaires.
- > Réduction des pénalités et de gaspillage de produits bruts et de produit fini
- > Augmentation de la confiance des consommateurs pour l'industrie
- Economie et amélioration dans le processus de production.
- Plus grand maitrise de la gestion.
- Normalisation des pratiques quotidiennes.

4)Les principes de base de la démarche HACCP[4] [5]

Pour mener à bien le HACCP, 7 principes fondamentaux plausibles, aboutissent à l'établissement, la mise en œuvre et l'apport d'un plan HACCP approprié à l'opération en cours d'étude.

•L'analyse des risques Il s'agit d'établir dans chaque étape du processus, la liste des dangers qui sont raisonnablement susceptible de se produire. Puis d'analyser les risque c'est-à-dire

pondérer ces dangers en fonction de leur gravité, probabilité d'apparition, facilité de détection, persistance dans le produit.

Pour en fin mettre en place des mesures visant à prévenir l'apparition de tels dangers.

• Détermination des CCP : (point critique pour la maîtrise)

Le CCP est un « stade auquel une surveillance peut être exercée et est essentielle pour prévenir ou éliminer un danger menaçant la salubrité de l'aliment ou le ramener à un niveau acceptable »

Les CCP peuvent être déterminés à l'aide d'un arbre de décision

• Fixation de seuils critiques pour chaque CCP

En se basant sur des données scientifique ou études techniques, il faut fixer et valider des seuils permettant de garantir la salubrité du produit pour chaque point critique.

• Mise en place d'une surveillance de chaque CCP

Ces CCP doivent être contrôlés régulièrement afin de détecter toute perte de maîtrise et d'agir en conséquence:

- -sur le procédé, afin de l'ajuster pour revenir dans les critères fixés
- -sur le produit lui-même afin d'écarter tout danger alimentaire

Les enregistrements relatifs à la surveillance des CCP doivent être signés au minimum par la personne ayant effectué le contrôle.

• Mise en place des mesures correctives

Déterminer les actions nécessaires pour rectifier les écarts et l'orientation du produit en cas de dépassement des seuils.

• Mise en place des procédures de vérification

Etablir un moyen pour vérifier l'application et l'efficacité du plan HACCP : par le biais d'audit, par le relevé des écarts relatifs aux CCP, par des analyses aléatoires sur les produits.

• Tenu du registre et documentation

Un enregistrement efficace et précis est essentiel pour l'application du système HACCP.

Les procédures HACCP se référant à chacune des étapes doivent être documentées et ces documents doivent être réunis dans un manuelUn registre montre l'historique du procédé, la surveillance, les déviations et les actions correctives (incluant le rejet du produit) qui ont eu lieu au CCP pris en considération.

5) Le plane d'action HACCP [6]

L'implantation des principes du système HACCP doit faire l'objet de la réalisation d'une séquence logique d'activation partagée en 12 étapes chronologiques qui sont les suivants :

- La constitution d'une équipe HACCP
- La description du produit
- L'identification de l'utilisation prévue de produit
- L'établissement d'un diagramme du flux
- La Vérification sur place du diagramme du flux
- L'analyse des dangers
- La détermination des points critiques pour chaque CCP
- L'établissement des limites critiques pour chaque CCP
- L'établissement d'un système de surveillance pour chaque CCP
- L'établissement des actions correctives
- L'établissement des procédures de vérification
- L'établissement d'un système d'enregistrement e de documentation

Chapitre IV : La vérification de la démarche HACCP au service siroperie

1) Les étapes de mise en place de la démarche HACCP au niveau de la siroperie

Tableau1 : Les étapes de mise en place de la démarche HACCP au niveau de la siroperie

