

UNIVERSITE SIDI MOHAMMED BEN ABDELLAH FACULTE DES SCIENCES ET TECHNIQUES FES DEPARTEMENT DE GENIE ELECTRIQUE

LICENCE SCIENCES ET TECHNIQUES Génie Electrique

RAPPORT DE FIN D'ETUDES

Intitulé:

Etude et conception de l'installation électrique du batiment bloc 4 de l'université euro-méditerranéenne

Réalisé Par:

CHIHAB AYOUB

Encadré par :

Pr ERRAHIMI Fatima (FST FES)

Mr OUMASSOUD Abdelmalek (SORALEC)

Mr LOUZIMI Hassan (SORALEC)

Soutenu le 08 Juin 2018 devant le jury

Pr Errahimi (FST FES)

Pr El Amrani (FST FES)

Pr Essbai (FST FES)

Avant-propos

Ce mémoire est issu de stage de fin d'étude que j'ai réalisé dans le cadre de l'obtention du Licence en génie électrique dont les enseignements sont dispensés par la faculté des sciences et technique de Fès.

Au cours de ce stage que j'ai effectué au siège de l'entreprise régionale électrique (SORALEC) entre le mois d'AVRIL et JUIN 2018, j'ai eu pour mission l'étude de l'installation électrique du bloc4 de l'université Euro-méditerranéenne de Fès.

Dans cette étude j'ai appris des logiciels utilisés par les entreprises d'électricité et les bureaux d'études tels que : CANECO BT, DIALUX, AutoCAD.

En parallèle de ce travail j'ai effectué avec des visites de chantier ainsi que des réunions avec les chefs de chantier de projet UEMF. On a fait aussi le suivi de projet au palais justice de Fès. J'ai assisté aux réunions chaque mardi avec le maitre d'ouvrage, le maître d'ouvrage délégué et son équipe, le bureau de contrôle QUALICONSULT QUACOT., le bureau d'études INGEPOLY, aussi avec les autres entreprises : l'entreprise de construction TRACOM et l'entreprise de Climatisation ZAID.

Ces réunions m'ont permis de découvrir des nombreux méthodes et techniques concernant l'environnement professionnel.

Ce mémoire est le résultat d'un stage que je qualifierais à la fois de formation et d'enrichissent à titre personnel.

Dédicaces

A ma Chère Mère RADIA

A mon Père AZIZ

Dont le mérite, les sacrifices et les qualités humaines m'ont permis de vivre ce jour

A mon Frère et mes sœurs

A mes Amis

À tous les étudiants de la promotion 2017/2018

Option : génie électrique

A tous ceux qui, par un mot, m'ont donné la force de continuer

Remerciements

Je remercie dieu le tout puissant de m'avoir donné la santé et la volonté d'entamer et de terminer ce mémoire.

Je tiens à exprimer mes sincères remerciements à madame ERRAHIMI FATIMA d'avoir accepté de m'encadrer et de m'orienter durant l'élaboration de ce modeste travail.

Je remercie aussi mon encadrent professionnel monsieur LOUZIMI HASSAN, pour sa patience, et surtout pour sa confiance, ses remarques et ses conseils, sa disponibilité et sa bienveillance.

Je voudrais également remercier les membres du jury pour avoir accepté d'évaluer ce travail et pour toutes leurs remarques et critiques, ainsi que le personnel et les enseignants de la faculté de sciences et techniques de Fès.

Mes profonds remerciements vont également à monsieur MANOUT Abdelhadi et monsieur OUMASSOUD Abdelmalek et toutes les personnes qui m'ont aidé et soutenue de près ou de loin principalement à tous l'effectif de l'entreprise SORALEC.

Sommaire

А١	vant-propos	
Dé	édicaces	3
Re	emerciements	4
So	ommaire	5
Lis	iste des tableaux	8
Lis	iste des figures	
At	bréviations	10
Int	troduction Générale	11
	hapitre I: Présentation du projet et de l'organisme d'accueil	
I.	Présentation de l'organisme d'accueil	
	1. Organigramme SORALEC	
	2. Organigramme de chantier	
	3. Fiche technique de l'organisme d'accueil	
	4. Domaine d'activité	14
II.	Présentation de L'UEMF	14
	1. Infrastructures	14
	2. Les intervenants	15
III.	. Présentation du projet	15
	1. Cahier de charge	15
	2. Objectif de mon travail	16
IV.		
C		
CI	hapitre II: Méthodologie de conception d'une installation électrique	
I.	hapitre II : Méthodologie de conception d'une installation électrique Introduction	17
	Introduction	
I.	Introduction Principales phases de conception	17
I. II. III.	Introduction	17 17
I. II.	Introduction Principales phases de conception Méthodologie de dimensionnement d'une installation Schéma de liaison à la terre	17 17 28
I. II. III.	Introduction Principales phases de conception Méthodologie de dimensionnement d'une installation Schéma de liaison à la terre 1. Régimes de neutre	17 17 28 18
I. II. III.	Introduction Principales phases de conception Méthodologie de dimensionnement d'une installation Schéma de liaison à la terre 1. Régimes de neutre 2. Codification de la norme IEC 60364	17 28 18
I. II. III.	Introduction. Principales phases de conception. Méthodologie de dimensionnement d'une installation. Schéma de liaison à la terre. 1. Régimes de neutre. 2. Codification de la norme IEC 60364. 3. Schéma TT.	17281818
I. II. III.	Introduction. Principales phases de conception. Méthodologie de dimensionnement d'une installation. Schéma de liaison à la terre. Régimes de neutre. Codification de la norme IEC 60364. Schéma TT. Schéma TN.	1728181819
I. II. IV.	Introduction. Principales phases de conception. Méthodologie de dimensionnement d'une installation. Schéma de liaison à la terre. 1. Régimes de neutre. 2. Codification de la norme IEC 60364. 3. Schéma TT. 4. Schéma TN. 5. Schéma IT.	
I. II. III.	Introduction. Principales phases de conception. Méthodologie de dimensionnement d'une installation. Schéma de liaison à la terre. Régimes de neutre. Codification de la norme IEC 60364. Schéma TT. Schéma TN. Schéma IT. Bilan de puissance.	
I. II. IV.	Introduction. Principales phases de conception. Méthodologie de dimensionnement d'une installation. Schéma de liaison à la terre. Régimes de neutre. Codification de la norme IEC 60364. Schéma TT. Schéma TN. Schéma IT. Bilan de puissance. Puissance souscrite.	
I. II. IV.	Introduction. Principales phases de conception. Méthodologie de dimensionnement d'une installation. Schéma de liaison à la terre. Régimes de neutre. Codification de la norme IEC 60364. Schéma TT. Schéma TN. Schéma IT. Bilan de puissance. Puissance souscrite. Puissance installée.	
I. II. IV.	Introduction. Principales phases de conception. Méthodologie de dimensionnement d'une installation. Schéma de liaison à la terre. 1. Régimes de neutre. 2. Codification de la norme IEC 60364. 3. Schéma TT. 4. Schéma TN. 5. Schéma IT. Bilan de puissance. 1. Puissance souscrite. 2. Puissance installée. 3. Puissance absorbée.	
I. II. III. IV.	Introduction. Principales phases de conception. Méthodologie de dimensionnement d'une installation. Schéma de liaison à la terre. 1. Régimes de neutre. 2. Codification de la norme IEC 60364. 3. Schéma TT. 4. Schéma TN. 5. Schéma IT. Bilan de puissance. 1. Puissance souscrite. 2. Puissance installée. 3. Puissance absorbée. 4. Puissance d'utilisation.	
I. II. IV.	Introduction. Principales phases de conception. Méthodologie de dimensionnement d'une installation. Schéma de liaison à la terre. 1. Régimes de neutre. 2. Codification de la norme IEC 60364. 3. Schéma TT. 4. Schéma TN. 5. Schéma IT. Bilan de puissance. 1. Puissance souscrite. 2. Puissance installée. 3. Puissance absorbée. 4. Puissance d'utilisation. I. Compensation de l'énergie réactive.	
I. II. III. IV.	Introduction. Principales phases de conception. Méthodologie de dimensionnement d'une installation. Schéma de liaison à la terre. Régimes de neutre. Codification de la norme IEC 60364. Schéma TT. Schéma TN. Schéma IT. Bilan de puissance. Puissance souscrite. Puissance installée. Puissance absorbée. Puissance d'utilisation. Compensation de l'énergie réactive.	
I. II. III. IV.	Introduction. Principales phases de conception. Méthodologie de dimensionnement d'une installation. Schéma de liaison à la terre. Régimes de neutre. Codification de la norme IEC 60364. Schéma TT. Schéma TN. Schéma IT. Bilan de puissance. Puissance souscrite. Puissance installée. Puissance absorbée. Puissance d'utilisation. Compensation de l'énergie réactive. Matériel de compensation de l'énergie réactive. Choix de la localisation.	
I. III. IV. V.	Introduction Principales phases de conception. Méthodologie de dimensionnement d'une installation. Schéma de liaison à la terre. 1. Régimes de neutre. 2. Codification de la norme IEC 60364. 3. Schéma TT. 4. Schéma TN. 5. Schéma IT. Bilan de puissance. 1. Puissance souscrite. 2. Puissance installée. 3. Puissance absorbée. 4. Puissance d'utilisation. I. Compensation de l'énergie réactive. 1. Matériel de compensation de l'énergie réactive. 2. Choix de la localisation. 3. Démarche de choix d'une batterie de condensateurs.	
I. II. III. IV.	Introduction Principales phases de conception. Méthodologie de dimensionnement d'une installation. Schéma de liaison à la terre. Régimes de neutre. Codification de la norme IEC 60364. Schéma TT. Schéma TN. Schéma IT. Bilan de puissance. Puissance souscrite. Puissance installée. Puissance absorbée. Puissance d'utilisation. Compensation de l'énergie réactive. Matériel de compensation de l'énergie réactive. Matériel de compensation. Choix de la localisation. Démarche de choix d'une batterie de condensateurs. Dimensionnement des sections des câbles.	
I. III. IV. V.	Introduction Principales phases de conception. Méthodologie de dimensionnement d'une installation. Schéma de liaison à la terre. 1. Régimes de neutre. 2. Codification de la norme IEC 60364. 3. Schéma TT. 4. Schéma TN. 5. Schéma IT. Bilan de puissance. 1. Puissance souscrite. 2. Puissance installée. 3. Puissance absorbée. 4. Puissance d'utilisation. I. Compensation de l'énergie réactive. 1. Matériel de compensation de l'énergie réactive. 2. Choix de la localisation. 3. Démarche de choix d'une batterie de condensateurs.	

	3.	Section des conducteurs de neutre	26
	4.	Section des conducteurs de protection	
	5.	Section des conducteurs PEN.	
	6.	Détermination du courant maximal d'emploi Ib et du courant assigné In	
	7.	Détermination d'intensité fictive I'z en fonction des influences extérieurs	
VIII		Calcul des chutes de tension.	
IX.	-	Calcul du courant de court-circuit.	
Χ.		Choix des appareils de protection	
	1.	11	
		Etude de la sélectivité entre les disjoncteurs	
XI.		Conclusion	
	_	tre III : Etude de l'installation électrique du bloc 4 de l'UEMF	22
I.		Introduction	
II.		Schéma unifilaire de l'installation et schéma de liaison à la terre	
		Présentation du logiciel AutoCAD	
	2.	Schéma unifilaire de l'installation sur AutoCAD	
	3.	Choix du régime du neutre pour le cas du projet	
III.		Bilan se puissance de projet	
	_	Puissance ondulée	
	2.	Puissance secourue	
	3.	Puissance normale	
IV.		Compensation de l'énergie réactive	
		Calcul manuel	
		Calcul avec le logiciel VarSetpro	
V.		Dimensionnement des sections des câbles	
		Détermination des câbles utilisés dans ce projet	
	2.	z communication was constituted and an arrangement and arrangement arrangement and arrangement arrangement arrangement are arrangement arr	
	3.	Détermination d'intensité fictive I'z en fonction des influences extérieurs	
VI		Résultats des calculs théoriques des section des câbles	
VI		Calcul de la chute de tension	
VI		Calcul du courant de court-circuit	
IX	•	Choix des appareils de protection	
	1.	Résultat du choix des appareil de protection	
	2.		
X.		Conclusion	43
~*			
	_	itre IV: Dimensionnement de l'installation avec le logiciel CANECO BT	4.4
I.		Introduction	
II.		Présentation du logiciel Caneco BT	
		Les fonctionnalités	
***		Présentation de l'interface Caneco BT	
III		Procédure de traitement à l'aide du logiciel Caneco BT	45
IV	•	Détermination des sections des câbles et dimensionnement des protections par	1 -
		Caneco BT	
V.		Résultats de dimensionnement de l'installation sur Caneco BT	
VI	•	Comparaison des résultats théoriques et obtenues par Caneco BT	49

VII. Conclusion.	49
Chapitre V : Calcul d'éclairement avec le logiciel DIALUX	
I. Introduction	50
II. L'éclairage	
III. Présentation du logiciel DIALUX	
IV. Procédure d'utilisation du logiciel DIALUX	
1. Création du projet	
2. Les dimensions de la pièce	
3. Facteur de réflexion	
4. Insertion du luminaire	54
5. Insertion des luminaires dans la pièce	55
6. Insertion de la valeur de lux	56
7. Lancer le calcul	56
V. Conclusion	57
Conclusion générale	58
Bibliographie	
Annexe1: section des conducteurs	
Annexe2 : calcul de la chute de tension	62
Annexe3 : calcul de courant de court-circuit	64
Annexe4 : fichier de sections de câbles donnée par Schneider Electric	67
Annexe5 : fichier des appareils de protection	68
Annexe6 : choix des appareils de protection	74

Liste des tableaux

Chapitre II:

Tableau II.1 : facteur de simultanéité pour armoire de distribution

Tableau II.2 : facteur de simultanéité en fonction d'utilisation

Tableau II.3: type de batterie de compensation

Tableau II.4: section des conducteurs de protection

Tableau II.5 : calibre des disjoncteurs normalisé

Tableau II.6 : lettre de sélection selon mode de pose

Tableau II.7 : facteur K1 selon le mode de pose

Tableau II.8: facteur K2 selon le nombre de conducteur

Tableau II.9: facteur K3

Tableau II.10 : formules de calcul de la chute de tension

Tableau II.11: formules de calcul du courant de court-circuit

Chapitre III:

Tableau III.1 : les types de luminaires utilisés

Tableau III.2 : caractéristiques de prise de courant

Tableau III.3 : bilan de puissance tableau N1 rez de chaussé

Tableau III.4 : bilan de puissance ondulée

Tableau III.5 : bilan de puissance secourue

Tableau III.6: bilan de puissance normale

Tableau III.7 : calcul de la batterie de condensateur

Tableau III.8 : tableau de vérification de sélectivité

Chapitre IV:

Tableau IV.1: tableau de comparaison de calcul manuel et avec logiciel CANECO

Chapitre V:

Tableau V.1 : éclairement moyen Tableau V.2 : degré de réflexion

Tableau V.3 : nombre de luminaire utilisé dans le premier étage

Liste des figures

Chapitre I:

Figure I.1: organigramme de la société SORALEC

Figure I.2 : organigramme de chantier pour le projet UEMF

Figure I.3: fiche technique de la société SORALEC

Figure I.4 : architecture de l'UEMF de Fès

Figure I.5: plan de situation UEMF

Figure I.6: intervenants dans le projet

Chapitre II:

Figure II.1 : schéma de liaison à la terre TT

Figure II.2 : schéma de liaison à la terre TN-C

Figure II.3 : schéma de liaison à la terre TN-S

Figure II.4 : schéma de liaison à la terre TN-C-S

Figure II.5 : schéma de liaison à la terre IT

Figure II.6 : triangle de l'énergie réactive

Figure II.7 : schéma de compensation globale

Figure II.8 : schéma de compensation partielle

Figure II.9 : schéma de compensation individuelle

Figure II.10 : sélectivité de disjoncteur

Figure II.11 : courbe de sélectivité ampérométrique

Figure II.12 : courbe de sélectivité chronométrique

Figure II.13 : courbe de sélectivité logique

Chapitre III:

Figure III.1: interface AutoCAD

Figure III.2: schéma unifilaire bloc 4

Figure III.3 calcul de la batterie de condensateur sur VarSetpro

Chapitre IV:

Figure IV.1: barre d'outils CANECO BT

Figure IV.2: interface CANECO BT

Figure IV.3: insertion d'une source de tension

Figure IV.4 : résultats de calcul de la source

Figure IV.5: insertion d'un circuit

Figure IV.6 : résultat de calcul de circuit

Figure IV.7 : schéma de l'installation

Chapitre V:

Figure V.1: interface DIALUX

Figure V.2: création d'un nouveau projet

Figure V.3: création d'une pièce

Figure V.4 : caractéristique du matériau

Figure V.5 : catalogue DIALUX

Figure V.6 : choix du luminaire

Figure V.7: insertion du luminaire

Figure V.8: insertion de la valeur du flux

Figure V.9: disposition des luminaires en 3D

Figure V.10 : résultat de calcul

Abréviations

UEMF: Université euro-méditerranéenne de Fès

TGBT: tableau général basse tension

TGBT N/S: tableau général basse tension Normale/secoure

TGBT O: tableau général basse tension ondulé

Pa: puissance absorbée

Pn: puissance nominale

PVC: pouvoir de coupure

Icc: courant de court-circuit

RDC: rez de chaussé

Sph: section de conducteur de phase

Spe : section de conducteur de protection

PE : conducteur de protection

PEN: conducteur de protection et le Neutre

PAC: performance action climatique

DAO: dessin assisté par ordinateur

MT/BT: moyen Tension/basse Tension

Gh: puissance des générateurs d'harmoniques

PC : prise de courant

EC : circuit électrique

TE: tableau électrique

AS : caisson de désenfumage

GTC: Gestion Technique Centralisé

Introduction générale

L'UEMF est une Université à caractère régional codéveloppée avec plusieurs partenaires universitaires européens. Les dispositions de ce projet s'articulent essentiellement autour de la création, sous la présidence d'honneur du Souverain, « d'un établissement d'enseignement supérieur et de recherche scientifique et technique constituant une personne morale(un groupement ayant une existence juridique) de droit public dénommée Université euroméditerranéenne, jouissant de l'indépendance administrative, financière, académique, pédagogique, scientifique et culturelle ».

L'entreprise SORALEC intervient dans ce projet, elle a pour mission la conception de l'installation électrique de l'UEMF. C'est dans ce cadre que ce situe mon projet de fin d'étude qui consiste à l'étude technique et la conception de l'installation électrique de bloc 4 de l'UEMF.

Mon rapport est constitué de cinq chapitres, il est présenté comme suit :

Le premier chapitre comporte la présentation du projet de réalisation de l'université euroméditerranéenne et de l'organisme d'accueil.

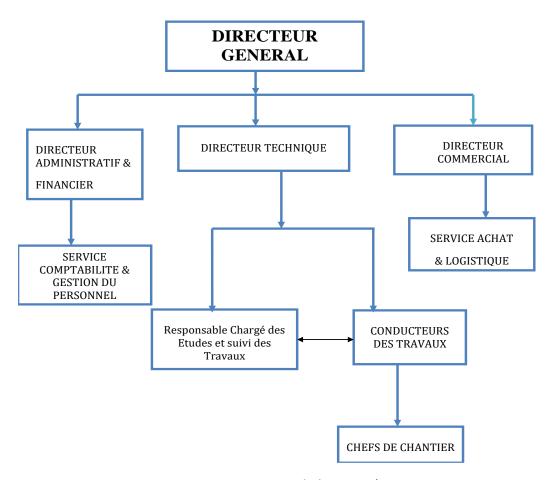
Le deuxième chapitre décrit la méthodologie de conception d'une installation électrique, dans ce chapitre j'ai traité les différentes étapes à suivre pour réaliser l'étude.

Dans le troisième chapitre j'ai réalisé l'étude de l'installation électrique du bloc 4 de l'UEMF. Le quatrième chapitre est dédié au dimensionnement de l'installation avec le logiciel CANECO BT et la comparaison des résultats théoriques avec les résultats fournit par le logiciel

Enfin, le cinquième chapitre est réservé à l'étude d'éclairage intérieur du bloc 4, en particulier la détermination du niveau d'éclairement et les choix des luminaires.

Chapitre I:

Présentation du projet et de l'organisme d'accueil


I. Introduction

Dans ce chapitre nous allons présenter brièvement la société SORALEC qui m'a accueilli pendant les deux mois de stage de projet de fin d'étude. Ensuite, nous allons aborder le contexte général de projet, le cahier de charge et l'objectif de mon travail.

II. Présentation de l'organisme d'accueil

SORALEC société d'électricité générale est une entreprise d'installation des équipements électriques Moyenne & Basse Tension. Crée en 1975 par monsieur CHARAI Mustapha et monsieur CHARAI CHAKIB, son siège social est basé à Fès-Maroc.

1. Organigramme SORALEC

Figurel.1 : organigramme de la societé SORALEC

2. Organigramme de chantier

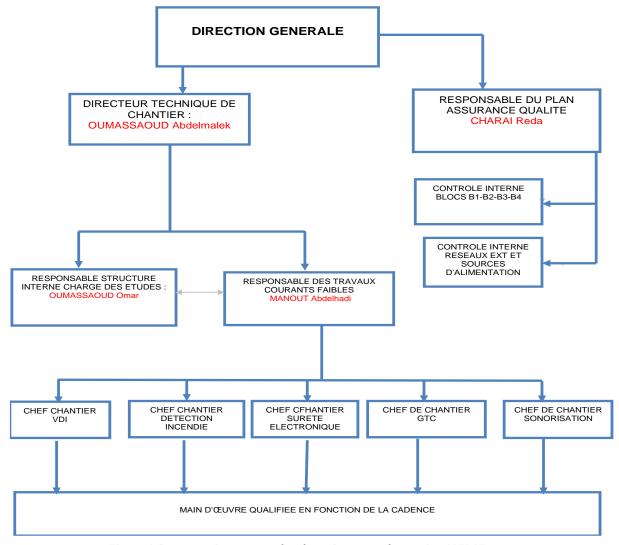


Figure I.2: organigramme de chantier pour le projet UEMF

3. Fiche technique de l'organisme d'accueil

Nom ou Raison sociale	SORALEC : société régionale électrique				
Adresse du siège social	5, Rue Ghassan Kanafani Espace Jardin Lalla Meryem				
	Fès				
Date de Création	1975				
Forme juridique	Société à responsabilité limité				
Activité	Travaux courant fort-courant faible				
Capital social	2.000.000,00 Dhs				
Numéro de téléphone	05 05 94 03 58				
Adresse E-mail	Soralec_sarl@yahoo.fr				

Figure 1.3 : organigramme de la societé SORALEC

4. Domaine d'activité

SORALEC est une entreprise chargée de travaux de courants forts, qu'ils s'agissent de la modernisation d'infrastructures existantes ou de la création de nouveaux équipements (éclairage public, installation des équipements électriques et d'automatisme ...), et de courants faibles, (traitement acoustique et audio-visuel, précâblage et réseau informatique, Gestion technique centralisé...).

III. Présentation de l'UEMF

Créée en novembre 2012 et labélisée par l'Union pour la Méditerranée (UPM), l'UEMF est une Université à caractère régional dont la mission est la promotion d'échanges, de dialogue interculturel et de partenariats académiques et culturels dans la région Euro-Méditerranéenne ainsi que la formation et la recherche de haut niveau.

1. Infrastructures

L'UEMF est composée de :

- 105 salles mutualisées d'enseignement général et 7 amphithéâtres
- 4 000 m² de salle de travaux pratique du pôle génie
- 18 000 m² de laboratoires de recherche
- Learning center, avec cafétéria, centre de conférence, bibliothèque universitaire
- Services avec un restaurant Universitaire de 3000 m2, un complexe sportif, ainsi qu'un foyer étudiant et une faculté club
- Résidence universitaire pour 2 000 étudiants ainsi que 100 chercheurs.

Figurel.4 : architecture de L'UEMF de Fès Projet de fin d'étude 2017/2018

Figure I.5: plan de situation UEMF

2. Les intervenants

- Le Maitre d'ouvrage : l'université Euro-méditerranéenne de Fès.
- Le Maitre d'ouvrage délégué : ministère de l'équipement, du transport et de la logistique direction des équipements publics.
- Groupement Architectes : Groupe 3 Architectes et RIECHEN ET ROBERT & ASSOCIES.
- Bureau d'études techniques : NOVEC
- Bureau de contrôle : SOCOTEC

Figure 1.6: intervenants dans le projet

IV. Présentation de projet

L'Université Euro-Méditerranéenne de Fès (UEMF) a fait appel à la société SORALEC pour l'installation électrique complète du Campus de l'Université.

1. Cahier de charge

En premier phase, SORALEC a pour mission la réalisation des installations électriques des bâtiments d'enseignements et de recherches (bloc B1, bloc B2, bloc B3 et bloc B4) de l'UEMF, les travaux à exécuter sont :

- De courants faibles :
 - Téléphone, précâblage multimédia, sécurité incendie.
 - Détection d'une intrusion, contrôle d'accès.
 - Gestion technique centralisée.
 - Télédistribution, vidéo surveillance, système de communication interne.
 - Sonorisation générale.

• De courants forts :

- Réseau HTA in site et sources d'alimentation Electricité-lustrerie.
- Alimentation en énergie électrique.
- Travaux d'installations électriques pour usage interne.

2. Objectif de mon travail

Mon travail vise à effectuer l'étude technique et la conception de l'installation électrique du bloc N°4 du Campus de l'UEMF. Ma tâche consiste en :

- L'élaboration du bilan de puissance
- Réalisation du schéma unifilaire de l'installation sous AutoCAD
- Dimensionnement des sections des câbles
- Compensation de l'énergie électrique
- Choix des appareils de protection
- Dimensionnement de l'installation avec logiciel CANECO BT
- Calcul d'éclairement avec le logiciel DIALUX

V. Conclusion

Après la présentation de l'organisme d'accueil et la description de contexte général de projet et de son objectif, nous allons développer dans le chapitre suivant la méthodologie de conception d'une installation électrique.

Chapitre II:

Méthodologie de conception d'une installation électrique

I. Introduction

L'installation électrique est une installation de câblage qui vise la transmission d'un point à un autre de l'énergie provenant d'un distributeur d'électricité ou autre source d'alimentation, pour l'alimentation de tout appareillage électrique, y compris la connexion du câblage à cet appareillage. La conception et la mise en œuvre des installations dans un bâtiment nécessitent d'être bien étudiées, afin d'être conformes aux normes et réglementations en vigueur. Elles doivent notamment respecter des règles de performance et de sécurité. La rentabilité économique de l'installation est aussi prise en compte.

II. Principales phases de conception [1]

Dans l'étude d'une installation électrique nous pouvons distinguer cinq phases principales :

- Implantation & câblage de l'installation : il comprend toutes les opérations d'étude sur plan d'architectes 2D ou 3D. Cette phase réalise l'implantation des matériels électriques et leur câblage, courants faibles et courants forts.
- Calculs : il comprend le bilan de puissance, le calcul des circuits de puissance, c'est à dire celui des câbles et des dispositifs de protection et de commande, ainsi que les études de sélectivité pour la continuité d'alimentation électrique. Les calculs sont préconisés par la réglementation pour faciliter la vérification par les organismes de contrôle.
- Schématique électrique : il comprend la réalisation des schémas électriques fonctionnels détaillés, unifilaires et multifilaires, qui permet le câblage de l'armoire.
- Conception de l'armoire : qui est traditionnellement celle du tableautier, mais qui peut être celle des installateurs pour les tableaux divisionnaires.
- Chiffrage : il détermine les coûts de l'installation, en fourniture et en mise en œuvre.

III. Méthodologie de dimensionnement d'une installation

Une bonne étude d'installation électrique nécessite de faire une évaluation des paramètres électriques afin de choisir les équipements et appareillages. Le dimensionnement d'une installation électrique implique le choix optimal des éléments de l'appareillage, les câbles et les récepteurs. Trois fonctions de base à assurer pour l'appareillage électrique :

- La fonction protection : La protection des biens, la protection des personnes contre les contacts indirects et la protection des machines contre l'échauffement.
- La fonction sectionnement : Le sectionnement d'un circuit implique son isolation du reste de l'installation, dans le but de la sécurité des personnes en cas de maintenance.

- La fonction commande : Permet de mettre en tension ou hors tension un circuit, on distingue essentiellement, la commande des machines par des contacteurs, la coupure d'arrêt d'urgence et la coupure pour entretien mécanique.
- Les câbles: ils sont considérés comme les piliers d'une installation électrique, en outre un surdimensionnement engendre des surcoûts dans la réalisation du projet, par contre un sous dimensionnement peut engendrer des échauffements et causer un dysfonctionnement de l'installation électrique, d'où la nécessité d'un dimensionnement optimal.

Le dimensionnement optimal des câbles doit tenir des conditions suivants :

- Le mode de pose et la nature des milieux traversés
- La température extrême du milieu ambiant
- La tension et la nature du courant
- L'intensité à transporter
- La nature de l'âme
- La longueur de la liaison
- La chute de tension admissible
- La valeur du courant de court-circuit et le temps de coupure sur défaut

IV. Schémas de Liaison à la Terre

Une installation électrique de qualité doit répondre aux attentes des utilisateurs en termes de sécurité et d'exploitation. Une attention Particulière doit être apportée au choix des Schémas de Liaison à la Terre (encore appelés régimes du neutre). De nombreux Schémas de Liaison à la Terre existent, mais tous n'ont pas la même efficacité selon le critère à privilégier : protection des équipements, disponibilité de l'installation électrique, respect des réglementations etc.

1. Régimes de neutre

Il existe, pour les réseaux BT, trois types de schémas de liaison à la terre, communément appelés régimes de neutre : Neutre à la terre TT, mise au neutre TN avec 2 variantes (TN-S Neutre et PE séparés, TN-C Neutre et PE confondus) et mise au Neutre isolé IT. Ils diffèrent par la mise à la terre ou non du point neutre de la source de tension et le mode de mise à la terre des masses.

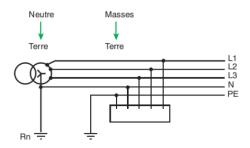
2. Codification de la norme IEC 60364

lère lettre: position du point neutre du transformateur ou de la source.

T : raccordement direct à la terre et I : isolé de la terre ou raccordé par une impédance

2ème lettre : mode de mise à la terre des masses électriques des récepteurs.

T : raccordement direct à la terre et N : raccordement au point neutre de la source.

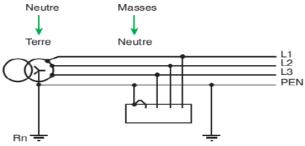


3ème lettre : situation respective du conducteur neutre et conducteur de protection

C : neutre et PE confondus et S : neutre et PE séparés

3. Schéma TT

Un point de l'alimentation est relié directement à la terre. Les masses de l'installation sont reliées à une prise de terre électriquement distincte de la prise de terre du neutre. Elles peuvent être confondues de fait sans incidence sur les conditions de protection.

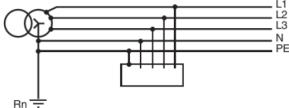


FigureII.1: schéma TT

4. Schémas TN

Un point de l'installation, en général le neutre, est relié directement à la terre. Les masses de l'installation sont reliées à ce point par le conducteur de protection. On distingue les schémas :

- Schéma TN-C: Le conducteur de protection et le conducteur neutre sont confondus en un seul conducteur appelé PEN (Protective Earth and Neutral). Ce schéma est interdit pour des sections inférieures à 10 mm² et pour des canalisations mobiles. Le schéma TN-C nécessite la création d'un système équipotentiel pour éviter la montée en potentiel des masses et des éléments conducteurs. Par conséquent, Il est nécessaire de relier le conducteur PEN à de nombreuses prises de terre réparties dans l'installation.



FigureII.2: schéma TN-C

Schéma TN-S: Le conducteur de protection et le conducteur neutre sont distincts. Les masses sont reliées au conducteur de protection (PE). Le schéma TN-S (5 fils) est obligatoire pour les circuits de section inférieure à 10 mm² en cuivre et 16 mm² en aluminium pour les canalisations mobiles.

FigureII.3: schéma TN-S

- *Schéma TN-C-S*: Les schémas TN-C et TN-S peuvent être utilisés dans une même installation. En schéma TNC/S, le schéma TN-C (4 fils) ne doit jamais être utilisé en aval du schéma TN-S (5 fils).

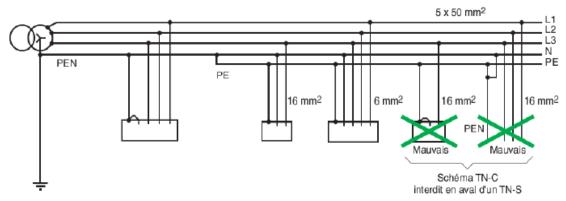
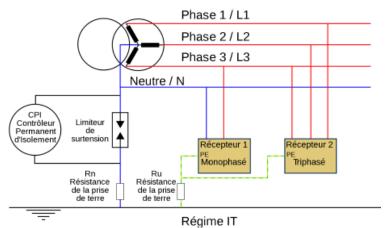



Figure II.4: schéma TN-C-S

5. Schéma IT (neutre isolé/ impédant)

La caractéristique principale de ce schéma est que le point neutre du transformateur, en amont de l'installation, est complètement isolé de la terre. Le neutre du transformateur est :

Soit isolé de la terre (neutre isolé), soit relié à la terre par une impédance élevée (neutre impédant) ou bien toutes les masses de l'installation sont reliées à la terre.

FigureII.5 : schéma IT

V. Bilan de puissance

L'élaboration d'un bilan de puissance nécessite la connaissance de l'installation (schéma unifilaire) et les modes de fonctionnement des récepteurs. On distingue les types de puissances suivantes :

1. Puissance Souscrite

C'est une caractéristique du contrat de fourniture d'électricité. Il s'agit d'une indication de puissance maximale qui ne doit pas être franchie ou dont les dépassements seront facturés. Cette puissance est exprimée en kVA et non en kW.

2. Puissance installée

La puissance installée ou nominale (kW) est la somme des puissances nominales de tous les récepteurs de l'installation. L'indication de la puissance nominale (Pn) est marquée sur la plupart des appareils et équipements électriques. La puissance installée (kW) est la donnée significative pour le choix du dimensionnement d'un groupe électrogène ou de batteries.

3. Puissance absorbée

La puissance absorbée (apparente) Pa par une charge est en fonction de sa puissance nominale, du rendement η et du facteur de puissance $\cos(\varphi)$.

La puissance apparente consommée de la charge $P_a = \frac{P_n}{\eta.\cos\varphi}$

De cette valeur se déduit le courant pleine charge absorbé :

- Pour une charge monophasée connectée entre phase et neutre : $I_a = \frac{P_a}{V}$
- Pour une charge triphasée : $I_a = \frac{P_a}{\sqrt{3}*U}$

V = tension phase-neutre (volts) et U = tension phase-phase (volts)

4. Puissance d'utilisation

De fait que les récepteurs ne fonctionnent pas tous ni en même temps ni à pleine charges, des facteurs de simultanéité (Ks) et d'utilisation (Ku) permettant de pondérer la puissance apparente maximale réellement absorbée par chaque récepteur et groupes de récepteurs.

La puissance d'utilisation Pu (kVA) est la somme arithmétique de ces puissances apparentes pondérées. En effet c'est la donnée significative pour la souscription d'un contrat de fourniture en énergie électrique à partir d'un réseau publique BT ou MT.

a. Facteur d'utilisation maximale (Ku)

Le régime de fonctionnement normal d'un récepteur peut être tel que sa puissance utilisée soit inférieure à sa puissance nominale installée, d'où la notion de facteur d'utilisation. Dans une installation industrielle, ce facteur peut être estimé en moyenne à 0,75 pour les moteurs. Pour l'éclairage et le chauffage, il sera toujours égal à 1. Pour les prises de courant, tout dépend de leur destination.

b. Facteur de simultanéité (Ks)

Le tableau suivant indique des valeurs estimées de (Ks) pour un tableau de distribution alimentant un nombre de circuits pour lesquels il n'y a aucune information sur la manière dont la charge totale est répartie entre eux. Si l'armoire est composée principalement de circuits d'éclairage, il est prudent de majorer ces facteurs.

Nombre de circuits	Facteur de simultanéité (Ks)					
Ensemble entièrement testés						
2et 3	0,9					
4 et 5	0,8					
6 à 9	0,7					
10 et plus	0,6					
Ensemble partiellement testés						
Choisir dans tous les cas	1,0					

Tableau II.1 : facteur ede simultanéité pour armoire de distribution Le tableau suivant indique les valeurs du facteur (Ks) pouvant être utilisées sur des circuits alimentant des types de charges les plus courantes.

Utilisation	Facteur de simultanéités	
Eclairage		1
Chauffage et conditionnement d'aire	1	
Prise de courant	0,1+0,9/N	
	Le moteur le plus puissant	1
Ascenseur et monte-charge	Le moteur suivant	0,75
	Pour les autres	0,8

Tableau II. 2 : Facteur de simultanéité en fonction d'utilisation

VI. Compensation de l'énergie réactive

Toute machine électrique (moteur, transformateur, ...) alimentée en courant alternatif met en jeu deux formes d'énergie :

- L'énergie active qui correspond à la puissance active P mesurée en KW et se transforme intégralement en énergie mécanique (travail utile) et en chaleur (pertes).
- L'énergie réactive qui correspond à la puissance réactive Q mesurée en KVAR qui sert à magnétiser les tôles des appareils électriques (transformateurs, machines tournantes, ...).
 Le réseau de distribution fournit l'énergie apparente qui correspond à la puissance apparente S mesurée en KVA. Les trois puissances P, Q et S se représentent vectoriellement par un triangle des puissances.

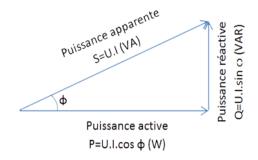


Figure II.6 : triangle puissance réactive Projet de fin d'étude 2017/2018

1. Matériel de compensation de l'énergie réactive [2]

L'utilisateur ne bénéficie que de l'apport énergétique de la partie active, la partie réactive ne peut être éliminée, mais doit être compensée par des dispositifs appropriés. La compensation peut se faire par deux familles de condensateur : Des condensateurs fixes, des équipements de régulation automatique, ou des batteries de condensateurs qui permettent un ajustement continu aux besoins de l'installation.

a. Condensations fixes

Ce type de compensation utilise les condensateurs fixes. Ces condensateurs sont d'une puissance unitaire constante et leur mise en œuvre peut être : Manuelle commandé par disjoncteur ou interrupteur, semi-automatique commandé par contacteur ou directe : asservie aux bornes d'un récepteur.

Ils s'utilisent aux bornes des récepteurs de type inductif, ou sur un jeu de barres où se trouvent de nombreux petits moteurs dont la compensation individuelle serait trop couteuse ou bien, dans le cas où la fluctuation de charge est faible

b. Batteries de condensateurs à régulation automatique

La compensation d'énergie réactive se fait le plus souvent par batterie de condensateurs à régulation automatique, ce type d'équipement permet l'adaptation automatique de la puissance réactive fournie par les batteries de condensateurs en fonction d'un $\cos(\phi)$ désiré et imposé en permanence. Il s'utilise dans les cas où la puissance réactive consommée ou la puissance active varient dans des proportions importantes, c'est-à-dire aux bornes des tableaux généraux BT où pour les gros départs.

2. Choix de la localisation

Les condensateurs peuvent être installés à différents niveaux de l'installation selon le besoin.

a. Compensation globale

Lorsque la charge est stable et continue, une compensation globale convient. La batterie est raccordée en tête d'installation BT (Figure II.7) et assure une compensation pour l'ensemble de l'installation. La batterie reste en service en permanence pendant le fonctionnement normal de l'installation.

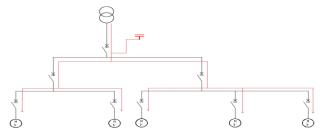


Figure II.7 : schéma de compensation globale

b. Compensation partielle

Une compensation partielle est conseillée lorsque l'installation est étendue et comporte des ateliers dont les régimes de charge sont différents, dans ce cas la batterie de condensateurs est connectée sur l'arrivée du tableau de distribution intermédiaire (Figure II.8) pour lequel la compensation doit être réalisée.

Figure II.8 : schéma de compensation partielle

c. Compensation individuelle

Une compensation individuelle est à envisager dès que la puissance du récepteur (en particulier d'un moteur) est significative par rapport à la puissance de l'installation, dans ce cas la batterie est connectée directement aux bornes de la charge inductive (Figure II.9).

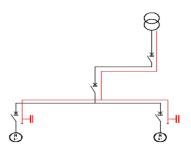


Figure II.9: schéma de compensation individuelle

3. Démarche de choix d'une batterie de condensateurs

a. 1ère étape : calcul des puissances

Pour calculer la puissance réactive nécessaire à partir des données électriques de l'installation il faut :

- Faire le bilan de puissance active P et réactive Qc de tous les récepteurs de l'installation.
- Tenir compte des facteurs d'utilisation et de simultanéité.
- Calculer la puissance totale de P et Qc , puis la $tg(\phi)$ $tg(\phi) = \frac{P}{Q}$

b. 2ème étape : choix du type de compensation

- *Compensation fixe*: On met en service l'ensemble de la batterie, dans un fonctionnement "tout ou rien". La mise en service peut être manuelle (par disjoncteur ou interrupteur), semi-

automatique (par contacteur). Ce type de compensation est utilisé lorsque la puissance réactive est faible (<15% de la puissance du transformateur) et la charge relativement stable.