Etapes	Exigence	Conformité	Action
Equipe chargé de la	Cette équipe doit être pluridisciplinaire en	Oui	
sécurité des denrées	matière de développement et de mise en œuvre		
alimentaires	du système de management de la sécurité des		
	denrées alimentaires.		
Caractéristiques du	- Toutes les matières premières, les ingrédients et	Partiellement	Mettre à
produit	les matériaux en contact avec le produit doivent		jour
	faire l'objet d'une description documentée.		
	-les caractéristiques des produits finis doivent		
	être l'objet d'une description documentée dans la		
	mesure des besoins de la réalisation de l'analyse		
	des dangers.		
Usage prévu	-l'équipe doit indiquer les utilisations en tenant	Partiellement	Mettre à
1	compte des groupes de consommateurs sensibles.		jour
Construire un	Il doit étudier le flux de la matière première	Partiellement	Mettre à
diagramme de flux	depuis la réception jusqu'à l'expédition en		jour
	passant par la transformation.		
Vérification sur place	Une fois le diagramme du flux est préparé il doit	Partiellement	Mettre à
du diagramme du flux	être confirmé par une inspection sur place, afin		jour
	de le compléter et de lui apporter les précisions		
	nécessaires.		
Analyse des dangers	L'équipe chargée de la sécurité des denrées	Partiellement	Mettre à
	alimentaires doit réaliser une analyse des dangers		jour
	pour déterminer quels sont les dangers à		
	maîtriser.		
Détermination des	Avant de déterminer les CCP tout les dangers	Partiellement	Mettre à
points critiques(CCP)	doivent être étudiés à nouveau afin de vérifier si		jour
pour la maîtrise	tout les dangers on été maîtrisés par l'application		
	des principes généraux d'hygiène et des bonnes		
	pratique de production.		

Etablir les limites	Des limites critiques doivent être établies à	Partiellement	Mettre à
critiques pour chaque	chaque point critique.		jour
CCP			
Etablir un système de	Un système de surveillance doit être établi pour	Partiellement	Mettre à
surveillance pour	chaque CCP visant à démontrer que ce CCP est		jour
chaque CCP	maîtrise.		
Etablir des actions	Les mesures correctives doivent être déterminées	Partiellement	Mettre à
correctives	lorsque la surveillance révèle qu'un CCP donné		jour
	n'est pas maîtrisé.		
Etablir les procédures	L'exploitation doit être vérifiée de façon	Partiellement	Mettre à
de vérification	périodique pour que le système mis en place		jour
	fonctionne, c'est-à-dire que les mesures de		
	maîtrise décrites sont bien appliquées		
Etablir un système	Les procédures HACCP se référant à chacune des	Partiellement	Mettre à
d'enregistrement et de	étapes doivent être documentées et des		jour
documentation	documents doivent être réunis dans un manuel.		

1-1) Equipe chargée de la sécurité des denrées alimentaires

L'équipe chargée de la sécurité alimentaire des boissons gazeuses est constituée d'un responsable de management de qualité, sécurité et environnement, un responsable de contrôle de qualité, un responsable maintenance, un responsable de production, un opérateur siroperie et une stagiaire.

1-2) Caractéristiques du produit

a) Matières premières, ingrédients et matériaux en contact avec le produit

Les matières Premières qui sont utilisées lors de la préparation du sirop fini sont : Le sucre, l'eau, la célite et le charbon actif.

•Le sucre

Tableau 2 : Description des caractéristiques du sucre.

caractéristique	Caractéristique	Caractéristique	Composition	Origine	Méthode de	Méthode
physique	chimique	biologique			production	de
						conditionn
						ement
Des cristaux	Exempt	-GT<200UFC	Saccharose	Canne à sucre	Raffinage	Sace de
d'apparence	d'odeur ou de	/10g				50kg en
blanche	saveur	-Germe				poly-
	étrangère	acidifiants				éthyléne
	-SO2<6ppm	<50UFC/ 10g				
		- Leveur et				
		Moisissure				
		<10UFC/10				

Méthode de	Condition de	Durée de vie	Préparation avant	Critère
livraison	stockage		utilisation	d'acceptation
Par des camions	Stockage dans une	2ans après la date	Traitement de	Selon les critères
	salle propre et	de conditionnement	filtration	décrit dans le
	séparée avec une			cahier de charge et
	T°ambiante (20°C),			selon les
	éviter les contacts			spécificités de Kore
	avec des surface			
	humide			

•L'eau

Tableau 3 : Description des caractéristiques d'eau

caractéristiqu	Caractéristique	Caractéristique	Composition	Origine	Méthode de production
e physique	chimique	biologique			
Liquida	Exampt d'adays	GT<500UFC/1ml	H2O	Eon do	Traitament physics
-Liquide	Exempt d'odeur	G1<5000FC/1ml	H2O	Eau de	Traitement physico-
	et de gout	~		forages	chimique (coagulation,
-exempt d'un	indésirables	-Coliforme		artésiens	
corps	-la tenure en	<00UFC/1ml			Floculation)
étranger	chlore est nulle	-E. coli< 00UFC/1ml			