- Compensation automatique: Dans ce cas la compensation se fait par des batteries de condensateurs à régulation automatique (si la puissance des condensateurs est supérieure à 15% de la puissance du transformateur), qui permettent l'adaptation immédiate de la compensation aux variations de la charge.

c. 3ème étape : détermination du type de batterie

Les batteries de condensateurs sont réparties en trois types adaptés au niveau de pollution harmonique de réseau. Le rapport $\frac{G_h}{S_n}$ permet de déterminer le type d'équipement associé.

$\frac{G_h}{S_n} \le 15$	Réseau standard	Installation avec condensateur de type standard
$15 \le \frac{G_h}{S_n} \le 25\%$	Réseau Pollué	Installation avec condensateur surdimensionnés
$25 \le \frac{G_h}{S_n} \le 60\%$	Réseau très pollué	Installation avec condensateur associes à des selfs de protection
$\frac{G_h}{S_n} \ge 60\%$	Réseau fortement Pollué	Filtres

Tableau II.3: Type de la batterie de compensation

VII. Dimensionnement des sections des câbles

Il est important de calculer correctement la section des câbles utilisés dans une installation électrique. En effet, une section faible va entraîner un échauffement dû à la résistance du câble ; ce qui peut créer un incendie et une perte de tension. Une section trop importante peut entraîner un problème de poids et de coût. Les câbles électriques sont considérés comme les piliers d'une installation électrique, d'où la nécessité d'un dimensionnement optimal.

1. Méthodologie [3]

En conformité avec les recommandations de la norme NF C 15-100, le choix des sections des câbles doit satisfaire plusieurs conditions importantes pour assurer la sûreté de l'installation. En effet, le dimensionnement d'un câble passe essentiellement par trois étapes :

Etape 1 : Connaissant la puissance d'utilisation, on détermine le courant d'emploi Ib et on en déduit le courant assigné In du dispositif de protection. Ensuite, on calcule le courant de court-circuit maximal Icc à l'origine du circuit et on en déduit le pouvoir de coupure Icu du dispositif de protection.

Etape 2 : Selon les conditions d'installation (mode de pose, température ambiante, ...), on détermine le facteur global de correction f. Puis, on choisit la section adéquate du conducteur en fonction de In et f.

Etape 3 : On vérifie la chute de tension maximale et la tenue des conducteurs à la contrainte thermique en cas de court-circuit. Pour les schémas TN et IT, on considère la longueur maximale relative à la protection des personnes contre les contacts indirects. La section du conducteur satisfaisant toutes ces conditions est alors retenue.

2. Section des conducteurs de phase

Quand tous les facteurs spécifiques de correction sont connus, on calcule le coefficient global K de correction qui est égal au produit de tous les facteurs spécifiques. On en déduit le courant fictif I'z admissible par la canalisation :

$$I'_z = \frac{I_z}{K}$$

La connaissance de I'z permet alors de se reporter aux tableaux de détermination des courants admissibles (Figure 1, Annexe) qui permet de déterminer la section nécessaire (en mm²). La lecture s'effectue dans la colonne qui correspond au type de conducteur et à la ligne de la méthode de référence. Pour trouver la section il suffit alors de choisir dans le tableau correspondant à la nature de l'âme, la valeur de courant admissible immédiatement supérieure à la valeur I'z.

3. Section des conducteurs neutre

La norme CEI 60364 article 524.2 et 524.3 définit les critères de choix de la section du conducteur neutre. Dans les circuits monophasés et dans les circuits triphasés dont les conducteurs de phase ont une section au plus égale à $16~\text{mm}^2$ en cuivre ou $25~\text{mm}^2$ en aluminium, le conducteur neutre doit avoir la même section que les conducteurs de phase. Alors que, dans les circuits triphasés de section supérieure à $16~\text{mm}^2$ en cuivre et $25~\text{mm}^2$ en aluminium, la section du neutre peut être réduite jusqu'à $S_{ph}/2$.

Toutefois cette réduction n'est pas autorisée si les charges ne sont pas pratiquement équilibrées, ou le taux de courants harmoniques de rang 3 est supérieur à 15% du fondamental. Si ce taux est supérieur à 33%, la section des conducteurs actifs des câbles multipolaires est choisie en majorant le courant Ib par un coefficient multiplicateur de 1,45. Pour les câbles unipolaires, seule la section du neutre est augmentée.

4. Section des conducteurs de protection

La section du conducteur de protection selon la norme C15-100 est (Tableau II.4) :

Section des conducteurs de phases	Section du conducteur de protection
S_{ph}	S_{PE}
$S_{ph} < 16mm^2$	S_{ph}
$16mm^2 < S_{ph} < 35mm^2$	16mm ²
$S_{ph} > 35mm^2$	$S_{ph}/2$

Tableau II.4 : section des conducteurs de protection Projet de fin d'étude 2017/2018

5. Section des conducteurs PEN

Dans le cas du schéma TNC le conducteur de protection assure également la fonction du neutre. Selon la norme NFC 15-100 Article 543.3.1 un conducteur PEN ne peut être utilisé que dans les installations fixes et il doit avoir une section au moins égale à 10mm² en cuivre ou 16mm² en aluminium. La section du PEN doit répondre aux conditions relatives au conducteur PE, et répondre aux conditions imposées pour la section du conducteur neutre.

6. Détermination du courant maximal d'emploi Ib et du courant assigné In Connaissant la puissance d'utilisation, on détermine le courant d'emploi Ib par la relation audessous et on en déduit le courant assigné In du dispositif de protection.

$$I_b = \frac{S}{U*\sqrt{3}}$$
 Avec, S la puissance apparente (VA) et U la tension nominale en (V). La valeur du courant assigné In est prise juste supérieure au courant d'emploi.

Le tableau suivant comporte les valeurs possibles du courant assigné In :

	1	2	3	4	5	6	10	16	20
Courant	25	32	40	50	63	70	80	100	125
assignés In (A)	160	200	250	320	400	500	630	800	1000
(21)	1250	1600	2000	2500	-	-	-	-	-

Tableau II.5 : calibre des disjoncteurs normalisée

7. Détermination d'intensité fictive I'z en fonction des influences extérieurs

Pour tenir compte des conditions dans lesquelles est installée la canalisation, des facteurs de correction sont appliqués. Ils dépendent du mode de pose, du type de câble mono ou multiconducteur, de la nature de l'isolant, de l'âme des conducteurs, du regroupement des circuits, et de la température ambiante.

a. Lettre de sélection

Le tableau de la figure suivante est utilisé pour déterminer la lettre de sélection qui dépend du conducteur (mono ou multiconducteurs) utilisé et de son mode de pose :

type d'éléments conducteurs	mode de pose	lettre de sélection
conducteurs et câbles multiconducteurs	 sous conduit, profilé ou goulotte, en apparent ou encastré sous vide de construction, faux plafond sous caniveau, moulures, plinthes, chambranles 	В
	 en apparent contre mur ou plafond sur chemin de câbles ou tablettes non perforées 	С
câbles multiconducteurs	 sur échelles, corbeaux, chemin de câbles perforé fixés en apparent, espacés de la paroi câbles suspendus 	E
câbles monoconducteurs	 sur échelles, corbeaux, chemin de câbles perforé fixés en apparent, espacés de la paroi câbles suspendus 	F

Tableau II.6 : lettre de sélection selon mode de pose

b. Facteur de correction K1

Le facteur de correction K1 prend en compte le mode de pose, (Tableau II.7).

lettre de sélection	cas d'installation	K1			
В	 câbles dans des produits encastrés directement dans des matériaux thermiquement isolants 	0,70			
	 conduits encastrés dans des matériaux thermiquement isolants 				
câbles multiconducteurs					
vides de construction et caniveaux					
С	pose sous plafond	0,95			
B, C, E, F	autres cas	1			

Tableau II.7: facteur K1 selon mode de pose

c. Facteur de correction K2

Le facteur de correction K2 prend en compte l'influence mutuelle des circuits placés côte à côte.

lettre de sélection	disposition des câbles jointifs	facteur de correction K2 nombre de circuits ou de câbles multiconducteurs											
		1	2	3	4	5	6	7	8	9	12	16	20
B, C, F	encastrés ou noyés dans les parois	1,00	0,80	0,70	0,65	0,60	0,55	0,55	0,50	0,50	0,45	0,40	0,40
С	simple couche sur les murs ou les planchers ou tablettes non perforées		0,85	0,79	0,75	0,73	0,72	0,72	0,71	0,70	Pas de facteur de réduction supplémentaire		on
	simple couche au plafond	1,00	0,85	0,76	0,72	0,69	0,67	0,66	0,65	0,64	pour	plus	de
E, F	simple couche sur des tablettes horizontales perforées ou sur tablettes verticales	1,00	0,88	0,82	0,77	0,75	0,73	0,73	0,72	0,72	9 câl	oles.	
	simple couche sur des échelles à câbles, corbeaux, etc.	1,00	0,88	0,82	0,80	0,80	0,79	0,79	0,78	0,78			

Tableau II.8: facteur K2 selon le nombre de conducteur

d. Facteur de correction K3

La température ambiante et la nature de l'isolant ont une influence directe sur le dimensionnement des conducteurs. La température à prendre en compte est celle de l'air autour des câbles (pose à l'air libre).

températures	isolation				
ambiantes (°C)	élastomère (caoutchouc)	polychlorure de vinyle (PVC)	polyéthylène réticulé (PR) butyle, éthylène, propylène (EPR)		
10	1,29	1,22	1,15		
15	1,22	1,17	1,12		
20	1,15	1,12	1,08		
25	1,07	1,06	1,04		
30	1,00	1,00	1,00		
35	0,93	0,94	0,96		
40	0,82	0,87	0,91		
45	0,71	0,79	0,87		
50	0,58	0,71	0,82		
55	-	0,61	0,76		
60	-	0,50	0,71		

Tableau II.9: facteur K3

e. Facteur de correction Kn

Ce facteur est appliqué pour deux cas :

- 15 % ≤ courant harmonique de rang 3 (TH3) < 33% : Le dimensionnement du circuit est réalisé en appliquant un facteur de correction supplémentaire de 0,84.
- Courant harmonique de rang 3 (TH3) \geq 33%: Le dimensionnement du circuit est réalisé en prenant en compte le courant de charge du neutre soit $I_{bneutre}$ égal à 1,45 I_b phase.

VIII. Calcul des chutes de tension

L'impédance d'un câble est faible mais non nulle; lorsqu'il est traversé par le courant de service, il y a chute de tension entre son origine et son extrémité. Or, le bon fonctionnement d'un récepteur (surtout un moteur) est conditionné par la valeur de la tension à ses bornes. Il est donc nécessaire de limiter les chutes de tension en ligne par un dimensionnement correct des câbles d'alimentation, (Tableau II.10).

Alimentation	Chute de tension			
	(V CA)	En %		
Monophasé : deux phases	$\Delta U = 2I_b L(R\cos\varphi + X\sin\varphi)$	$100 \Delta U/U_n$		
Monophasé : phases et neutre	$\Delta U = 2I_b L(R\cos\varphi + X\sin\varphi)$	$100 \Delta U/U_n$		
Triphasé : trois phases (avec ou sans neutre)	$\Delta U = \sqrt{3}I_b L(R\cos\varphi + X\sin\varphi)$	$100 \Delta U/U_n$		

Tableau II.10: formules de calcul de la chute de tension

Avec : **Ib** = courant d'emploi en ampères. **Un** = tension nominale entre phases : $Un=\sqrt{3}Vn$. **L** = longueur d'un conducteur en Km. **R** = résistance linéique d'un conducteur en Ω/km . Pour le cuivre R=22,5 $\Omega/km/S$ et pour l'aluminium R= 36 $\Omega/mm^2/km/S$. R est négligeable au-delà d'une section de 500mm². **X** = réactance linéique d'un conducteur en Ω/km . Il est négligeable pour les câbles de section <50mm².

IX. Calcul du courant de court-circuit [4]

Toute installation électrique doit être protégée contre les courts circuits et ceci, sauf exception, chaque fois qu'il y a une discontinuité électrique, ce qui correspond le plus généralement à un changement de section des conducteurs. Le tableau suivant montre l'approche qui conduit au calcul des différents courants de court-circuit et les paramètres qui en résultent pour le choix et le réglage des dispositifs de protection de l'installation.

Partie de l'installation	Résistance R	Réactance X	
Réseau amont	$\frac{R_a}{X_a} = 0.1$	$Z_a = \frac{{U_{20}}^2}{P_{sc}}$	
	R peut être négligeable par rapport à X	$X_a = 0.1Z_a$	
Transformateur	$Z_{tr} = \frac{P_{cu} \times 10^3}{3I_n^2}$ Ou $Z_{tr} = \frac{S_n \times 10^3}{U_{20}\sqrt{3}}$	$X_{tr} = \sqrt{Z_{tr}^2 - R_{tr}^2}$	
	Rtr peut être négligée devant XTR pour transformateur de puissance > 100 kVA	Avec: $Z_{tr} = \frac{U_{20}^2}{P_n} \times \frac{U_{sc}}{100}$	
Disjoncteur	Négligé en pratique		
Jeu de barres	Négligeable pour S > 200 mm ² : $R = \rho \frac{L}{S}$	$X_B = 0.15 \text{ m}\Omega/\text{m}$	
Canalisation	$R = \rho \frac{L}{S}$	Câbles : $Xc = 0.08 \text{ m}\Omega/\text{m}$	
Courant de court-circuit	$I_{sc} = \frac{U_{20}}{\sqrt{3}\sqrt{R_T^2 + X_T^2}}$		

Tableau II.11: formules de calcul du courant de court-circuit

Avec: U20: Tension entre phases à vide au secondaire du transformateur MT/BT (en volts).

Pcc: puissance de court-circuit triphasée aux bornes MT du transformateur (en kVA).

Pcu: Pertes triphasées totales du transformateur MT / BT (en watt).

Pn : Puissance nominale du transformateur MT / BT (en kVA). Ucc : Tension de court-circuit en %. \mathbf{R}_T : Résistance totale. $\mathbf{X}\mathbf{T}$: réactance totale. $\mathbf{\rho}$ = résistivité à 20°C.

X. Choix des appareils de protection

Après avoir déterminé les différentes sections des différents circuits, nous présentons dans ce qui suit la démarche à suivre ainsi que les critères à prendre en considération pour déterminer les appareils de protection.

1. Disjoncteur Basse Tension

a. Caractéristiques fondamentales d'un disjoncteur

Les disjoncteurs ont les caractéristiques principales suivantes : Polarité du disjoncteur ; tension assignée d'emploi Ue ; courant nominal du dispositif de protection In ; pouvoir de coupure Icu ou Icn ; courant de réglage thermique Ir ou (Irth) ; courant de réglage magnétique Im et pouvoir de limitation.

b. Choix des disjoncteurs

Le calibre du disjoncteur est défini à partir du courant d'emploi des récepteurs, souvent il peut être choisi immédiatement supérieur au courant d'emploi dans la liste des calibres existants. Donc pour choisir un disjoncteur, il suffit de vérifier que $In \ge IB$ et $Icu \ge Icc$, Icu c'est le pouvoir de coupure du disjoncteur.

Le déclencheur devra toujours être choisi en respectant le critère thermique : $\mathbf{Ib} \leq \mathbf{Irth} \leq \mathbf{Iz}$ (courant admissible dans la canalisation en aval) et magnétique : $\mathbf{Id} \leq \mathbf{Im} \leq \mathbf{Icc}$ min.

Ib : courant d'emploi dans la canalisation ; **Id** : courant de surcharge temporaire admissible ; **Icc mini** : courant de court-circuit monophasé mini.

2. Etude de la sélectivité entre les disjoncteurs

La sélectivité est une technique qui consiste à coordonner les protections de manière qu'un défaut sur un circuit ne fasse déclencher la protection placée en tête de ce circuit ; évitant ainsi la mise hors service du reste de l'installation. La sélectivité améliore la continuité de service et la sécurité de l'installation.

a. Type de sélectivité

Il existe deux catégories de sélectivité:

- **Sélectivité totale :** Pour toutes les valeurs du défaut, depuis la surcharge jusqu'au court-circuit franc, la distribution est totalement sélective si D2 s'ouvre et si D1 reste fermé.
- Sélectivité partielle : La sélectivité est partielle si la condition ci-dessus n'est pas respectée jusqu'au plein courant de court-circuit, mais seulement jusqu'à une valeur inférieure.

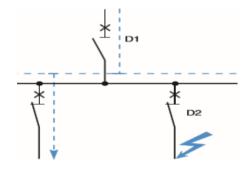


Figure II.10: sélectivité disjoncteur

Cette valeur est appelée limite de sélectivité. Dans l'éventualité d'un défaut dépassant cette valeur les disjoncteurs D1et D2 s'ouvrent.

b. Méthodes de sélectivité

Sélectivité ampérométrique: Elle résulte de l'écart entre les seuils des déclencheurs instantanés ou court-retard des disjoncteurs en série dans un circuit. Elle s'applique dans le cas de défauts de court-circuit et conduit généralement, si elle n'est pas associée à une autre sélectivité (chronométrique, énergétique), à une sélectivité partielle limitée au seuil d'intervention de l'appareil amont.

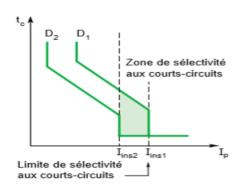


Figure II.11 : courbe de sélectivité ampérométrique

La sélectivité est assurée si le seuil maxi du déclencheur de l'appareil aval est inférieur au seuil minimal de celui de l'appareil amont, toutes tolérances comprises.

sélectivité chronométrique: Pour assurer la sélectivité au-delà du seuil court-retard (ICR1) de l'appareil amont, il est possible d'utiliser une temporisation, réglable ou non, sur le déclencheur de l'appareil amont D1. Cette solution ne peut être mise en œuvre qu'à condition que l'appareil puisse supporter l'intensité de court-circuit durant cette temporisation. Sur deux disjoncteurs en série, les

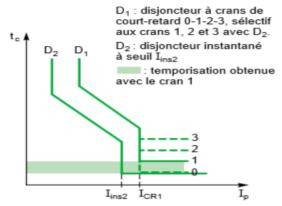


Figure II.12 : courbe de sélectivité chronométrique

différents crans de temporisation, lorsqu'ils existent, sont agencés de telle sorte qu'ils soient sélectifs entre eux. Le temps maximal de fonctionnement d'un cran, temps de coupure compris, doit être inférieur au temps minimal de détection du cran suivant.

- Sélectivité énergétique: Développés par Schneider Electric, elle est particulièrement utile pour les appareils de moyenne puissance (100 à 630 A), où la limitation est une nécessité. Ces appareils, à répulsion électrodynamique très active, ne peuvent en effet supporter une temporisation de plusieurs centaines de millisecondes. La sélectivité chronométrique avec l'aval est donc inapplicable, ou limitée à une valeur de courant très basse. La solution consiste à mettre en œuvre des critères de déclenchement plus élaborés que la simple valeur du courant ou du temps, en général une combinaison de ces deux grandeurs.
- Sélectivité logique: Elle nécessite un transfert d'informations entre les déclencheurs des disjoncteurs des différents étages de la distribution. Un déclencheur qui voit un courant supérieur à son seuil de fonctionnement envoie un ordre logique de temporisation au déclencheur du disjoncteur qui est juste en amont. La temporisation sera celle affichée sur le déclencheur. Le déclencheur du disjoncteur situé immédiatement en amont du court-circuit ne recevant pas d'ordre d'attente agit

 Immédiatement, quelle que soit sa temporisation affichée.

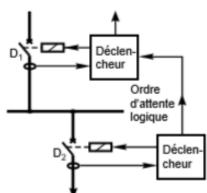


Figure II.13 : courbe de sélectivité logique

XI. Conclusion

Le dimensionnement d'une installation électrique consiste à faire le choix optimal des sections de câbles et des protections pour garantir un fonctionnement normal des équipements sans dégradation ou échauffement. Après avoir vu la méthodologie générale pour la conception d'une installation électrique, nous allons appliquer cette méthode pour l'installation électrique du bloc 4 de l'UEMF.

Chapitre III:

Étude de l'installation électrique du bloc 4 de l'UEMF

I. Introduction

Ce chapitre est consacré à l'étude technique de l'installation électrique du bloc 4 de l'UEMF. En se basant sur l'étude développée dans le premier chapitre nous allons traiter les points suivants : Schémas synoptiques, schémas de liaison à la terre, bilan de puissance, compensation de l'énergie réactive, dimensionnement des câbles ainsi que le choix des appareils de protection.

II. Schéma unifilaire de l'installation et Schéma de liaison à la terre Le schéma électrique permet d'exprimer les besoins en électricité dans le bloc. Il va répertorier sur le plan l'emplacement et le nombre des dispositifs électriques (prises, interrupteurs, points lumineux...). Pour réaliser le schéma électrique de l'installation nous avons fait appel au logiciel AutoCAD.

1. Présentation du logiciel AutoCAD

C'est un logiciel de dessin assisté par ordinateur (DAO) utilisé dans diverses industries. Très polyvalent, il permet d'effectuer la conception de divers éléments en 2D et en 3D. Avec ce logiciel l'utilisateur peut créer ces propres plans de fabrication aussi des images réalistes de ces modèles en y appliquant des couleurs et des textures. Il est possible également d'animer des objets pour simuler le fonctionnement d'une machine ou effectuer le schéma de

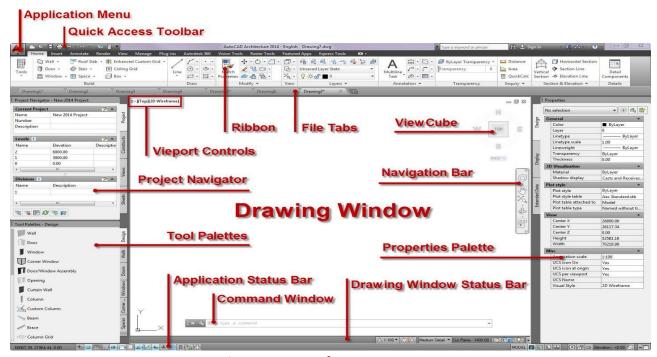


Figure III.1: Interface AutoCAD

l'installation électrique d'une maison. La figure III.1 représente l'interface de logiciel AutoCAD.

2. Schéma unifilaire de l'installation sur AutoCAD

L'installation électrique de ce bloc comporte trois réseaux :

- Réseau normal qui alimente :
 - TGBT N/S
 - Eclairage
 - Prises de courant
 - Ascenseur
 - Les monte-charges
 - Tableau de climatisation
- Réseau sécurisé qui alimente :
 - TGBTO(réseau ondulé)
 - Les tableaux de désenfumage (sécurité incendie)
 - Les tableaux des ascenseurs
 - 1/3 de l'éclairage
- Réseau ondulé qui alimente :
 - Les armoires informatiques
 - Les prises de courant dans les salles informatiques
 - Les prises de courant de quelque amphi.

L'énergie nécessaire à l'alimentation d'installation normale proviendra d'un seul transformateur. Tandis que l'énergie nécessaire à l'alimentation d'installation de sécurité sera obtenue à partir d'une dérivation à partir du TGBT, et pour avoir une tension ondulée il faut utiliser un onduleur.

Le schéma unifilaire général est le suivant :

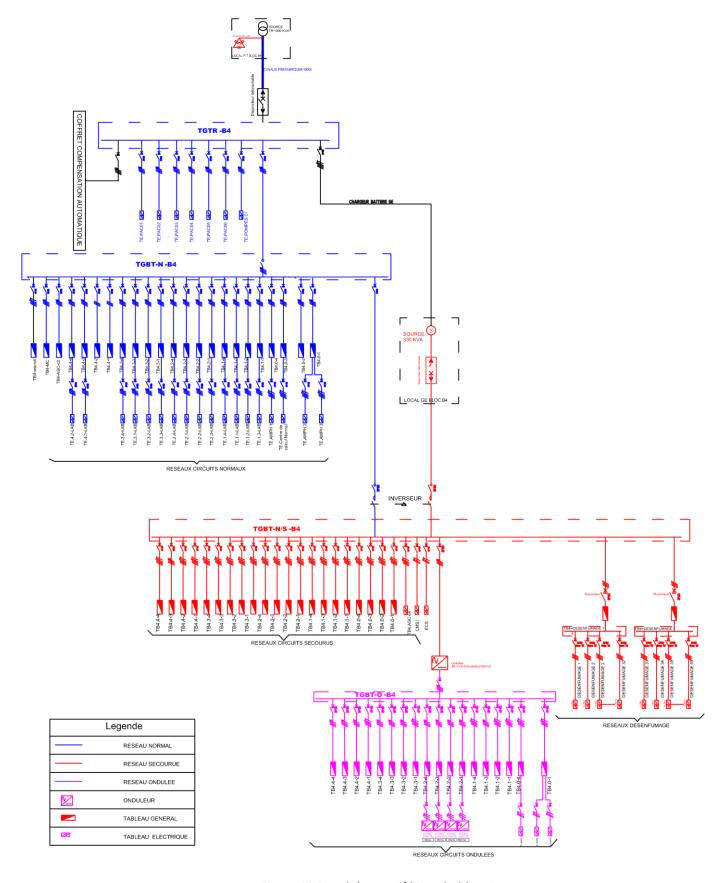


Figure III.2 : schéma unifilaire du bloc 4

3. Choix du régime du neutre pour le cas du projet

Le maitre d'ouvrage requiert une protection des personnes contre les contacts indirects en stricte conformité avec les normes et les règlementations en vigueur. Le régime TN (Point neutre du transformateur et conducteur PE reliés directement à la terre) est un régime adapté à notre installation admettant une coupure au premier défaut. En plus, il est économique et ne nécessite pas d'appareils de protection particulière.

III. Bilan de puissance de projet

Le calcul de puissances nécessite une architecture claire de l'installation électrique qui est présenté dans le schéma unifilaire (Figure III.2). Le bloc étudié comporte trois étages et dans chaque étage il y a quatre tableaux électrique. Pour calculer la puissance totale il faut donc calculer la puissance de chaque tableau. Nous allons calculer la puissance d'un tableau, pour cela, il faut savoir la puissance des recepteur utilsé.

Le tableau suivant montre les types des luminaires utilisés ainsi que leur puissance :

Désignation	Puissance(KW)	Cos (φ)	PHOTOS
Panel LED 30*120	38	0,92	
LED 3442m-4000K-CRI80 28W	40	0,92	
DOWNLIGHT	20	0,92	
Simple Multi FDH G5	28	0,92	
DOWNR 1275 lm	15	0,92	
Encastre linéaire 1805mm	60	0,92	
Encastre linéaire 2400 mm	80	0,92	
Encastre linéaire 1211mm	40	0,92	
INCL.1xLED CLUSTER 10W/3000K/1960lm	10	0,92	

Tableau III.1 : les types de luminaires utilisés

Les prises de courant utilisé dans mon projet ont les caracteristiques suivant:

Désignation	Puissance active (w)	$\cos (\varphi)$
PC	200	0,8

Tableau III.2: caractéristiques de prise de courant

Le tabeau suivant illustre les resultats de calcul de la puissance du tableau $N^\circ 1$ du rez de chaussée :

Nombre récepteurs	Puissance récepteur(w)	Puissance totale(W)	Cos (φ)	Ku	Ks	Pu	Aboutissant ou Destination	
8	38	304	0,92	1	1	330,43	Panel LED 30*120	
8	60	480	0,92	1	1	521,74	Encastre linéaire 1805mm	
8	40	320	0,92	1	1	347,83	Encastre linéaire 1211mm	
7	20	140	0,92	1	1	152,17	DOWNLIGHT	
8	20	160	0,92	1	1	173,91	DOWNLIGHT	
14	38	532	0,92	1	1	578,26	Panel LED 30*120	
6	200	1200	0,8	0,5	0,25	187,5	PRISE DE COURANT	
6	200	1200	0.8	0.5	0.25	187.5	PRISE DE COURANT	
4	200	800	0,8	0,5	0,325	162,5	PRISE DE COURANT	
3	200	600	0,8	0,5	0,4	150	PRISE DE COURANT	
4	200	800	0,8	0,5	0,325	162,5	PRISE DE COURANT	
4	200	800	0,8	0,5	0,325	162,5	PRISE DE COURANT	
6	200	1200	0,8	0,5	0,25	187,5	PRISE DE COURANT	
4	200	800	0,8	0,5	0,325	162,5	PRISE DE COURANT	
2	200	400	0,8	0,5	0,55	137,5	PRISE DE COURANT	
4	200	800	0,8	0,5	0,325	162,5	PRISE DE COURANT	
1	1000	1000	0,8	0,5	1	625	Alim sèche main	
1	1000	1000	0,8	0,5	1	625	Alim sèche main	
1	5980	5980	0,8	1	1	7475	Centrale de traitement d'aire	
1	125	125	0,8	1	1	156,25	Ventilo convecteur	
1	125	125	0,8	1	1	156,25	Ventilo convecteur	
1	15000			0.5	0.25	2343.75	Alim TE Amphithéâtre 02	
1	15000	15000	0,8	0,5	0,25	2343,75	Alim TE Amphithéâtre 03	
Pui	ssance totale n	on foisonné((KVA)				17,49	
Coeffi	cient de foison	nement (sim	ultanéité)				0,6	
		,					10,50	
	8 8 8 7 8 14 6 4 3 4 6 4 2 4 1 1 1 1 1 Coeffice	récepteurs récepteur(w) 8 38 8 60 8 40 7 20 8 20 14 38 6 200 4 200 4 200 4 200 4 200 4 200 4 200 1 1000 1 1000 1 125 1 15000 Puissance totale netrotale netro	récepteurs récepteur(w) totale(W) 8 38 304 8 60 480 8 40 320 7 20 140 8 20 160 14 38 532 6 200 1200 6 200 1200 4 200 800 3 200 600 4 200 800 4 200 800 2 200 400 4 200 800 1 1000 1000 1 1000 1000 1 125 125 1 15000 15000 Puissance totale non foisonné(experience totale non foisonné(experience totale non foisonné(experience totale non foisonne(experience totale non foisone	récepteurs récepteur(w) totale(W) Cos (φ) 8 38 304 0,92 8 60 480 0,92 8 40 320 0,92 7 20 140 0,92 8 20 160 0,92 14 38 532 0,92 6 200 1200 0,8 6 200 1200 0,8 4 200 800 0,8 4 200 800 0,8 4 200 800 0,8 4 200 800 0,8 4 200 800 0,8 2 200 400 0,8 4 200 800 0,8 1 1000 1000 0,8 1 1000 1000 0,8 1 1000 1000 0,8 1 125 125 0,8 </td <td>récepteurs récepteur(w) totale(W) Cos (φ) Ku 8 38 304 0,92 1 8 60 480 0,92 1 8 40 320 0,92 1 7 20 140 0,92 1 8 20 160 0,92 1 14 38 532 0,92 1 6 200 1200 0,8 0,5 6 200 1200 0,8 0,5 4 200 800 0,8 0,5 4 200 800 0,8 0,5 4 200 800 0,8 0,5 4 200 800 0,8 0,5 4 200 800 0,8 0,5 4 200 800 0,8 0,5 1 1000 1000 0,8 0,5 1 1000 1000</td> <td>récepteurs récepteur(w) totale(W) Cos (φ) Ku Ks 8 38 304 0,92 1 1 8 60 480 0,92 1 1 8 40 320 0,92 1 1 7 20 140 0,92 1 1 8 20 160 0,92 1 1 14 38 532 0,92 1 1 6 200 1200 0,8 0,5 0,25 6 200 1200 0,8 0,5 0,25 4 200 800 0,8 0,5 0,325 3 200 600 0,8 0,5 0,325 4 200 800 0,8 0,5 0,325 4 200 800 0,8 0,5 0,25 4 200 800 0,8 0,5 0,25 4<td>récepteurs récepteur(w) totale(W) Cos (φ) Ku Ks Pu 8 38 304 0.92 1 1 330,43 8 60 480 0.92 1 1 521,74 8 40 320 0.92 1 1 347,83 7 20 140 0.92 1 1 152,17 8 20 160 0.92 1 1 173,91 14 38 532 0.92 1 1 578,26 6 200 1200 0.8 0.5 0,25 187,5 6 200 1200 0.8 0.5 0,25 187,5 4 200 800 0.8 0.5 0,325 162,5 3 200 600 0.8 0.5 0,325 162,5 4 200 800 0.8 0.5 0,325 162,5 4</td></td>	récepteurs récepteur(w) totale(W) Cos (φ) Ku 8 38 304 0,92 1 8 60 480 0,92 1 8 40 320 0,92 1 7 20 140 0,92 1 8 20 160 0,92 1 14 38 532 0,92 1 6 200 1200 0,8 0,5 6 200 1200 0,8 0,5 4 200 800 0,8 0,5 4 200 800 0,8 0,5 4 200 800 0,8 0,5 4 200 800 0,8 0,5 4 200 800 0,8 0,5 4 200 800 0,8 0,5 1 1000 1000 0,8 0,5 1 1000 1000	récepteurs récepteur(w) totale(W) Cos (φ) Ku Ks 8 38 304 0,92 1 1 8 60 480 0,92 1 1 8 40 320 0,92 1 1 7 20 140 0,92 1 1 8 20 160 0,92 1 1 14 38 532 0,92 1 1 6 200 1200 0,8 0,5 0,25 6 200 1200 0,8 0,5 0,25 4 200 800 0,8 0,5 0,325 3 200 600 0,8 0,5 0,325 4 200 800 0,8 0,5 0,325 4 200 800 0,8 0,5 0,25 4 200 800 0,8 0,5 0,25 4 <td>récepteurs récepteur(w) totale(W) Cos (φ) Ku Ks Pu 8 38 304 0.92 1 1 330,43 8 60 480 0.92 1 1 521,74 8 40 320 0.92 1 1 347,83 7 20 140 0.92 1 1 152,17 8 20 160 0.92 1 1 173,91 14 38 532 0.92 1 1 578,26 6 200 1200 0.8 0.5 0,25 187,5 6 200 1200 0.8 0.5 0,25 187,5 4 200 800 0.8 0.5 0,325 162,5 3 200 600 0.8 0.5 0,325 162,5 4 200 800 0.8 0.5 0,325 162,5 4</td>	récepteurs récepteur(w) totale(W) Cos (φ) Ku Ks Pu 8 38 304 0.92 1 1 330,43 8 60 480 0.92 1 1 521,74 8 40 320 0.92 1 1 347,83 7 20 140 0.92 1 1 152,17 8 20 160 0.92 1 1 173,91 14 38 532 0.92 1 1 578,26 6 200 1200 0.8 0.5 0,25 187,5 6 200 1200 0.8 0.5 0,25 187,5 4 200 800 0.8 0.5 0,325 162,5 3 200 600 0.8 0.5 0,325 162,5 4 200 800 0.8 0.5 0,325 162,5 4	

Tableau III.3: bilan de puissance tableau N°1 de rez de

De la même façon, j'ai calculé la puissance totale de chaque tableau de l'installation électrique du bloc 4. Ensuite, il faut déterminer la puissance de chaque étage ainsi que la puissance totale pour les trois réseaux (normal,ondulé et secouru).

1. Puissance ondulée

Le tableau suivant montre les résultats de calcul de la puissance ondulée :

ETAGE	RECEPTEUR	PUISSANCE
REZ DE CHAUSSEE	TB4 RDC N°1	1,97
KEZ DE CHAUSSEE	TB4 RDC N°4	3,33
	TB4 R+1 N°1	8,40
1 er ETAGE	TB4 R+1 N°2	7,80
TELETAGE	TB4 R+1 N°3	7,35
	TB4 R+1 N°4	6,00
	TB4 R+2 N°1	10,20
2-ème ETAGE	TB4 R+2 N°2	9,96
2-enie ETAGE	TB4 R+2 N°3	11,25
	TB4 R+2 N°4	10,35
	TB4 R+3 N°1	8,85
3-ème ETAGE	TB4 R+3 N°2	9,30
5-enie ETAGE	TB4 R+3 N°3	8,10
	TB4 R+3 N°4	7,65
	TB4 R+4 N°1	6,45
4-ème ETAGE	TB4 R+4 N°2	9,45
4-enie ETAGE	TB4 R+4 N°3	8,85
	TB4 R+4 N°4	8,85
TOTAL PUISSAL FOISON	144,10	
Coefficient de foiso	0,60	
TOTAL PUISS FOISON	86,46	

Tableau III.4: bilan de puissance ondulée

Pour avoir une puissance ondulée de 86,46 KVA il faut choisir un onduleur de puissance supérieure à celle désirée. Nous avons choisi donc un onduleur de puissance 100KVA. En se référant au document LEGRAND DEEL CATALOGUE ^[5], l'onduleur choisi est un système modulaire, extensible et redondant dans une armoire unique, rack 19. De puissance nominale 100 KVA; une tension de 400V +15% / -20%; une fréquence de 50hz; un rendement jusqu'à 96%.

2. Puissance secourue

En cas de défaut de tension sur l'alimentation normale, le moteur du groupe devra démarrer automatiquement et immédiatement.

Le tableau ci-dessous résume le bilan de puissance du groupe électrogène quand la source normale est en défaillance.

ETAGE	RECEPTEUR	PUISSANCE(KVA)
	TB4 RDC N°1	6,37
REZ DE CHAUSSEE	TB4 RDC N°2	2,97
REZ DE CHAUSSEE	TB4 RDC N°3	2,12
	TB4 RDC N°4	1,93
	TB4 R+1 N°1	0,53
1 on ETACE	TB4 R+1 N°2	1,14
1 er ETAGE	TB4 R+1 N°3	0,49
	TB4 R+1 N°4	0,72
	TB4 R+2 N°1	4,78
2 Nove ETACE	TB4 R+2 N°2	3,90
2-ème ETAGE	TB4 R+2 N°3	4,81
	TB4 R+2 N°4	4,94
	TB4 R+3 N°1	0,42
2 Nove ETACE	TB4 R+3 N°2	0,43
3 -ème ETAGE	TB4 R+3 N°3	0,88
	TB4 R+3 N°4	0,48
	TB4 R+4 N°1	0,49
4 km s ETACE	TB4 R+4 N°2	0,49
4-ème ETAGE	TB4 R+4 N°3	0,49
	TB4 R+4 N°4	0,47
Monte-charge	2	9,00
TB4 DESENFUM	113,20	
TB4 DESENFUM	89,25	
TE CENTRALE DETECTI	3,00	
TOTAL PUISSANCE TGBTS - KVA	151,99	
PUISSANCE ONI	DULEE	86,46
PUISSANCE TOTALE TO	GBT N/S (KVA)	238,45

Tableau III.5: bilan de puissance secourue

Pour assurer un bon fonctionnement et l'alimentation des zones secourues, le groupe électrogène doit fournir 238,45KVA. En se référant au document de DAGARTECH ^[6], le groupe électrogène choisie est de puissance nominale 275 KVA, de tension 400/230V et de fréquence 50 Hz.

Son moteur est VOLVO TAD 734 GE et l'alternateur est STAMFORD UCDI274K, de Nombre de tours 150 r.p.m, refroidis par l'eau.

3. Puissance Normale

Le tableau ci-dessus résume le bilan de puissance normale :

ETAGE	RECEPTEUR	PUISSANCE			
	TB4 RDC N°1	10,50			
REZ DE CHAUSSEE	TB4 RDC N°2	10,94			
	TB4 RDC N°3	22,34			
	TB4 RDC N°4	16,07			
	TB4 R+1 N°1	19,48			
1 er ETAGE	TB4 R+1 N°2	23,96			
TELETAGE	TB4 R+1 N°3	18,58			
	TB4 R+1 N°4	21,19			
	TB4 R+2 N°1	21,33			
2-ème ETAGE	TB4 R+2 N°2	24,35			
Z-eille ETAGE	TB4 R+2 N°3	24,32			
	TB4 R+2 N°4	19,58			
	TB4 R+3 N°1	26,48			
3-ème ETAGE	TB4 R+3 N°2	27,15			
5-eille ETAGE	TB4 R+3 N°3	27,06			
	TB4 R+3 N°4	21,84			
	TB4 R+4 N°1	15,31			
4-ème ETAGE	TB4 R+4 N°2	13,61			
4-eille ETAGE	TB4 R+4 N°3	27,46			
	TB4 R+4 N°4	23,96			
TE-PAC CLI	MATISATION 01	190,00			
TE-PAC CLI	MATISATION 02	190,00			
TE-PAC CLI	MATISATION 03	190,00			
TE-PAC CLI	MATISATION 04	190,00			
TE-PAC CLI	MATISATION 05	190,00			
TE-P	160,00				
Asc	Ascenseurs 1				
Asc	enseurs 2	10			
Mont	e-charge 1	20			
PUISSANCE S	SECOURUE(KVA)	238,45			
PUISSANCE TO	TALE TGBTN (KVA)	942,20			

Tableau III.6: bilan de puissance normale

Pour assurer le bon fonctionnement de l'installation, le transformateur doit fournir une puissance de 940,2 KVA.

En se réfèrent au catalogue LEGRAND ^[1] le transformateur choisi est de puissance 1000KVA, de tension secondaire 400V, de type de sec et de fréquence 50hz.

IV. Compensation de l'énergie réactive

La batterie est raccordée en tête d'installation pour avoir une compensation globale et assure la compensation pour l'ensemble des charges. Nous avons calculé la compensation pour le bloc 4 manuellement et à l'aide de logiciel VARSETPRO de Schneider.