Méthode de	Méthode de	Condition de	Durée de vie	Préparation	Critère
conditionnement	livraison	stockage		avant utilisation	d'acceptation
Dans des bassins	Distribution par	-Bassin sous-	Utilisation en	Le traitement	Selon la norme
	réseaux public	terrain étanche	continue	d'eau de ville	potabilité de
		-L'ajout de		avant d'utiliser	l'eau
		chlore 1-3ppm			

•Charbon actif (Norit CN1)

Tableau 4 : Description des caractéristiques du charbon actif(Norit CN1)

caractéristique physique	Caractéristique chimique	Composition	Origine	Méthode de production
-Solide (en poudre) -Couleur noir -PH min: 5,5 -PH max: 8	Adsorption au bleu de méthylène min 25g/100g -Calcium max: 200mg/kg -Fer Max: 150mg/kg -Humidité max: 15%en masse	L'hydrogène, soufre, oxygène et surtout de carbone	toute matière organique (végétale ou animale) riche en carbone	Carbonisation à haut température -Norit CN1 est produite par activation chimique en utilisant le procédé à l'acide phosphorique

Méthode de	Méthode de	Condition de	Durée de	Préparation	Critère
conditionnement	livraison	stockage	vie	avant	d'acceptation
				utilisation	
Multiplier les sacs en	Par des	Eviter les chocs	5ans	-	Selon les
papier de 15kg en 52	camions	thermiques et			spécificités de
sacs par palette,		les contacts avec			Kore
emballés sous film		des surfaces			
plastique (780kg net		humides			
par palette)					

•La célite

Tableau 5 : Description des caractéristiques de la célite

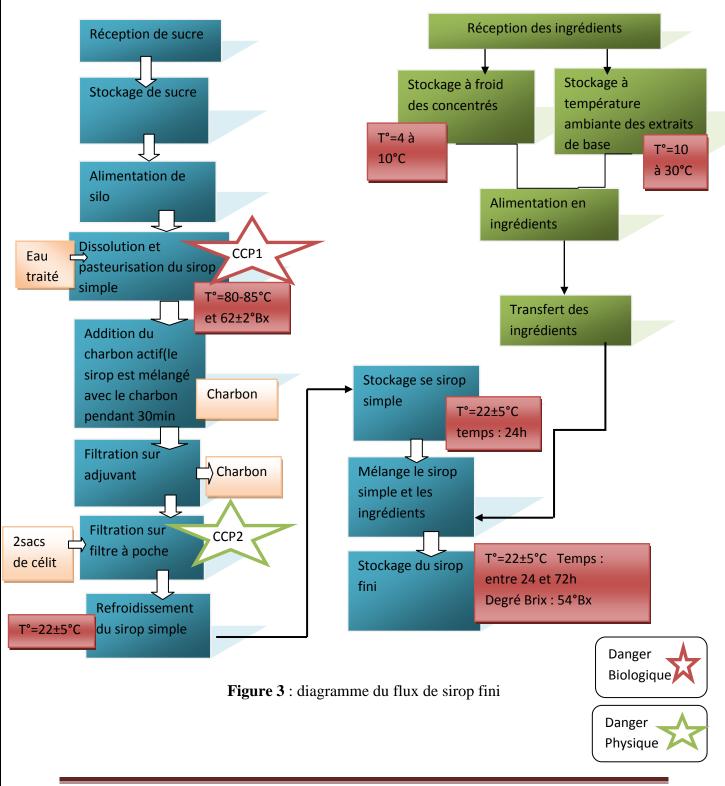
caractéristique	Caractéristique	Caractéristique	Composition	Origine	Méthode
physique	chimique	biologique			de
					production
-Solide (en	SiO2 :93,2%	-	Terre de	Algues brunes	-
poudre)	Al2O3 :0,9%		diatomée(silice)	appelées	
-Couleur	Fe2O3:0,4%			Chromophycophytes	
blanc	CaO: 3,6%				

Méthode de	Méthode de	Condition de	Durée de vie	Préparation	Critère
conditionnement	livraison	stockage		avant	d'acceptation
				utilisation	
Dans des sacs de	Par des	Dans un	2ans	-	Selon les
25kg	camions	endroit isolé			spécificités de
		et une			Kore
		température			
		ambiante			

b) Caractéristiques des produits finis : le sirop fini

Tableau 6: Description du sirop fini

Le nome du produit fini	Sirop fini
La composition	Le sirop simple(eau et sucre) et les
	ingrédients (extrait des bases ou des
	concentrés du produit)
Caractéristique physique	Absence des grains de charbon et d'un corps
	étranger
Caractéristique chimique	L'absence de goût et d'odeur indésirables
Caractéristique biologique	Les germes cherchés : les levures et les
	moisissures
La duré de vie	Entre 24h et 72h
Le conditionnement	Dans une cuve en acier inoxydable
Les conditions de conservation	Dans une cuve bien nettoyer à une
	température de 22±5°C et un degré de Brix
	égal à 54°Bx
La méthode de distribution	Par le passage dans un circuit fermé