1. Calcul manuel

	Avant compensation	Après compensation				
Puissance TGBT totale (KVA)	1000					
Angle φ	0,64	0,45				
Facteur de puissance $\cos \varphi$	0,8	0,9				
Puissance active Pn en (KW)	8	00				
Tan	0,75	0,484				
Puissance réactive Qn(KVAR)	643,5	451				
Puissance de la compensation Qc (KVAR)	19	2,5				
Qc/Sn (%)	29,91%					
Type de compensation	Automatique					

Tableau III.7: calcul des paramètres de la batterie de

2. Calcul avec le logiciel VarSetpro [7]

Figure III.3 : calcul des paramètres de la batterie de condensateur sur VarSetpro On remarque une petite différence entre le calcul manuel et le résultat de logiciel, donc on peut tout simplement utiliser le logiciel.

V. Dimensionnement des sections des câbles

1. Détermination des câbles utilisés dans ce projet

Les câbles choisis sont constitués de 3 conducteurs : U1000 R02V 3x2.5

- U: norme UTE

- 1000 : tension nominale 1000V

- R : enveloppe isolante en polyéthylène réticulé

- 0 : aucun bourrage

- 2 : gain de protection épaisse

- V : gaine de protection PVC

- 3x2.5 : 3 conducteurs de 2.5 mm²
- 2. Détermination du courant maximal d'emploi Ib et du courant assigné In Les valeurs du courants Ib et du courant assigné In en fonction de la puissance apparente S et la tension nominale U sont fournies par les tableaux 1,2 et 3 en annexe 1.
- 3. Détermination d'intensité fictive I'z en fonction des influences extérieurs Dans notre cas les câbles sont non-conducteurs sur le chemin de câbles perforés. Ainsi, la lettre de sélection correspondante selon le mode de pose est la lettre F avec un de facteur de correction k1=1. Par ailleurs, nous avons deux nombres de circuits correspondant aux conducteurs utilisés : pour 4 circuits le facteur k2=0,77, et pour 5 circuits le facteur K2=0,75. La température ambiante et la nature de l'isolant ont une influence directe sur le dimensionnement des conducteurs. Les câbles sont tous en polyéthylène réticulé PR. Le type d'isolant utilisé est le polyéthylène réticulé (PR), il a généralement une température de 40°C. Le facteur de correction est alors K3=0.91.

4. Résultats des calculs théoriques des sections de conducteurs

Après avoir définis les trois facteurs K1, K2 et K3 ainsi que le facteur de correction Kn, nous calculons le produit de ces facteurs K=K1*K2*K3*Kn, ainsi que le courant fictif I'z par la relation : $I'_z = \frac{I_z}{K}$, nous pouvons déduire alors les sections des câbles à partir de tableau 10 Annexe 4. Les tableaux 1,2 et 3 en annexe 1 dévoilent les résultats de calcul des sections des câbles.

VI. Calcul de la chute de tension :

En appliquant les relations de calcul de la chute de tension cité dans le chapitre 2, nous avons déterminé la chute de tension des différents composants de notre installation.

Les tableaux 4,5 et 6 en annexe 2 présentent les résultats de calcul de la chute de tension.

VII. Calcul du courant de court-circuit

Pour pouvoir choisir les appareils de protection il faut établir le courant de court-circuit. Ainsi, nous avons saisi les relations de calcul de court-circuit présentés dans le chapitre 2. Les tableaux 7,8 et 9 annexe 3 exposent les résultats de calcul du court-circuit.

VIII. Choix des appareils de protection

1. Résultat du choix des appareils de protection

La protection d'un transformateur MT / BT par disjoncteur est généralement utilisée dans les installations industrielles et bâtiments commerciaux de grande taille et particulièrement quand la puissance du transformateur dépasse 800 kVA, puisque la puissance du transformateur égale 1000KVA, nous avons choisi donc une protection par disjoncteur.

D'après le courant de court-circuit calculé : Icc=19,72 kA et In=1443,4A, et à partir du catalogue des appareils protection de Schneider Electric (tableaux 17,18 et 19 en annexe 6), nous avons choisi un disjoncteur Masterpact NW16 de courant de court-circuit In=1600A et PDC=30 KA.

Concernant le TGBT N/S qui à In=356 A et PdC=15,40KA. Nous avons choisi un disjoncteur COMPACT NSX630 avec In=400A et PDC=30KA.

2. Vérification de la sélectivité

Pour vérifier la sélectivité entre le disjoncteur amont **Masterpact NW16** et le disjoncteur amont **COMPACT NSX400**, nous avons utilisé le tableau III.8 de sélectivité.

Pour chaque intersection de deux disjoncteurs, T signale que la sélectivité est totale, I si c'est partiel, et si la case indiquée est vide signifie qu'il n'y a pas de sélectivité.

Le tableau suivant montre la sélectivité entre les deux disjoncteurs :

Aval				80WN	/12/16	/20 N1	/H1/H	12/L1														
	déclencheur	Micro	Micrologic 2.0						Micrologic 5.0 - 6.0 - 7.0					Micrologic 5.0 - 6.0 - 7.0								
									Inst:	15 In						Inst:	OFF					1
	calibre (A)	800			1000	1250	1600	2000	800			1000	1250	1600	2000	800			1000	1250	1600	2000
	réglage Ir	320	630	800	1000	1250	1600	2000	320	630	800	1000	1250	1600	2000	320	630	800	1000	1250	1600	2000
DT40, DT40N		Т	Т	T	Т	T	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т
iC60, DT60N/H/L		Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т
C120N/H		Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т
NG125N/L		Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	T	Т	Т	Т	Т	Т	Т	Т
NG160N		Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т
Compact NSX100 F/N/H/S/L TM-D		Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т
Compact NSX160 F/N/H/S/L TM-D		Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т
Compact NSX250	≤ 125	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т
F/N/H/S/L	160	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т
TM-D	200	Т	Т	Т	Т	Т	Т	Т		Т	Т	Т	Т	Т	Т		Т	Т	Т	Т	Т	Т
	250		Т	Т	Т	Т	Т	Т		Т	Т	Т	Т	Т	Т		Т	Т	Т	Т	Т	Т
Compact NSX100	40	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т
F/N/H/S/L Micrologic	100	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т
Compact NSX160	40	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т
F/N/H/S/L	100	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	T	Т	Т	Т	Т	Т	Т	Т
Micrologic	160	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т
Compact NSX250	≤ 100	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т
F/N/H/S/L	160	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т
Micrologic	250		Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т		Т	Т	Т	Т	Т	Т
Compact NSX400	160	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т
F/N/H/S/L	200	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т
Micrologic	250	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т
	320		Т	Т	Т	Т	Т	Т		Т	Т	Т	Т	Т	Т		Т	Т	Т	Т	Т	Т
	400		Т	Т	Т	Т	Т	Т		Т	Т	Т	Т	Т	Т		Т	Т	Т	Т	Т	Т
Compact NSX630	250	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т
F/N/H/S/L	320		Т	Т	Т	Т	Т	Т		Т	Т	Т	Т	Т	Т		Т	Т	Т	Т	Т	Т
Micrologic	400		Т	Т	Т	Т	Т	Т		Т	Т	Т	Т	Т	Т		Т	Т	Т	Т	Т	Т
	500			Т	Т	Т	Т	Т			Т	Т	Т	Т	Т			Т	Т	Т	Т	Т
	630				Т	Т	Т	Т				Т	Т	Т	Т				Т	Т	Т	Т

T Sélectivité totale, jusqu'au pouvoir de coupure du disjoncteur aval

Tableau III.8: tableau de vérification de sélectivité

En conséquence, la sélectivité entre le disjoncteur amont **Masterpact NW16** et le disjoncteur aval **COMPACT NSX630** est une sélectivité totale.

IX. Conclusion

Après avoir déterminé les différents éléments de notre installation électrique, nous allons considérer dans le chapitre suivant le logiciel CANECO BT pour dimensionner cette l'installation.

Chapitre IV:

Dimensionnement de l'installation avec le logiciel CANECO BT

I. Introduction

L'entreprise SORALEC a choisi le logiciel CANECO BT afin de dimensionner les installations électriques. Le logiciel permet des gains appréciables en temps et qualité de conception. Dans ce chapitre, nous allons dimensionner notre installation électrique en utilisant ce logiciel.

II. Présentation du logiciel CANECO BT

CANECO BT est un logiciel de conception automatisée d'installations électriques basse tension. Il intègre en une seule et même solution les différentes fonctions de l'électricien : calculs et dimensionnement des circuits, schématique électrique de puissance et de commande, conception des armoires et nomenclature chiffrée.

1. Les fonctionnalités [8]

- Calcul et dimensionnement économique des circuits : Il effectue les calculs électriques selon les normes en vigueur, et dimensionne automatiquement les matériels les plus adaptés à partir d'une base de données multi fabricants.
- Réalisation automatisée des schémas électriques de puissance et de commande : Il permet la conception automatique des schémas de puissance et de commande grâce à quatre interfaces de travail dynamiques, et la conception automatisée des armoires préfabriquées. Il peut aussi prédéterminer les matériels électriques dimensionnés et les auxiliaires, conformément aux règles de conception du fabricant d'origine.
- Nomenclature des tableaux et des câbles de toute l'installation : Grâce à la base de données technique et tarifaire, qui regroupe 400 000 articles, il réalise la nomenclature et le chiffrage complet des tableaux et câbles.

2. Présentation de l'interface Caneco BT

L'interface utilisateur de Caneco BT ressemble à celle de la plupart des programmes fonctionnant sous environnement Windows. La barre des menus située en haut de l'écran présente les neuf menus de Caneco BT. Les commandes contenues dans ces menus permettent soit de déclencher directement une action, soit d'afficher un sous-menu ou une Boite de dialogue. Sous cette barre de menus, figure la barre des outils qui permettent d'accéder directement à une commande existant dans les menus.

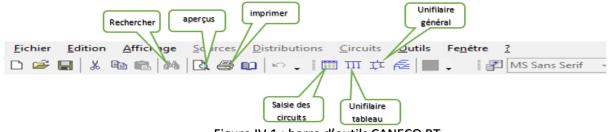


Figure IV.1 : barre d'outils CANECO BT
La figure IV.2 montre les différentes fonctions dans l'interface principale du logiciel
CANECO BT.

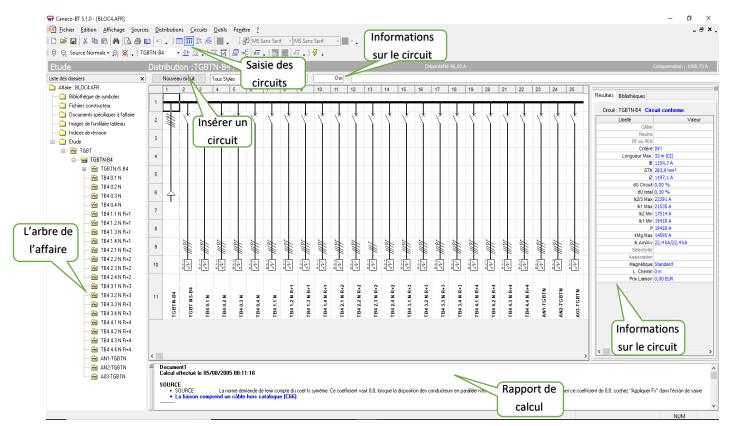


Figure IV.2: interface CANECO BT

III. Procédure de traitement à l'aide du logiciel Caneco BT

Une tâche sur Caneco BT se traite de l'amont (source) vers l'aval (circuits terminaux), ce qui permet de déterminer les dimensions des protections et des câbles. En premier lieu, on doit définir la source et les caractéristiques générales de l'affaire, puis les circuits de distribution et enfin les circuits terminaux.

Ceci en supposant que les intensités des circuits de distribution ont été prédéterminées. Si cela n'est pas le cas, on peut effectuer un bilan de puissance avec Caneco BT, ce qui déterminera les intensités des circuits de distribution en fonctions des circuits qu'ils alimentent et des éventuels condensateurs. La commande <<calcul automatique>> du menu <<Circuits>> permet de redéfinir automatiquement les protections et les câbles en fonction de l'amont.

IV. Détermination des sections des câbles et dimensionnement des protections par le logiciel Caneco BT

Pour pouvoir dimensionner toutes les protections et calculer toutes les sections des câbles d'une installation électrique à l'aide du logiciel Caneco BT il faut connaître les caractéristiques des sources d'alimentation, des circuits de distribution et des circuits terminaux. Notre installation sera alimentée par un transformateur MT/BT (source normale) et un groupe électrogène (source de secoure) en cas de défaut de fonctionnement des transformateurs.

Les caractéristiques du transformateur sont :

- La puissance de la source : 1000KVA

- Nombre de source : une seule source

- La nature de la source : transformateur

- Le régime du neutre : TN

- Fréquence : 50Hz

- La longueur entre la source et le TGBT : 10 m

- Le mode de pose : sur chemins de câblés perforés horizontal ou vertical

- Les harmoniques : TH inférieur à 15 %

- Type de conducteur : Cuivre

La première étape pour le dimensionnement consiste à définir les caractéristiques de la source de tension. La figure IV.3 montre la configuration de la source choisie.

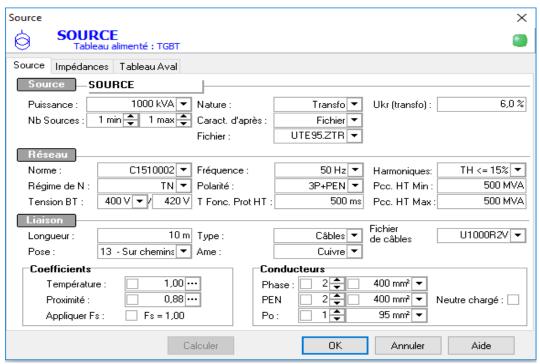


Figure IV.3: interface CANECO BT

La section des conducteurs est générée automatiquement par le logiciel. Il faut aussi connaître le régime du neutre et le type de protection du réseau aval.

Après la définition des caractéristiques de la source, le logiciel affiche les résultats sous forme d'un tableau illustré sur la figure IV.4

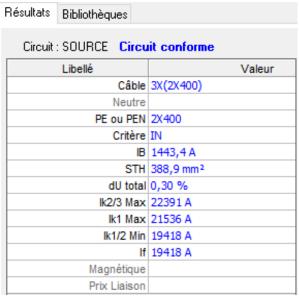


Figure IV.4 : résultats de calcul lié à la source

La deuxième étape consiste à dessiner le schéma unifilaire de l'installation en ajoutant des circuits au schéma et en remplissant les caractéristiques de chaque circuit.

Figure IV.5: ajouter un circuit

Le logiciel affiche les résultats de calcul lié au circuit ajouté en avant dans un tableau :

Résultats Bibliothèques				
Circuit : TB4 0.1 S Circ	uit conforme			
Libellé	Valeur			
	5G2.5			
Neutre				
PE ou PEN				
Critère				
Longueur Max.				
	9,19 A			
STH	1,0 mm²			
IZ IZ	22,7 A			
dU Circuit	0,76 %			
dU total	1,06 %			
lk2/3 Max	1348 A			
lk1 Max	681 A			
lk2 Min	829 A			
lk1 Min	483 A			
If	483 A			
IrMg Max	403 A			
lk Am/Av	22,4 kA/1,3 kA			
Sélectivité				
Association	Sans			
Magnétique	Standard			
L. Chemin				
Prix Liaison	100,14 EUR			

Figure IV.6 : résultat de calcul lié à la source

En créant les circuits, le schéma de l'installation prend la forme suivante (figure IV.7) :

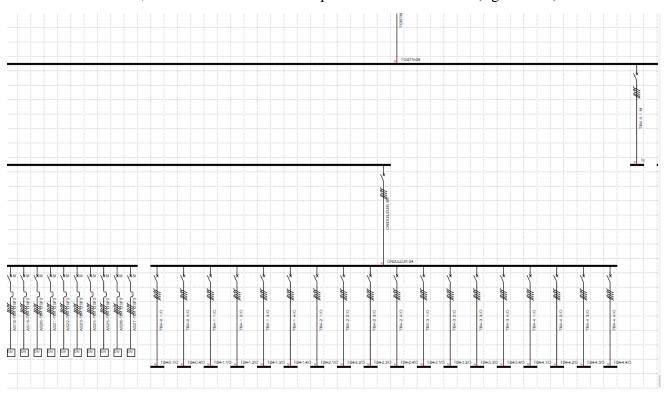


Figure IV.7 : schéma de l'installation

V. Résultats de dimensionnement de l'installation sur CANECO BT

Les résultats fournis par l'outil **CANECO BT** concernant la dimension des câbles, la définition des appareillages électriques relatifs à la protection, la sélectivité, le bilan de puissances se trouvent dans l'Annexe 7.

VI. Comparaison avec le calcul manuel

Pour comparer entre les résultats de calcul manuel et ceux obtenus par le logiciel CANECO BT, nous considérons les résultats de quelques calibres de disjoncteur, (Tableau IV.1):

	Calcul	manuel	Caneco BT				
Distribution	Calibre disjoncteur(A)	Section du câble (mm²)	Calibre disjoncteur(A)	Section du câble (mm²)			
TB4 RDC N°1	4	1,5	16	2.5			
TB4 RDC N°4	10	1,5	16	4			
TB4 R+1 N°1	25	4	25	2.5			
TB4 R+1 N°2	20	4	40	2.5			
TB4 R+1 N°3	20	4	40	4			
TB4 R+1 N°4	16	2,5	16	4			
TB4 R+2 N°1	25	4	25	4			
TB4 R+2 N°2	25	4	25	10			
TB4 R+2 N°3	32	6	40	6			
TB4 R+2 N°4	25	4	25	10			
TB4 R+3 N°1	25	4	25	4			
TB4 R+3 N°2	25	4	25	10			
TB4 R+3 N°3	20	4	20	4			
TB4 R+3 N°4	20	4	20	2.5			
TB4 R+4 N°1	16	2,5	16	2.5			
TB4 R+4 N°2	25	4	25	10			
TB4 R+4 N°3	25	4	16	10			
TB4 R+4 N°4	25	4	25	10			

Tableau IV.1: tableau de comparaison de calcul manuel et avec logiciel CANECO

Nous remarquons que les résultats du logiciel sont proche des résultats calculés manuellement ; donc il est préférable d'utiliser le logiciel afin de gagner le temps et pour avoir des résultats plus précis.

VII. Conclusion

Le logiciel Caneco BT est un outil pratique, simple et facile d'emploi, mais qui nécessite de maîtriser la normalisation et il est nécessaire de pouvoir interpréter les résultats.

Nous considérons dans le chapitre suivant un autre le logiciel DIALUX, dédié au calcul d'éclairement afin de déduire le nombre et le type de luminaires nécessaires au bloc 4 de l'UEMF.

Chapitre 5:

Calcul d'éclairement avec le logiciel DILAUX

I. Introduction

Un bon éclairage est nécessaire pour créer des conditions visuelles optimums. En planifiant une installation d'éclairage un certain nombre de facteurs doivent être pris en considération pour déterminer la qualité du système dans son ensemble. DIALUX est une source utile d'informations pour créer les solutions d'éclairage qui répondent aux besoins de l'utilisateur et qui fournissent des conditions de travail efficaces.

II. L'éclairage

L'éclairage est l'ensemble des moyens qui permettent à l'Homme de doter son environnement des conditions de luminosité qu'il estime nécessaires à son activité ou son agrément. L'appareil d'éclairage s'appelle un luminaire, il permet de répartir, réfléchir ou transformer la lumière émise par une source de lumière.

Un projet d'éclairage se passe en bref par les étapes suivantes :

- Choix architecturale de l'appareil de l'éclairage : en général si l'architecte ou le designer qui fait le choix et la forme du luminaire de sorte qu'il soit adapté à l'espace à éclairer.
- Le choix de la lampe qui dépend aussi de l'application : terrain de sport, salle de lecture...
- Calcul et implantation des luminaires : pour calculer le nombre de luminaire nécessaires pour une application on utilise en général un logiciel de calcul de l'éclairement tel que Dialux.
- Le choix des équipements d'alimentation et de commande de l'éclairage.

III. Présentation du logiciel DIALUX

Le logiciel DIALUX permet de créer nos futures solutions d'éclairages de façon intuitive. Il intègre parfaitement les données CAO des programmes d'architecture et des maquettes 3D ^[9]. C'est un outil gratuit qui permet non seulement de sélectionner nos futurs luminaires en fonction de nombreux paramètres, mais en plus assure de réaliser de vraies économies d'énergie en optimisant nos nouvelles solutions d'éclairage.

La figure V.1 montre l'interface DIALUX :

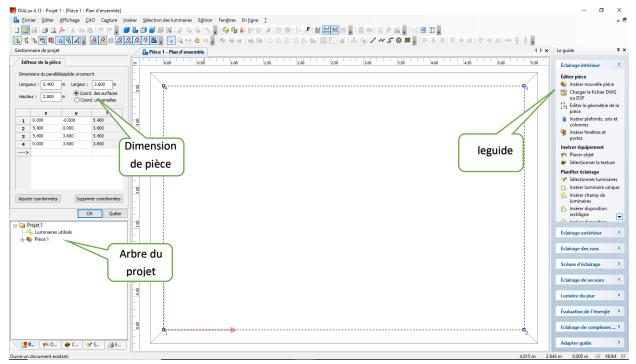


Figure V.1: interface DIALUX

IV. Procédure d'utilisation du logiciel DIALUX

Pour concevoir un projet d'éclairage il faut savoir les dimensions du local : la longueur, la largeur et la hauteur. Il faut connaître aussi la luminosité nécessaire (lux) nécessaire pour le projet. Le tableau V.1 montre l'éclairement moyen recommandé ^[10] :

Local et activité	Éclairement moyen en lux		
Hall d'entrée et co	uloirs		
salle de classe	500		
tableau	600		
amphithéâtre	300		
laboratoire	500		
salle de dessin d'art	625		
bibliothèque, salle de lecture	500		
Hôpitaux			
salle d'urgence	1 000		
chambre de malade	50-300		
salle d'attente	150		
circulations	150		
services généraux	300-750		
laboratoire	500		
Banques			
hall public	300		
guichet	500		

Local et activité	Éclairement moyen en lux			
Bureaux et locaux a	dministratifs			
bureau de travaux généraux	500			
dactylographie	500			
salle d'informatique	500			
salle de dessin (tables)	750-1 000			
Hôtels				
réception, hall	300			
salle à manger	300			
cuisine	500			
chambre (éclairage localisé)	300			
salle de bains	150			
Expositions, m	usées			
salle d'exposition publique	500			
salles de sport, gymnases				
salle d'entraînement	300			
salle de compétition	500-1 000			

Aéroports, gares, postes							
salle des pas perdus	150						
guichet	500						
Magasins							
boutique	300 - 500						
libre service, grande surface	500						
salon de coiffure	500 - 750						
circulations (galeries marchandes)	150						
commerces spécialisés	300-750						
Salles de specto	ıcle						
foyer	150						
amphithéâtre	100						
salle de cinéma	50						
salle des fêtes	300						

Locaux techni	ques				
salle de contrôle	300				
salle des machines	100				
salle de garde	300				
réserves, entrepôts	100-300				
Circulation	ns				
couloir, escalier	100-300				
ascenseur	200				
locaux non occupés	20-50				
Espaces extéri	ieurs				
entrée, cour, allée	30				
voie de circulation couverte	50				
dock et quai	75				

Tableau V.1: éclairement moyen

En plus que l'éclairement il faut savoir aussi la valeur du degré de réflexion qui précise l'aptitude d'une surface à réfléchir la lumière incidente, il est donné pour les trois surfaces : Plafond, Sol, Parois opaques. Le tableau V.2 présente la valeur du degré de réflexion selon l'Agence Nationale pour le Développement des Energies Renouvelables et de l'Efficacité Energétique :

Plafond	0,7
Parois opaques	0,5
Sol	0,3

Tableau V.2 : degré de réflexion

La démarche à suivre pour la réalisation de projet via Dialux est comme suit :

- 1. Créer un nouveau projet
- 2. Entrer les dimensions de la pièce
- 3. Entrer les facteurs de réflexions
- 4. Insérer un luminaire d'une base de données à l'aide de la barre d'outils de sélection luminaire
- 5. Insérer les luminaires dans la pièce en utilisant si besoin un angle d'éclairage
- 6. Par rapport aux données des luminaires choisir le montage et mettre la bonne valeur en lux
- 7. Lancer le calcul.

Nous allons considérer le cas du laboratoire de physique des matériaux qui se trouve dans le premier étage de longueur 9m, largeur 6,30m et la hauteur est 2.80m.

On applique la même procédure pour étudier les autres salles.

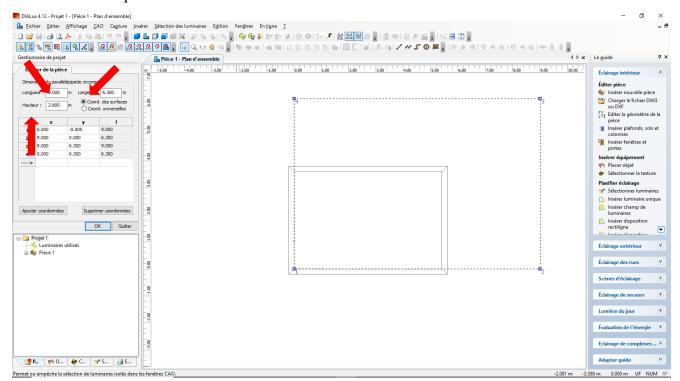
1. Création du projet

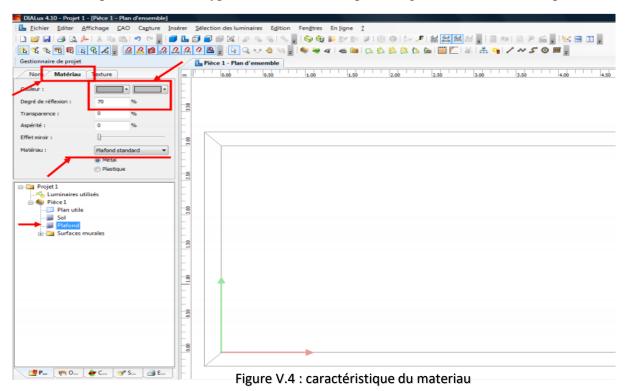
La première étape est de créer un projet :

Figure V.2: création d'un noveau projet

2. Les dimensions de la pièce

On clique sur nouveau projet, une nouvelle fenêtre apparait dont laquelle on va entrer les dimensions de la pièce




Figure V.3 : création d'une pièce Projet de fin d'étude 2017/2018

3. Facteur de réflexion

Dans cette étape, on choisit le type du matériau ainsi que le degré de réflexion correspondant :

4. Insertion du luminaire

Pour insérer les luminaires, le logiciel nous offre la possibilité de choisir entre plusieurs catalogues. Nous avons choisi le luminaire dans le catalogue Philips et nous l'avons ajouté à la base de données du logiciel :

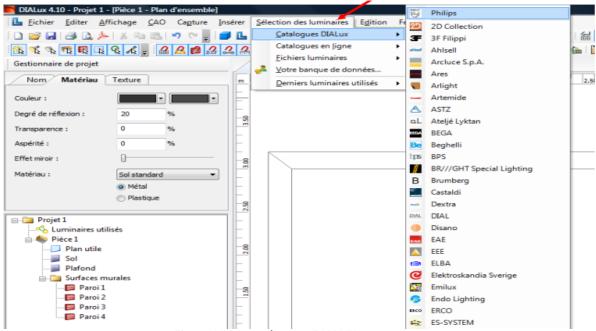


Figure V.5: catalogues DIALUX

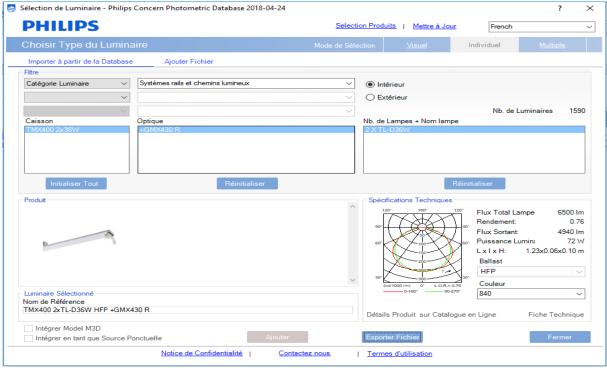


Figure V.6: choix du luminaire

5. Insertion des luminaires dans la pièce

Dans cette étape on insère le luminaire choisi dans la pièce :

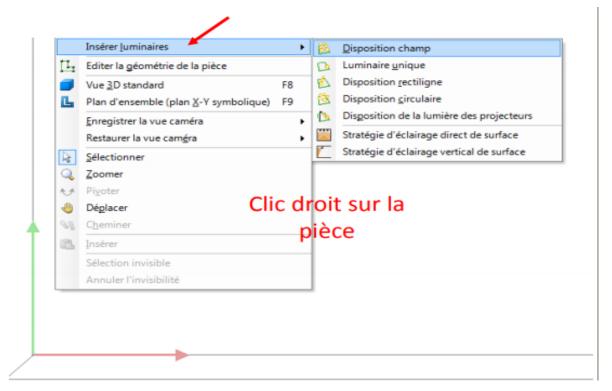


Figure V.7: insertion de luminaire

Le logiciel permis de choisir entre différente disposition (champs, rectiligne, circulaire), on a choisi la disposition champ recommandé par l'architecte.

6. Insertion de la valeur de lux

On choisit les valeurs de lux recommandées par L'Agence Nationale pour le Développement des Energies Renouvelables et de l'Efficacité Energétique :

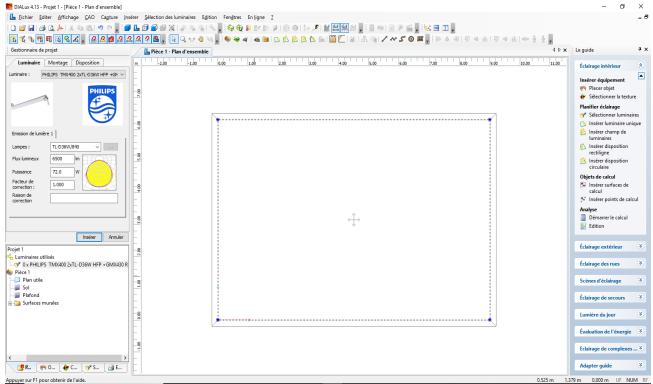


Figure V.8: insertion de la valeur du flux

7. Lancer le calcul

En cliquant sur le bouton affichage 3D le logiciel affiche la disposition des luminaires en trois dimensions :

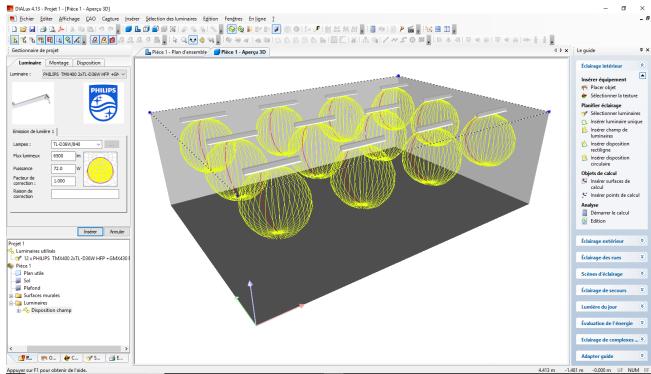


Figure V.9: disposition des luminaires en 3D

La figure V.10 représente le résumé de calcul pour le laboratoire de physique des materiaux:

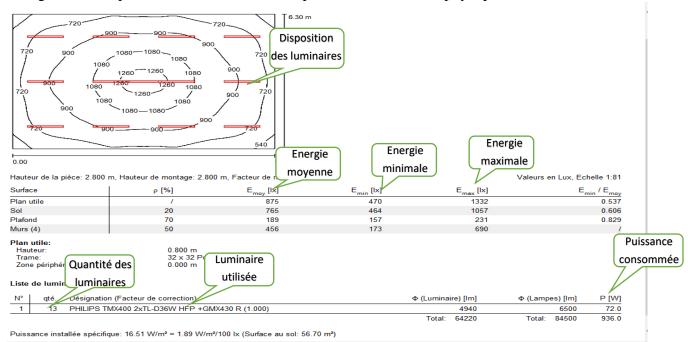


Figure V.10: résultats de calcul

Un luminaire est un appareil servant à répartir, filtrer ou transformer la lumière d'une ou de plusieurs lampes », le logiciel fournit la quantité du flux lumineux pour une lampe (6500lm) et la quantité du flux lumineux pour le luminaire (4940lm). La salle étudiée nécessite 13 luminaires de marque Philips TMX400 2xTL-D36 de puissance 936 W.

Nous avons appliqué la même démarche aux différentes salles du bloc 4 de l'UEMF, le nombre de luminaires nécessaire sont étalés dans le tableau suivant :

Luminaire	Nombre
Panel LED 30*120	1895
Encastre linéaire COULOIR 2400mm	382
DOWNNLIGHT	265
Simple MULTI FDH G5	80
DOWNR 15W	131
LED 3342lm-4000K CRI80 28W	142
Encastre linéaire 1805 mm	32
Encastre linéaire 1211 mm	14
INCL.1xLED CLUSTER 10W/1960lm	40

Tableau V.3: nombre de luminaires dans le Bloc 4

V. Conclusion

Le logiciel DIALUX facilite le calcul d'éclairement et permet des simulations en fonction des différents matériels. Il permet aussi d'établir des courbes isolées qui indiquent l'éclairement en chaque point du local.

Conclusion générale

Mon stage de fin d'étude, effectué au sein de SORALEC, consistait à réaliser l'étude et la conception de l'installation électrique du bloc 4 de l'UEMF.

Le domaine de l'installation électrique est un domaine très varié et complexe.

Pour le dimensionnement de notre installation, nous avons effectué le calcul manuellement et par le logiciel Caneco BT. Les résultats obtenus sont proches à ceux du logiciel. Nous avons choisi le logiciel parce que le calcul manuel est lent et on peut commettre des erreurs sans le savoir.

Nous avons ensuite déterminé le nombre de luminaire nécessaires pour notre application en se basant sur un logiciel de calcul de l'éclairement Dialux.

En conclusion, ce stage m'a offert une opportunité pour participer à la phase étude et ingénierie d'un projet de construction d'un bâtiment et de voir les applications directes de mes connaissances au sein d'un projet dans le domaine de l'installation électrique ce qui représente un supplément de formation si riche dont j'ai eu la chance de bénéficier.

Il m'a fallu prendre en compte les contraintes et les objectifs de l'entreprise et d'assimiler un certain nombre de cours, rechercher les normes et consulter un bon nombre de catalogues d'électricité, d'assimiler des logiciels (Auto CAD, Caneco BT et Dialux).

Pendant ce stage, j'étais contraint de réaliser plusieurs taches en parallèle et de travailler sur différents aspects, ce qui m'a appris à m'organiser et à bien gérer mon temps.

Ce fut une expérience enrichissante sur tous les plans à savoir technique, méthodologique, communicationnel et humain.

.

BIBLIOGRAPHIE

- [1] NF C15-100, Installations électriques à basse tension. AFNOR, Décembre 2002.
- [2] Guide de la compensation d'énergie réactive Schneider Electric
- [3] calcul des sections des conducteurs ; Schneider Electric
- [4] Cahier technique n°158; calcul des courant de court-circuit; Schneider Electric
- [5] Catalogue transformateur Legrand
- [6] Catalogue groupe électrogène Dagartech
- [7] guide VarSetpro, Schneider Electric
- [8] Caneco BT version 5.1, Manuel, ALPI
- [9] Dialux 4.13, manuel
- [10] L'Agence Nationale pour le Développement des Energies Renouvelables et de l'Efficacité Energétique ; manuel d'éclairement

Annexe 1 : sections des conducteurs

DISTRUBITION	PUISSANCE (KVA)	lb	In	Lettre de sélection	K1	К2	К3	Kn	К	lz'	Sph (mm²)	$S_n \ (mm^2$	S_{PE}) (mm^2)
TE-PAC01	190	274,25	320	F	1	0,75	0,91	0,84	0,57	558,17	240	120	120
TE-PAC02	190	274,25	320	F	1	0,75	0,91	0,84	0,57	558,17	240	120	120
TE-PAC03	190	274,25	320	F	1	0,75	0,91	0,84	0,57	558,17	240	120	120
TE-PAC04	190	274,25	320	F	1	0,75	0,91	0,84	0,57	558,17	240	120	120
TE-PAC05	190	274,25	320	F	1	0,75	0,91	0,84	0,57	558,17	240	120	120
TE. POMPE CI	160	230,95	250	F	1	0,75	0,91	0,84	0,57	436,07	150	75	75
TGBT NS	247,32	356,99	400	F	1	0,73	0,91	0,84	0,56	716,83	400	200	200
TB4 RDC N°1	17,51	25,27	32	F	1	0,75	0,91	0,84	0,57	55,82	6	6	6
TB4 RDC N°2	15,64	22,58	32	F	1	0,75	0,91	0,84	0,57	55,82	6	6	6
TB4 RDC N°3	37,23	53,74	63	F	1	0,75	0,91	0,84	0,57	109,89	25	12,5	16
TB4 RDC N°4	26,78	38,65	40	F	1	0,75	0,91	0,84	0,57	69,77	10	10	10
TB4 R+1 N°1	32,46	46,85	50	F	1	0,75	0,91	0,84	0,57	87,21	16	16	16
TB4 R+1 N°2	39,93	57,64	63	F	1	0,75	0,91	0,84	0,57	109,89	25	12,5	16
TB4 R+1 N°3	30,96	44,69	50	F	1	0,75	0,91	0,84	0,57	87,21	16	16	16
TB4 R+1 N°4	35,31	51,31	63	F	1	0,75	0,91	0,84	0,57	109,89	25	12,5	16
TB4 R+2 N°1	35,55	58,57	63	F	1	0,75	0,91	0,84	0,57	109,89	25	12,5	16
TB4 R+2 N°2	40,58	58,50	63	F	1	0,75	0,91	0,84	0,57	109,89	25	12,5	16
TB4 R+2 N°3	40,53	47,10	63	F	1	0,75	0,91	0,84	0,57	109,89	25	12,5	16
TB4 R+2 N°4	32,63	63,70	50	F	1	0,75	0,91	0,84	0,57	87,21	16	16	16
TB4 R+3 N°1	44,13	65,10	70	F	1	0,75	0,91	0,84	0,57	122,10	25	12,5	16
TB4 R+3 N°2	45,1	52,54	70	F	1	0,75	0,91	0,84	0,57	122,10	25	12,5	16
TB4 R+3 N°3	36,4	36,84	70	F	1	0,75	0,91	0,84	0,57	122,10	25	12,5	16
TB4 R+3 N°4	25,52	32,74	63	F	1	0,75	0,91	0,84	0,57	109,89	25	12,5	16
TB4 R+4 N°1	22,68	32,74	40	F	1	0,75	0,91	0,84	0,57	69,77	16	16	16
TB4 R+4 N°2	45,76	66,05	40	F	1	0,75	0,91	0,84	0,57	69,77	16	16	16
TB4 R+4 N°3	39,94	57,65	100	F	1	0,75	0,91	0,84	0,57	174,43	50	25	25
TB4 R+4 N°4	40,04	57,80	63	F	1	0,75	0,91	0,84	0,57	109,89	25	12,5	16
Ascenseurs 1	10	14,43	16	F	1	0,73	0,91	0,84	0,56	28,67	2,5	2,5	2,5
Ascenseurs 2	10	14,43	16	F	1	0,73	0,91	0,84	0,56	28,67	2,5	2,5	2,5
Monte-charge 1	20	28,87	32	F	1	0,75	0,91	0,84	0,57	55,82	6	6	6

Tableau 1 : section des conducteurs réseau normale

SORALEC											OHITCH	I	
Distribution	PUISSANCE (KVA)	lb (A)	In (A)	Lettre de sélection	K1	K2	К3	Kn	K	Iz' (A)	Sph (mm²)	Sn (mm²)	Spe (mm²)
TGBT NS	247,32	356,99	400	F	1	0,75	0,91	0,84	0,57	697,71	400	200	200
TB4 RDC N°1	9,10	13,14	16	F	1	0,75	0,91	0,84	0,57	27,91	2,5	2,5	2,5
TB4 RDC N°2	4,2	6,12	10	F	1	0,75	0,91	0,84	0,57	17,44	1,5	1,5	1,5
TB4 RDC N°3	3,03	4,37	6	F	1	0,75	0,91	0,84	0,57	10,47	1,5	1,5	1,5
TB4 RDC N°4	2,76	3,98	6	F	1	0,75	0,91	0,84	0,57	10,47	1,5	1,5	1,5
TB4 R+1 N°1	0,75	1,08	2	F	1	0,75	0,91	0,84	0,57	3,49	1,5	1,5	1,5
TB4 R+1 N°2	1,63	2,35	3	F	1	0,75	0,91	0,84	0,57	5,23	1,5	1,5	1,5
TB4 R+1 N°3	0,70	1,01	2	F	1	0,75	0,91	0,84	0,57	3,49	1,5	1,5	1,5
TB4 R+1 N°4	1,03	1,49	2	F	1	0,75	0,91	0,84	0,57	3,49	1,5	1,5	1,5
TB4 R+2 N°1	6,83	9,86	10	F	1	0,75	0,91	0,84	0,57	17,44	1,5	1,5	1,5
TB4 R+2 N°2	5,57	8,04	10	F	1	0,75	0,91	0,84	0,57	17,44	1,5	1,5	1,5
TB4 R+2 N°3	6,88	9,93	10	F	1	0,75	0,91	0,84	0,57	17,44	1,5	1,5	1,5
TB4 R+2 N°4	7,06	10,19	16	F	1	0,75	0,91	0,84	0,57	27,91	2,5	2,5	2,5
TB4 R+3 N°1	0,60	0,87	1	F	1	0,75	0,91	0,84	0,57	1,74	1,5	1,5	1,5
TB4 R+3 N°2	0,62	0,89	1	F	1	0,75	0,91	0,84	0,57	1,74	1,5	1,5	1,5
TB4 R+3 N°3	1,26	1,82	2	F	1	0,75	0,91	0,84	0,57	3,49	1,5	1,5	1,5
TB4 R+3 N°4	0,69	1,00	2	F	1	0,75	0,91	0,84	0,57	3,49	1,5	1,5	1,5
TB4 R+4 N°1	0,70	1,01	2	F	1	0,75	0,91	0,84	0,57	3,49	1,5	1,5	1,5
TB4 R+4 N°2	0,70	1,01	2	F	1	0,75	0,91	0,84	0,57	3,49	1,5	1,5	1,5
TB4 R+4 N°3	0,70	1,01	2	F	1	0,75	0,91	0,84	0,57	3,49	1,5	1,5	1,5
TB4 R+4 N°4	0,67	0,97	1	F	1	0,75	0,91	0,84	0,57	1,74	1,5	1,5	1,5
Monte-charge 2	12,86	18,56	20	F	1	0,75	0,91	0,84	0,57	34,89	4	4	4
Desenfumage1	161,71	233,42	250	F	1	0,75	0,91	0,84	0,57	436,07	150	75	75
Desenfumafe2	127,50	184,04	200	F	1	0,75	0,91	0,84	0,57	348,86	120	60	60
ONDULEUR	100,00	144,34	160	F	1	0,75	0,91	0,84	0,57	279,09	95	47,5	47,5
Centrale ECS incendie	4,50	6,50	10	F	1	0,75	0,91	0,84	0,57	17,44	1,5	1,5	1,5
Centrale CMSI incendie	4,50	6,50	10	F	1	0,75	0,91	0,84	0,57	17,44	1,5	1,5	1,5
Groupe CLIM	15,00	21,65	32	F	1	0,75	0,91	0,84	0,57	55,82	6	6	6