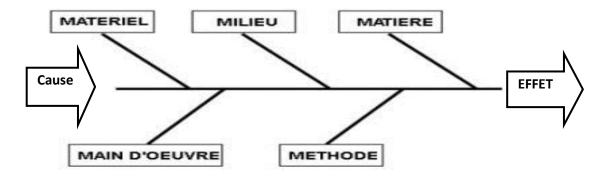

1-3) Usage prévu :On mélange le sirop fini avec l'eau et le CO2 pour avoir une boisson gazeuse destinée à la consommation par toute tranche d'âge à l'exception des petites catégories.

Les fausses utilisations : le nettoyage des toilettes avec Coca-Cola, le mélange de coca-cola avec une autre boisson énergétique et l'utilisation de Coca-cola comme ingrédient dans la préparation de miel.

1-4) Diagramme du flux et sa vérification

Les étapes du processus de préparation du sirop fin figurent dans le diagramme (**Figure 3**) où l'analyse des dangers a été effectuée.

Après établissement du diagramme du flux, ce dernier est vérifié par les membres de l'équipe HACCP.


1-5) Analyse des dangers:[7]

Processus comportant trois composants : l'évaluation des risques, la gestion des risques et la communication des risques. L'analyse des risques et reconnu comme le moyen éprouvé, objectif et fiable de réaliser une évaluation des risques, par tout ou à chaque fois qu'ils sont rencontrés dont l'objectif est d'offrir, les moyens de l'évaluation du risque lié aux problèmes alimentaires et des mesures préventives peuvent être employées dans le but d'atténuer le risque.

–Identification des dangers : L'identification de tous les dangers potentiels associés au produit pendant toutes ces étapes, à partir de la matière 1ér jusqu'à la distribution, tousles dangers Biologique, physique et chimique.

Pour cela, nous nous sommes basés sur l'utilisation d'un outil de gestion de qualité à savoir le diagramme d'ISHIKAWA (**Figure 4**) afin de déterminer les causes de ces dangers et par la même occasion, les moyens de les éradiquer. Ce diagramme est structuré habituellement autour des 5M :

Matériel ou Machine, Main d'œuvre, Milieu, Méthode, Matière première.

Figure 4 : Diagramme d'ISHIKAWA ou de causes à effets.

Tableau 7: Identification et évaluation des dangers.

Etape	Danger	Nature de risque	Mesure de maîtrise			
Réception de	Biologique	-Germes totaux	Des analyses physico-chimiques et			
sucre		-Germe acidifiants	microbiologiques sont mise en œuvre à la			
		-Levures et Moisissures	réception avant d'assurer la conformité			
	Chimique	-Les résidus de SO2				
	Physique	-un corps étrangers				
Stockage de	Biologique	-Germe totaux	Contrôle microbiologique périodique			
sucre		-Levures et Moisissures				
	Physique	Un corps étrangers	Tamisage			

Dissolution et	Biologique	La prolifération des microorganismes	Contrôle microbiologique de sirop simple
pasteurisation			et vérification de la température de
du sirop simple			pasteurisation affichée
Filtration sur	Physique	Passage de charbon actif ou de célite	L'état de filtre et l'apparence de sirop
adjuvant		dans le sirop simple	simple sont contrôlés
Filtration sur			
filtre à poche			
Refroidissement	Biologique	La prolifération des levures et	Contrôle microbiologique de sirop simple
remoranssement	Brorogrque	moisissures	et vérification de température de
		moisissures	•
			refroidissement
	Chimique	Passage des traces d'eau glycolée.	Contrôle de l'étanchéité de l'échangeur à
			plaque
Stockage de	Biologique	La prolifération des microorganismes	Contrôle microbiologique avant chaque
sirop simple			utilisation et vérification du temps et de
			la température de stockage
Stockage des	Biologique	Levure et moisissure	Vérification de température de stockage
ingrédients	2101081440		to stockage

1-6) Détermination des points critiques (CCP)

Une fois les dangers analysées, il faut donc déterminer par la suit les étapes oùil y'a le danger afin de le maitriser (**Tableau 8**). Pour cette identification, nous nous sommes basés sur l'arbre de décisionde la démarche HACCP (**Annexe 1**).

 Tableau 8: La détermination des points critiques (CCP)

	Arbre de décision				
Etape	Q1	Q2	Q3	Q4	Conclusion
Réception de sucre	Oui	Non	Oui	Oui	Ce n'est pas un CCP
Alimentation du silo	Non				Ce n'est pas un CCP
Dissolution et pasteurisation du sirop simple	Oui	Oui			CCP1
Addition du charbon actif	Oui	Non	Non		Ce n'est pas un CCP
Filtration sur adjuvant	Oui	Non	Non		Ce n'est pas un CCP
Filtration sur filtre à poche	Oui	Oui			CCP2
Refroidissement	Oui	Non	Non		Ce n'est pas un CCP
Stockage de sirop simple	Oui	Non	Oui	Non	Ce n'est pas un CCP
Stockage des ingrédients	Oui	Non	Oui	Non	Ce n'est pas un CCP

Suivis, résultats et Interprétation

après les analyses des dangers qui sont effectuées au niveau de la siroperie et le passage de chaque étape au niveau de l'arbre de décision on a obtenu 2 CCP :

- -Le 1ér CCC au niveau de l'étape de la dissolution et pasteurisation de sirop simple au cour de cette étape il y a la destruction des germes pathogène donc c'est un CCP Biologique qu'il faut maîtriser.
- Le 2éme CCP au niveau de l'étape de la filtration sur filtre à poche afin
 d'éliminer des résidus ou les petites particules de charbons actifs ou de célite
 alors c'est un CCP Physique qu'il faut aussi maîtriser.

1-7) Etablissement du plan HACCP

Tableau 9 : les limites critiques, le système de surveillance et les actions correctives

Etape	Danger	Mesure de maîtrise	Limites critiques	Surveillance		
				Comment	Qui	Quand
Dissolution et pasteurisation de sirop simple	Biologique	-Etat biologique du SS -Temps de surveillance -Température de pasteurisation	-5 Levures et Moisissures/ 5ml -15 à 30min -80 à 85°C	Contrôle microbiologique du SS -Contrôle température affichée	Contrôle Qualité Siropeur	1fois/Semaine
Filtration sur filtre à poche	Physique	-Apparence de SS -L'état de filtre de filtre	-Absence des particules de charbon actif ou de célite dans le SS - Bon état de filtre	-Contrôle de l'apparence de SS -Contrôle de la différence pression entrée-sortie filtre à poche	CQ Responsable production	Après chaque préparation

pour chaque CCP

Etape	Action Corrective		Vérification	Jugement
Dissolution et pasteurisation	Comment	Qui	Dender	Carefarana (Nam
de sirop simple	-Isolement du lot du PF et SF en fonction des résultats microbiologie - Contrôle de tous les produits finis depuis la dernière analyse conforme	-PR	Par des analysesmicrobiologiques	Conforme/Non Conforme
Filtration sur filtre à poche	-Refiltration du SS en circuit fermé -Changement du filtre (pression entré-sortie différente de 0) - Etalonnage manomètre entré-sortie.	-Siropeur -Siropeur -Responsable Maintenance	Par contrôle de l'apparence de Sirop et le différent de pression entré-sortie.	Conforme/Non conforme

➤ La sanitation CIP

Il se fait lors du changement de produit pour éliminer les traces du produit précédent et assurer le goût du produit final. La sanitation est fait en différentes méthodes :

- Nettoyage-sanitation en 3 étapes utilisant l'eau chaude (3C) :
- Prélavage (5min).
- Lavage à l'eau chaude (15min).
- Rinçage à l'eau traitée (5min).
- Nettoyage en 3 étapes utilisant la soude (3S) :
- Prélavage (5min).
- Lavage à la soude (15min).
- Rinçage à l'eau traitée (5min).
- Nettoyage 5 étapes utilisant la soude (5E) :
- Prélavage (5min).
- Lavage à la soude (15min).
- Rinçage à l'eau fraiche (traitée) (2min).
- Lavage à l'eau chaude (15min).
- Rinçage à l'eau traitée fraiche (5min)