Tableau 2 · section des conducteur réseau secouru

	l'ableau 2 : section des conducteur reseau secouru													
DISTRUBITION	PUISSANCE (KVA)	lb	In	Lettre de sélection	K1	К2	К3	Kn	К	lz'	Sph (mm²)	Sn (mm²)	Spe (mm²)	
	2,81	4,06	4	F	1	0,73	0,91	0,84	0,56	7,17	1,5	1,5	1,5	
TB4 RDC N°4	4,75	6,86	10	F	1	0,75	0,91	0,84	0,57	17,44	1,5	1,5	1,5	
TB4 R+1 N°1	14,00	20,21	25	F	1	0,75	0,91	0,84	0,57	43,61	4	4	4	
TB4 R+1 N°2	13,00	18,76	20	F	1	0,75	0,91	0,84	0,57	34,89	4	4	4	
TB4 R+1 N°3	12,25	17,68	20	F	1	0,77	0,91	0,84	0,59	33,98	4	4	4	
TB4 R+1 N°4	10,00	14,43	16	F	1	0,75	0,91	0,84	0,57	27,91	2,5	2,5	2,5	
TB4 R+2 N°1	17,00	24,54	25	F	1	0,77	0,91	0,84	0,59	42,47	4	4	4	
TB4 R+2 N°2	16,60	23,96	25	F	1	0,75	0,91	0,84	0,57	43,61	4	4	4	
TB4 R+2 N°3	18,75	27,06	32	F	1	0,75	0,91	0,84	0,57	55,82	6	6	6	
TB4 R+2 N°4	17,25	24,90	25	F	1	0,75	0,91	0,84	0,57	43,61	4	4	4	
TB4 RDC N°1	14,75	21,29	25	F	1	0,77	0,91	0,84	0,59	42,47	4	4	4	
TB4 R+3 N°2	15,50	22,37	25	F	1	0,75	0,91	0,84	0,57	43,61	4	4	4	
TB4 R+3 N°3	13,50	19,49	20	F	1	0,75	0,91	0,84	0,57	34,89	4	4	4	
TB4 R+3 N°4	12,75	18,40	20	F	1	0,75	0,91	0,84	0,57	34,89	4	4	4	
TB4 R+4 N°1	10,75	15,52	16	F	1	0,77	0,91	0,84	0,59	27,18	2,5	2,5	2,5	
TB4 R+4 N°2	15,75	22,73	25	F	1	0,75	0,91	0,84	0,57	43,61	4	4	4	
TB4 R+4 N°3	14,75	21,29	25	F	1	0,75	0,91	0,84	0,57	43,61	4	4	4	
TB4 R+4 N°4	14,75	21,29	25	F	1	0,75	0,91	0,84	0,57	43,61	4	4	4	

Tableau 3 : section des conducteur réseau ondulé

Projet de fin d'étude 2017/2018

Annexe 2 : calcul de la chute de tension

Distribution	Ib(A)	Langueur en (m)	Section en (mm²)	Résistivité (CUIVRE)	R(mΩ)	Chute de tension	Chute en %
Coffret de compensation 200KVAR	288,68	20,00	185	22,5	0,12	1,45	0,36
TB4 Normal	1202,80	90,00	240	22,5	0,09	23,03	5,76
TE-PAC01	274,25	50,00	240	22,5	0,09	2,92	0,73
TE-PAC02	274,25	50,00	240	22,5	0,09	2,92	0,73
TE-PAC03	274,25	50,00	240	22,5	0,09	2,92	0,73
TE-PAC04	274,25	50,00	240	22,5	0,09	2,92	0,73
TE-PAC05	274,25	50,00	240	22,5	0,09	2,92	0,73
TE. POMPE CI	230,95	50,00	150	22,5	0,15	3,36	0,84
TGBT NS	356,99	10,00	400	22,5	0,06	0,57	0,14
TB4 RDC N°1	25,27	30,00	6	22,5	3,75	4,00	1,00
TB4 RDC N°2	22,58	84,00	6	22,5	3,75	10,00	2,50
TB4 RDC N°3	53,74	132,00	25	22,5	0,90	9,42	2,36
TB4 RDC N°4	38,65	88,00	10	22,5	2,25	10,88	2,72
TB4 R+1 N°1	46,85	40,00	16	22,5	1,41	3,80	0,95
TB4 R+1 N°2	57,64	84,00	25	22,5	0,90	6,43	1,61
TB4 R+1 N°3	44,69	132,00	16	22,5	1,41	11,97	2,99
TB4 R+1 N°4	50,97	88,00	25	22,5	0,90	5,96	1,49
TB4 R+2 N°1	51,31	30,00	25	22,5	0,90	2,05	0,51
TB4 R+2 N°2	58,57	89,00	25	22,5	0,90	6,93	1,73
TB4 R+2 N°3	58,50	137,00	25	22,5	0,90	10,65	2,66
TB4 R+2 N°4	47,10	93,00	16	22,5	1,41	8,89	2,22
TB4 R+3 N°1	63,70	38,00	25	22,5	0,90	3,22	0,80
TB4 R+3 N°2	63,70	94,00	25	22,5	0,90	7,96	1,99
TB4 R+3 N°3	65,10	142,00	25	22,5	0,90	12,28	3,07
TB4 R+3 N°4	52,54	98,00	25	22,5	0,90	6,84	1,71
TB4 R+4 N°1	36,84	40,00	16	22,5	1,41	2,99	0,75
TB4 R+4 N°2	32,74	99,00	16	22,5	1,41	6,58	1,64
TB4 R+4 N°3	66,05	148,00	50	22,5	0,45	6,90	1,72
TB4 R+4 N°4	57,65	104,00	25	22,5	0,90	7,97	1,99
Ascenseurs 1	14,43	110,00	2,5	22,5	9,00	19,91	4,98
Ascenseurs 2	14,43	116,00	2,5	22,5	9,00	20,99	5,25
Monte-charge 1	28,87	160,00	6	22,5	3,75	24,36	6,09

Tableau 4 : chute de tension pour le réseau normal

Distribution	Ib(A)	Langueur en (m)	Section en (mm²)	Résistivité (CUIVRE)	$R(m\Omega)$	Chute de tension	Chute en
Onduleur	168,98	20	70	22,5	0,3214	1,78	0,446
TB4 RDC N°1	4,06	28	1,5	22,5	15,0000	2,37	0,592
TB4 RDC N°4	6,86	83	1,5	22,5	15,0000	11,87	2,967
TB4 R+1 N°1	20,21	28	4	22,5	5,6250	4,45	1,113
TB4 R+1 N°2	18,76	89	4	22,5	5,6250	13,14	3,284
TB4 R+1 N°3	17,68	137	4	22,5	5,6250	19,06	4,764
TB4 R+1 N°4	14,43	83	2,5	22,5	9,0000	15,02	3,754
TB4 R+2 N°1	24,54	33	4	22,5	5,6250	6,37	1,593
TB4 R+2 N°2	23,96	94	4	22,5	5,6250	17,72	4,430
TB4 R+2 N°3	27,06	142	6	22,5	3,7500	20,26	5,065
TB4 R+2 N°4	24,90	88	4	22,5	5,6250	17,24	4,310
TB4 R+3 N°1	21,29	38	4	22,5	5,6250	6,37	1,591
TB4 R+3 N°2	22,37	97	4	22,5	5,6250	17,07	4,268
TB4 R+3 N°3	19,49	147	4	22,5	5,6250	22,54	5,636
TB4 R+3 N°4	18,40	93	4	22,5	5,6250	13,46	3,366
TB4 R+4 N°1	15,52	43	2,5	22,5	9,0000	8,37	2,092
TB4 R+4 N°2	22,73	104	4	22,5	5,6250	18,60	4,650
TB4 R+4 N°3	14,75	153	4	22,5	5,6250	17,76	4,439
TB4 R+4 N°4	14,75	99	4	22,5	5,6250	11,49	2,872

Tableau 5 : chute de tension pour le réseau ondulé

Distribution	Ib(A)	Langueur en (m)	Section en (mm²)	Résistivité (CUIVRE)	$R(m\Omega)$	Chute	Chute en
TGBT NS	247,32	10	400	22,5	0,0563	0,40	0,099
TB4 RDC N°1	9,10	25	2,5	22,5	9,0000	2,85	0,713
TB4 RDC N°2	4,20	84	1,5	22,5	15,0000	7,35	1,838
TB4 RDC N°3	3,03	132	1,5	22,5	15,0000	8,34	2,084
TB4 RDC N°4	2,76	88	1,5	22,5	15,0000	5,06	1,266
TB4 R+1 N°1	0,75	149	1,5	22,5	15,0000	2,33	0,582
TB4 R+1 N°2	1,63	84	1,5	22,5	15,0000	2,85	0,713
TB4 R+1 N°3	0,70	132	1,5	22,5	15,0000	1,93	0,481
TB4 R+1 N°4	1,03	88	1,5	22,5	15,0000	1,89	0,472
TB4 R+2 N°1	6,83	30	1,5	22,5	15,0000	4,27	1,068
TB4 R+2 N°2	5,57	89	1,5	22,5	15,0000	10,33	2,583
TB4 R+2 N°3	6,88	137	1,5	22,5	15,0000	19,65	4,911
TB4 R+2 N°4	7,06	93	2,5	22,5	9,0000	8,23	2,058
TB4 R+3 N°1	0,60	35	1,5	22,5	15,0000	0,44	0,109
TB4 R+3 N°2	0,62	94	1,5	22,5	15,0000	1,21	0,304
TB4 R+3 N°3	1,26	142	1,5	22,5	15,0000	3,73	0,932
TB4 R+3 N°4	0,69	149	1,5	22,5	15,0000	2,14	0,536
TB4 R+4 N°1	0,70	40	1,5	22,5	15,0000	0,58	0,146
TB4 R+4 N°2	0,70	99	1,5	22,5	15,0000	1,44	0,361
TB4 R+4 N°3	0,70	148	1,5	22,5	15,0000	2,16	0,540
TB4 R+4 N°4	0,67	104	1,5	22,5	15,0000	1,45	0,363
Ascenseur 2	12,86	116	4	22,5	5,6250	11,74	2,934
Désenfumage 1	161,71	103	150	22,5	0,1500	4,84	1,210
Désenfumage 2	127,50	107	120	22,5	0,1875	4,67	1,168
ONDULEUR	100,00	20	95	22,5	0,2368	0,82	0,205
Centrale ECS incendie	4,50	46	1,5	22,5	15,0000	4,31	1,079
Centrale CMSI incendie	4,50	103	1,5	22,5	15,0000	9,66	2,415

Tableau 6 : chute de tension pour le réseau secouru

Annexe 3 : calcul de courant de court-circuit

Distribution	PUISSANCE (KVA)	lb (A)	In (A)	Sph(mm²)	Langueur en (m)	Rth (mΩ)	Xth (mΩ)	RthT(mΩ)	XthT(mΩ)	ICC(KA)
Transformateur	1000	1443,42	1600	400	10,00	2,35	8,5	8,535	8,851	19,72
TB4 Normal	833,3	1202,80	1250	400	90,00	1,0125	7,2	9,5475	16,051	12,98
Coffret de compensation	200	288,68	320	240	20,00	0,375	1,6	8,91	10,451	17,66
TE-PAC01	190	274,25	320	240	50,00	1,171875	4	9,706875	12,851	15,06
TE-PAC02	190	274,25	320	240	50,00	1,171875	4	9,706875	12,851	15,06
TE-PAC03	190	274,25	320	240	50,00	1,171875	4	9,706875	12,851	15,06
TE-PAC04	190	274,25	320	240	50,00	1,171875	4	9,706875	12,851	15,06
TE-PAC05	190	274,25	320	240	50,00	0,9375	4	9,4725	12,851	15,19
TE. POMPE CI	160	230,95	250	150	50,00	1,5	4	10,035	12,851	14,87
TGBT NS	247,32	356,99	400	400	10,00	0,5625	4	9,0975	12,851	15,40
TB4 RDC N°1	17,51	25,27	32	6	30,00	22,5	4	31,5975	16,851	6,77
TB4 RDC N°2	15,64	22,58	32	6	84,00	63	4	72,0975	0,31125982	3,36
TB4 RDC N°3	37,23	53,74	63	25	132,00	23,76	0,8	32,8575	0,06225196	7,38
TB4 RDC N°4	26,78	38,65	40	10	88,00	13,5	2,4	22,5975	0,18675589	10,73
TB4 R+1 N°1	32,46	46,85	50	16	40,00	11,25	6,72	20,3475	0,5229165	11,91
TB4 R+1 N°2	39,93	57,64	63	25	84,00	15,12	10,56	24,2175	0,82172594	10,01
TB4 R+1 N°3	30,96	44,69	50	16	132,00	37,125	7,04	46,2225	0,54781729	5,25
TB4 R+1 N°4	35,31	51,31	63	25	88,00	15,84	3,2	24,9375	0,24900786	9,72
TB4 R+2 N°1	35,55	58,57	63	25	30,00	5,4	6,72	14,4975	0,5229165	16,72
TB4 R+2 N°2	40,58	58,50	63	25	89,00	16,02	10,56	25,1175	0,82172594	9,65
TB4 R+2 N°3	40,53	47,10	63	25	137,00	24,66	7,04	33,7575	0,54781729	7,18
TB4 R+2 N°4	32,63	63,70	50	16	93,00	26,15625	2,4	35,25375	0,18675589	6,88
TB4 R+3 N°1	44,13	65,10	70	25	38,00	6,84	7,12	15,9375	0,55404249	15,21
TB4 R+3 N°2	45,1	52,54	70	25	94,00	16,92	10,96	26,0175	0,85285192	9,32
TB4 R+3 N°3	36,4	36,84	70	25	142,00	25,56	7,44	34,6575	0,57894327	7,00
TB4 R+3 N°4	25,52	32,74	63	25	98,00	17,64	3,04	26,7375	0,23655747	9,07
TB4 R+4 N°1	22,68	32,74	40	16	40,00	11,25	7,52	20,3475	0,58516847	11,91
TB4 R+4 N°2	45,76	66,05	40	16	99,00	27,84375	11,36	36,94125	0,8839779	6,56
TB4 R+4 N°3	39,94	57,65	100	50	148,00	13,32	7,84	22,4175	0,61006926	10,81
TB4 R+4 N°4	40,04	57,80	63	25	104,00	18,72	3,2	27,8175	0,24900786	8,72
Ascenseurs 1	10	14,43	16	2,5	110,00	247,5	7,92	18,0825	16,771	9,83
Ascenseurs 2	10	14,43	16	2,5	116,00	261	11,84	269,535	24,902	0,90
Monte-charge1	20	28,87	32	6	160,00	150	8,32	158,535	17,171	1,52

Tableau 7 : courant de court-circuit réseau normal

DISTRIBUTION	PUISSANCE (KVA)	Ib(A)	In (A)	Sph (mm²)	Langueur en (m)	Rth (mΩ)	Xth (mΩ)	RthT (mΩ)	XthT (mΩ)	ICC(KA)
TGBT NS	247,32	356,99	400	400	10	0,1125	0,8	9,6599	16,851	12,484
TB4 RDC N°1	9,10	13,14	16	2,5	25	45	2	45,1125	2,8	5,365
TB4 RDC N°2	4,2	6,12	10	1,5	84	252	6,72	252,1125	7,52	0,961
TB4 RDC N°3	3,03	4,37	6	1,5	132	396	10,56	405,6599	27,411	0,596
TB4 RDC N°4	2,76	3,98	6	1,5	88	264	7,04	273,6599	23,891	0,883
TB4 R+1 N°1	0,75	1,08	2	1,5	149	447	11,92	456,6599	28,771	0,530
TB4 R+1 N°2	1,63	2,35	3	1,5	84	252	6,72	261,6599	23,571	0,923
TB4 R+1 N°3	0,70	1,01	2	1,5	132	396	10,56	405,6599	27,411	0,596
TB4 R+1 N°4	1,03	1,49	2	1,5	88	264	7,04	273,6599	23,891	0,883
TB4 R+2 N°1	6,83	9,86	10	1,5	30	90	2,4	99,6599	19,251	2,389
TB4 R+2 N°2	5,57	8,04	10	1,5	89	267	7,12	276,6599	23,971	0,873
TB4 R+2 N°3	6,88	9,93	10	1,5	137	411	10,96	420,6599	27,811	0,575
TB4 R+2 N°4	7,06	10,19	16	2,5	93	167,4	7,44	177,0599	24,291	1,357
TB4 R+3 N°1	0,60	0,87	1	1,5	35	105	2,8	114,6599	19,651	2,084
TB4 R+3 N°2	0,62	0,89	1	1,5	94	282	7,52	291,6599	24,371	0,829
TB4 R+3 N°3	1,26	1,82	2	1,5	142	426	11,36	435,6599	28,211	0,555
TB4 R+3 N°4	0,69	1,00	2	1,5	149	447	11,92	456,6599	28,771	0,530
TB4 R+4 N°1	0,70	1,01	2	1,5	40	120	3,2	129,6599	20,051	1,848
TB4 R+4 N°2	0,70	1,01	2	1,5	99	297	7,92	306,6599	24,771	0,788
TB4 R+4 N°3	0,70	1,01	2	1,5	148	444	11,84	453,6599	28,691	0,533
TB4 R+4 N°4	0,67	0,97	1	1,5	104	312	8,32	321,6599	25,171	0,752
Monte-charge 2	12,86	18,56	20	4	116	130,5	9,28	140,1599	26,131	1,701
Désenfumage 1	161,71	233,42	250	150	103	3,09	8,24	12,7499	25,091	8,616
Désenfumage2	127,50	184,04	200	120	107	4,0125	8,56	13,6724	25,411	8,403
ONDULEUR	100,00	144,34	160	95	20	0,9473	1,6	10,60727	18,451	11,394
Centrale ECS incendie	4,50	6,50	10	1,5	46	138	3,68	147,6599	20,531	1,627
Centrale CMSI incendie	4,50	6,50	10	1,5	103	309	8,24	318,6599	25,091	0,759
Groupe CLIM	15,00	21,65	32	6	98	73,5	7,84	83,1599	24,691	2,795