CONCLUSION

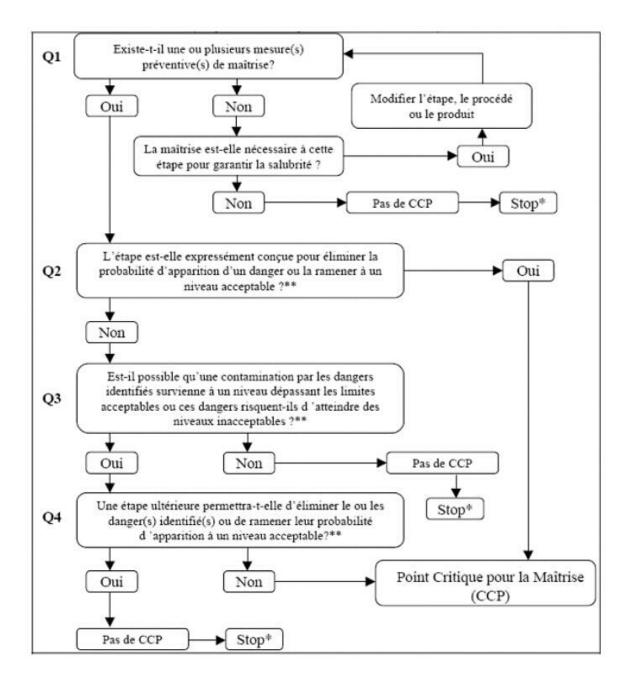
La sécurité alimentaire est la préoccupation première et de la plus haute importance dans le monde afin de répondre aux exigences du consommateur qui ne cessent d'augmenter.

Il est devenu primordial à toute entreprise agroalimentaire, ayant comme objectif de conquérir le marché et de fidéliser le consommateur à ces produits ; d'acquérir des outils de management de la qualité.

L'analyse des risques liés à la sécurité sanitaire des aliments est une discipline nouvelle, et les méthodes nécessaires pour évaluer et gérer ces risques sont encore en cours d'élaboration. Parmi ces dernières l'approche HACCP qui est un système préventif de maitrise qui vise donc à garantir la sécurité des aliments.

La CBGN est une grande structure qui donne une grande importance à la qualité de ses produits et ceci sous forme d'un contrôle de qualité continu qui commence de la matière première, la chaîne de production jusqu'au contrôle de qualité du produit fini.

En effet, pendant le déroulement de mon stage, et sous le thème de la vérification de la démarche HACCP au niveau siroperie, 2CCP ont été détecté, le premier au niveau de la pasteurisation, le deuxième au niveau du filtre à poche. Une analyse de danger et une vérification nous a menés vers un résultat conforme.


Enfin, toutes les entreprises agroalimentaires sont sensées d'adopter les principes de ce système afin d'offrir des produits sains et de qualité, et garantir ainsi la sécurité et la satisfaction des consommateurs.

BIBLIOGRAPHIE

- [1]TerfayaN (2004). Démarche qualité dans l'entrepris e et analyse des risques. Ed. Homa. Alger. 182PP.
- [2] Norme internationaleSystème de management de la sécurité des denrées alimentaires-Exigences pour tout organisme appartenant à la chaîne alimentaire.iso 22000, Première édition 2005-09-01.
- [3] Bolnot F.H et Carlier V. (2000) Sécurité des aliments (1) : du risque à la crise. [4]Bariller.J.(1998). Sécurité alimentaire et HACCP. In : Microbiologie alimentaire, Technique de laboratoire. Ed. Tec et Doc. Lavoisier, Paris, pp37-52.
- [5]FAO/OMS. (1995). Application de l'analyse des risques dans le domaine des Normes alimentaires. Rapport de la consultation mixte d'expert FAO/OMS, Genève, Suisse, 13 au 17 mars 1995-WHO/FNU/FOS/95.3.
- [6]Bourgois C.M, Mescle J.F et Zucca J.J(1996). Microbiologie alimentaire. Aspect Microbiologique de la sécurité et de la qualité des aliments. Tome 1. Tec. Doc. Lavoisier. Paris : 11-406.
- [7] Schlundt J. (2002). L'évaluation du risque comme outil de gestion de risque : le cas des contaminants Microbiens. E.,Boutrif, P., Fabre, M.,Pnieire,(éditeurs scientifiques), 2002. Gestion de la sécurité des aliments dans les pays en développement. Actes de l'atelier international, CIRAD6. FAO Cédérom du CIRAD, Montpellier, France.

LES ANNEXES

Annexe 1 : Arbre de décision