Tableau 8 : courant de court-circuit réseau secouru

CABLE	PUISSANCE (KVA)	Ib	In	Sph (mm²)	Langueur en (m)	Rth (mΩ)	Xth (mΩ)	RthT (mΩ)	XthT (mΩ)	Icc (KA)
TGBTO	117,07	168,98	200	50	20	1,800	1,6000	11,3475	17,650	11,556
TB4 RDC N°1	2,81	4,06	4	1,5	28	84,000	2,2400	95,3475	19,890	2,490
TB4 RDC N°4	4,75	6,86	10	1,5	83	249,000	6,6400	260,3475	24,290	0,927
TB4 R+1 N°1	14,00	20,21	25	4	28	31,500	2,2400	42,8475	19,890	5,133
TB4 R+1 N°2	13,00	18,76	20	4	89	100,125	7,1200	111,4725	24,770	2,124
TB4 R+1 N°3	12,25	17,68	20	4	137	192,656	10,9600	204,0038	28,610	1,177
TB4 R+1 N°4	10,00	14,43	16	2,5	83	186,750	6,6400	198,0975	24,290	1,215
TB4 R+2 N°1	17,00	24,54	25	4	33	46,406	2,6400	57,7538	20,290	3,961
TB4 R+2 N°2	16,60	23,96	25	4	94	132,188	7,5200	143,5350	25,170	1,664
TB4 R+2 N°3	18,75	27,06	32	6	142	133,125	11,3600	144,4725	29,010	1,646
TB4 R+2 N°4	17,25	24,90	25	4	88	123,750	7,0400	135,0975	24,690	1,766
TB4 R+3 N°1	14,75	21,29	25	4	38	42,750	3,0400	54,0975	20,690	4,187
TB4 R+3 N°2	15,50	22,37	25	4	97	136,406	7,7600	147,7538	25,410	1,617
TB4 R+3 N°3	13,50	19,49	20	4	147	206,719	11,7600	218,0663	29,410	1,102
TB4 R+3 N°4	12,75	18,40	20	4	93	130,781	7,4400	142,1288	25,090	1,680
TB4 R+4 N°1	10,75	15,52	16	2,5	43	77,400	3,4400	88,7475	21,090	2,658
TB4 R+4 N°2	15,75	22,73	25	4	104	146,250	8,3200	157,5975	25,970	1,518
TB4 R+4 N°3	14,75	21,29	25	4	153	215,156	12,2400	226,5038	29,890	1,061
TB4 R+4 N°4	14,75	21,29	25	4	99	139,219	7,9200	150,5663	25,570	1,588

Tableau 9 : courant de court-circuit réseau ondulé

Annexe 4 : fichier de sections des câbles donnés par Schneider Electric

		isolant	et nom	bre de c	onducte	urs cha	rgés (3 o	u 2)		
		caouto ou PV	houc				u éthylèr			
lettre de	В	PVC3	PVC2		PR3		PR2			
sélection	C	1	PVC3		PVC2	PR3		PR2		
	E			PVC3		PVC2	PR3		PR2	
	F				PVC3		PVC2	PR3		PR2
section	1,5	15,5	17,5	18,5	19,5	22	23	24	26	
cuivre	2,5	21	24	25	27	30	31	33	36	
(mm²)	4	28	32	34	36	40	42	45	49	
,	6	36	41	43	48	51	54	58	63	
	10	50	57	60	63	70	75	80	86	
	16	68	76	80	85	94	100	107	115	
	25	89	96	101	112	119	127	138	149	161
	35	110	119	126	138	147	158	169	185	200
	50	134	144	153	168	179	192	207	225	242
	70	171	184	196	213	229	246	268	289	310
	95	207	223	238	258	278	298	328	352	377
	120	239	259	276	299	322	346	382	410	437
	150		299	319	344	371	395	441	473	504
	185		341	364	392	424	450	506	542	575
	240		403	430	461	500	538	599	641	679
	300		464	497	530	576	621	693	741	783
	400					656	754	825		940
	500					749	868	946		1 083
	630					855	1 005	1 088		1 254
section	2,5	16,5	18,5	19,5	21	23	25	26	28	
aluminium	4	22	25	26	28	31	33	35	38	
(mm²)	6	28	32	33	36	39	43	45	49	
	10	39	44	46	49	54	58	62	67	
	16	53	59	61	66	73	77	84	91	
	25	70	73	78	83	90	97	101	108	121
	35	86	90	96	103	112	120	126	135	150
	50	104	110	117	125	136	146	154	164	184
	70	133	140	150	160	174	187	198	211	237
	95	161	170	183	195	211	227	241	257	289
	120	186	197	212	226	245	263	280	300	337
	150		227	245	261	283	304	324	346	389
	185		259	280	298	323	347	371	397	447
	240		305	330	352	382	409	439	470	530
	300		351	381	406	440	471	508	543	613
	400					526	600	663		740
	500					610	694	770		856
	630					711	808	899		996

Tableau 10 : section des câbles par Schneider Electric

Annexe5 : fichier des appareils de protection

type de disjoncteur			DT40		DT40N		DT60N	DT60H
nombre de pôles			1P+N	3P, 3P+N	1P+N	3P, 3P+N	4P	4P
caractéristiques électriques								
courbes			B, C	C, D	C, D	C, D	c	C
calibres	In		1 à 40	6 à 40	1 à 40	6 à 40	40 et 63	40 et 63
tension d'emploi maximale	Ue (V)	CA 50/60 Hz	230	400	230	400	440	440
•		CC	-	-	-	-	-	-
tension d'emploi minimale	Ue (V)	CA 50/60 Hz	-	-	-	-	-	-
-		CC	-	-	-	-	-	-
ension d'isolement Ui (V)	Ui (V)		440	440	440	440	500	500
ension assignée	Uimp (kV)		4	4	4	4	6	6
le tenue aux chocs								
oouvoir de coupure								
en CA	Ue 50/60 Hz							
NF/EN 60947-2 (kA eff.)	lcu	1260 V	-	-	-	-	-	-
		12133 V	-		-	-	-	-
		100133 V	-	-	-	-	-	-
		220240 V	6	10	10	15	20	30
		380415 V	-	6	-	10	10	15
		440 V						
		440 V	-		-	-	-	-
		500 V	-		-		-	-
	Ics		75% de Icu		75% de Icu		75% de Icu	50% de Icu
IF/EN 60898 (A eff.)	lon	230/400 V	4500		6000		6000	10000
autres caractéristiques								
locs différentiels (Vigi)			•		•		•	•
ignalisation et déclencheme			•		•		•	•
ignalisation de déclenchem	ent sur défaut		•		•		•	•
ectionnement à coupure ple	einement appa	rente	•		•		•	•
ermeture rapide			•		•		•	•
degré de protection	appareil seul		IP 20		IP 20		IP 20	IP 20
_	appareil en co	offret	IP 40		IP 40		IP 40	IP 40
	modulaire		classe d'isole	ment II	classe d'iso	lement II	1	classe d'isolemer

iC60N		iC60H		iC60L		iC60LMA	NG125LMA
1P, 1P+N	2, 3, 4P	-	2, 3, 4P	1P	2, 3, 4P	2, 3P	2,3P
						•	
B, C, D		C		B, C, K, Z		MA (li = 12 ln)	MA (li = 12 ln)
0,5 à 63 (1 à 63	en CC)	0,5 à 63 (1 à 63	en CC)	0,5 à 63 (1 à 63 er	n CC)	1,6 à 40	4 à 80
240/415, 440		240/415, 440		240/415, 440		440	500
250		250		250		-	-
12		12		12		12	12
12		12		12		-	-
500		500		500		500	690
6		6		6		6	8
						<u> </u>	
		les es		le:	I	les ses	les ses
Ph/N	Ph / Ph (Ph / N)	Ph/N	Ph / Ph (Ph / N)	Ph	Ph / Ph (Ph / N)	Ph / Ph	Ph / Ph
50 (0,5 à 4 A)	-	-	-	100 (0,5 à 4 A)	100 (0,5 à 4 A)	1-	1-
36 (6 à 63 A)	50 (0,5 à 4 A)	-	70 (0,5 à 4 A)	70 (6 à 63 A)	80 (6 à 63 A)	-	+
	36 (6 à 63 A)		42 (6 à 63 A)				
50 (0,5 à 4 A)	-	-	-	100 (0,5 à 4 A)	100 (0,5 à 4 A)	-	-
20 (6 à 63 A)				50 (6 à 25 A)	70 (6 à 63 A)		
				36 (32/40 A)			
				30 (50/63 A)			
50 (0,5 à 4 A)	50 (0,5 à 4 A)	-	70 (0,5 à 4 A)	100 (0,5 à 4 A)	100 (0,5 à 4 A)	40 (1,6 à 16 A)	100
10 (6 à 63 A)	20 (6 à 63 A)		30 (6 à 63 A)	25 (6 à 25 A)	50 (6 à 25 A)	30 (25 à 40 A)	
				20 (32/40 A) 15 (50/63 A)	36 (32/40 A) 30 (50/63 A)		
-	50 (0,5 à 4 A)	-	70 (0,5 à 4 A)	15 (50/63 A)	100 (0,5 à 4 A)	20 (1.6 à 16 A)	50
	10 (6 à 63 A)		15 (6 à 63 A)		25 (6 à 25 A)	15 (25 à 40 A)	150
	1.0 (0.00.1)				20 (32/40 A)		
					15 (50/63 A)		
-	25 (0,5 à 4 A)	-	50 (0,5 à 4 A)	-	70 (0,5 à 4 A)	15 (1,6 à 16 A)	40
	6 (6 à 63 A)		10 (6 à 63 A)		20 (6 à 25 A)	10 (25 à 40 A)	
					15 (32/40 A)		
	+				10 (50/63 A)		15
100% d'Icu (0,5	5 4 A)	100% d'Icu (0.5		100% d'Icu (0.5 à	- A A \	50% de Icu (1,6 à 40 A)	75% de Icu
75% d'Icu (6 à 6		50% d'Icu (6 à		50% d'Icu (6 à 63		30% de icu (1,6 a 40 A)	75% de ica
6000	6000	10000	10000	15000	15000	-	-
-		-				-	-
•		•		•		•	•
fenêtre Visi-trip		fenêtre Visi-trip		fenêtre Visi-trip		fenêtre Visi-trip	position de la manette voyant mécanique rouge
•		•		•		•	•
•		•		•		•	•
IP 20		IP 20		IP 20		IP 20	IP 20
IP 40		IP 40		IP 40		IP 40	IP 40
classe d'isoleme	ent II	classe d'isolem	ent II	classe d'isolemer	nt II	classe d'isolement II	classe d'isolement II

degré de protection	appareil seul		IP 20 IP 40		IP 20 IP 40		IP 20 IP 40		IP 20 IP 40	
démontage avec peigne en			peigne spéci	al	peigne spéci	al	-		•	
fermeture rapide			•		•		•		•	
sectionnement à coupure p	leinement ap	parente	•		•		•		•	
							rouge		rouge	
•			l				■ voyant de		■ voyant de	
signalisation de déclenche	ment sur défa	ut	-		-		■ position de	la manette	■ position de	la manette
signalisation et déclencher des auxiliaires	nent a distanc	ce	•		•		•		•	
blocs différentiels (Vigi)			•		•		•		•	
autres caractéristiques										
CEI 60898 (A eff.)	Ion	230/400 V	10000		15000		-		-	-
	lcs		75% de Icu		50% de Icu		75% de Icu		-	75% Icu
		500 V	-	-	-	-	-	10	-	15
		440 V	-	6	-	10	-	20	-	40
		380415 V	-	10	4,5	15	-	25	12,5	50
		220240 V	-	20	15	30	-	50	50	100
		130 V	-	-	30	-	-	-	-	-
CEI/EN 60947-2 (kA eff.)	lcu	110130 V	-	-	-	-	-	-	100	-
en CA	Ue 50/60 Hz		Ph	Ph/Ph (Ph/N)	Ph	Ph/Ph (Ph/N)	Ph	Ph/Ph (Ph/N)	Ph	Ph/Ph (Ph/N
pouvoir de coupure										
de tenue aux chocs	Olimp (KV)		ľ		ľ		l°		٥	
tension assignée	Uimp (kV)		6		6		8		8	
tension d'isolement Ui (V)	Ui (V)		12 500		500		690		690	
tension d'emploi minimale		CA 50/60 Hz CC			12		12		12 12	
		CC	125 par pôle		125 par pôle		125 par pôle		125 par pôle	
tension d'emploi maximale		CA 50/60 Hz			240/415, 440)	240/415, 500		240/415, 440	
calibres	ln		63 à 125		50 à 125		10 à 125		10 à 80	
courbes			B, C, D		B, C, D		C, D		C, D	
caractéristiques électrique	S									
nombre de pôles			-	2, 3, 4P	1P	2, 3, 4P	-	3, 4P	1P	2, 3, 4P
type de disjoncteur			C120N		C120H		NG125N		NG125L	

type de disjoncteur moteur			P25M								
nombre de pôles			3								
caractéristiques électriques											
déclenchement magnétique			12 In (± 20%)								
calibres (A)	In		0,16 à 25 (63 A avec un	bloc limit	teur)						
tension d'emploi maximale (V)	Ue	CA (50/60 Hz)	690								
	max	CC	-								
tension d'emploi minimale (V)	Ue	CA (50/60 Hz)	230								
	min	CC	-								
tension d'isolement (V CA)	Ui		690								
tension assignée de tenue	Uimp)	6								
aux chocs (kV)											
pouvoir de coupure											
CA-pouvoir de coupure	Ue	(50/60 Hz)	calibres (A) 0,16 à 1,6	2,5	4	6,3	10	14	18	23	25
CEI 60947-2 (kA)	lcu	_230240 V	illimité							50	50
	lcs		-							100%	
	lcu	_400415 V	illimité					15	15	15	15
	lcs		-					50% d		40% d	
	lcu	_440 V	illimité			50	15	8	8	8	8
	lcs		-			100%		50% d			
	lcu	_500 V	illimité			50	10	6	6	4	4
	lcs		-			100%	d'Icu	75% d			
	lcu	690 V	illimité	3	3	3	3	3	3	3	3
	lcs		-	75% d	flcu						
autres caractéristiques											
signalisation et déclenchement à	distanc	e des auxiliaires	•								
signalisation de déclenchement s	ur défau	ıt	position de la manette								
sectionnement à coupure pleinem	ent app	arente	-								
fermeture rapide			-								
démontage avec peigne en place			-								
degré de protection	IP	appareil seul	IP 20								
_		appareil en coffret modulaire	IP 40								

Tableau 12: disjoncteurs modulaires

Choix des disjoncteurs Compact NS80, NG160, CVS100/160/250 NSX100 à 630

type de disjoncte	ur				NS80	NG160N	CVS100/160/25
nombre de pôles					3	3, 4	3, 4
caractéristiques éle	ctriques selon IEC 60947-2 et	EN 60947-2					
courant assigné (A)			In	40 °C	80	160	100/160/250
ension assignée d'i	solement (V)		Ui		750	800	690
ension ass. de tenu			Uimp		8	8	8
ension assignée d'e	emploi (V)		Ue	CA 50/60 Hz	690	500	440
					Н	N	В
pouvoir de coupure	ultime lcu		CA 50/60 Hz	220/240 V	100	40	40
(kA eff)				380/415 V	70	25	25
	-			440 V	65	16	20
		page A65		500 V 525 V	25 25	10	
		page A65		660/690 V	6		
	lcs		(% Icu)	≤ 440 V	100 %	75%	100% (75% à 440
	ics	•	(/e icu)	500 à 690 V	100 /6	70,0	100% (75% à 440
ptitude au sectionr	nement			500 a 050 V	-	•	
atégorie d'emploi					Ā	A	_ A
ndurance (cycles F	-0)		mécanique		20000	10000	30000/25000/2000
	-,		électrique	440 V - In/2	10000	1	30000/25000/2000
				440 V - In	7000	5000	12000/12000/1000
caractéristiques éle	ctriques selon Nema AB1				1		
ouvoir de coupure				240 V	100		
				480 V	65		
				600 V	10		
	ié pour protection, mesure, co	mmunicatio	n 🕨 caractéristiqu	ues et auxiliaires pages	suivantes		
mode d'association			fixe			•	•
4.4			interchangeable				
nagnétique	protection magnétique instant		MA				
nagnétothermique	protection magnétique + thern	nique	intégré		-	•	•
			TMD				
la atrania	protection générateur		TMG				
lectronique	protection de la distribution protection instantané		Micrologic 1.3		-		
			Micrologic 1.3			_	
	protection LS ₀ I		Micrologic 2.2				
	protection LSI + mesure A ou	E	Micrologic 5.2 A	ou E			
	protection LSI + mesure A ou	_	Micrologic 5.2 A				
	protection LSIG + mesures A	ou E	Micrologic 6.2 A				
	protection Edia + mesures A	ou L	Micrologic 6.3 A				
	protection moteur		crorogic 0.3 A				
	protection instantané		Micrologic 1.3-M	1		I Total	I
	protection LS _a I + déséquilibre/	perte phase	Micrologic 2.2-N				
		Lance business	Micrologic 2.3-M				
	protection LSIG et moteur + m	esures E	Micrologic 6.3 E				
			Micrologic 6.3 E				
	protection d'applications spéc	ifiques					
	générateur		Micrologic 2.2-G	3			
	abonné réseau public BT		Micrologic 2.2 -/				
			Micrologic 2.3 -/				
	réseaux 16 Hz/23		Micrologic 5.3 -/	AZ			
protection différent	ielle						
	par bloc Vigi additionnel					•	•
	par relais Vigirex associé						
installation / raccor							
	dimensions H x L x P (mm)			2P(3)/3P 4P	120 x 90 x 80		105 x 161 x 86 140 x 161 x 86
	masses (kg)			2P(3)/3P	1,0	1,1	2,05 2,2 2,4
	masses (ng)			4P	1,0	1.4	2,4 2,6 2,8
	plages de raccordements		pas polaire (mm) sans épanouisseur		1,72	_,,,-
	Lunden ne inchesensements		Las barane from			I	I
	câbles Cu ou Al			avec épanouisseur			

Tableau 13: disjoncteurs Compact

NSX1	00				NSX	(160				NSX	(250				NSY	(400				NSX	630			
2 (1), 3					2 (1),					2 (1).					3, 4	1400				3, 4	.000			
- (1), 0					- (1)	, 0, 4				1-1.0	0, 4				10, 4					10,4				
100					160					250					400					630				
800					800					800					800					800				
8					8					8					8					8				
690					690					690					690					690				
F	N	н	s	L	F	N	н	s	L	F	N	н	S	L	F	N	н	S	L	F	N	н	S	L
85	90	100	120	150	85	90	100	120	150	85	90	100	120	150	40	85	100	120	150	40	85	100	120	150
36	50	70	100	150	36	50	70	100	150	36	50	70	100	150	36	50	70	100	150	36	50	70	100	150
35	50	65	90	130	35	50	65	90	130	35	50	65	90	130	30	42	65	90	130	30	42	65	90	130
25	36	50	65	70	30	36	50	65	70	30	36	50	65	70	25	30	50	65	70	25	30	50	65	70
22	35	35	40	50	22	35	35	40	50	22	35	35	40	50	20	22	35	40	50	20	22	35	40	50
8	10	10	15	20	8	10	10	15	20	8	10	10	15	20	10	10	20	25	35	10	10	20	25	35
100%					1009	6				1009	6				1009					1009				
100% ((2)				1009	6				1009	6				1009	6 (500	V) - 50	% (> 5	00 V)	1009	6 (500	V) - 50)% (> 5	500 V)
•					•					•										•				
A					A					Α					Α					Α				
50000					4000	0				2000	0				1500	00				1500	0			
50000					2000					2000					1200					8000				
30000					1000					1000					6000					4000				
85	90	100	120	150	85	90	100	120	150	85	90	100	120	150	40	85	100	120	150	40	85	100	120	150
35	50	65	90		35	50	65	90	130	35	50	65	90	130	30	42	65	90	130	35	42	65	90	130
8	20	35	40	50	20	20	35	40	50	20	20	35	40	50	-	20	35	40	50	-	20	35	40	50
			-							1														
•					•					•					•					•				
•					•					•					_									
•					•					•														
•					•					•														
															•					•				
					•					•														
															•					•				
•					•					•														
															•					•				
•					•					•														
															•					•				
															•					•				
•					•					•														
															•					•				
•					•					•														
															•					•				
					•					•														
•					•					•														
																				•				
															•					•				
					•					•					•					•				
•					•					•										•				
161 x 1	105 x 8	36			161 3	x 105	k 86				x 105					x 140					k 140 :			
161 x 1	140 x 8	36			_	x 140 :	x 86				x 140	x 86			255	x 185	x 110			_	(185)	k 110		
					2,2					2,4					6,05					6,2				
2,05					2,6					2,8					7,90					8,13				
2,05 2,4															_					_				
2,05					35 45					35 45					45	ou 70				45	ou 70			

Tableau 14 : disjoncteurs Compact

disjoncteurs de base					NW08	NW10	NW12	MWHIC	
disjoncteurs suivant IE	C 60947-2				IMMOS	NW10	NW12	NW16	
courant assigné (A)	C 30311-E			à 40 °C / 50 °C (1)	800	1000	1250	1600	
calibre du 4ène pôle (A)				a 40 0/30 0(i)	800	1000	1250	1600	
calibre des capteurs (A)					400 à 800	400 à 1000	630 à 1250	800 à	1600
type de disjoncteur					N1	H1 (7)	H2	L1 (2)	
pouvoir de coupure ulti	me (kA off)		lcu	220/415/440 V	42	65	100	150	
V CA 50/60 Hz	ine (ios en)		icu		42	65			
TON SUIGOTIE				525 V			85	130	-
				690 V	42	65	85	100	-
				1150 V	-	-	-	-	50
pouvoir assigné de cou	pure de servic	e (kA eff)	lcs	% lcu	100%				
catégorie d'emploi					В				
courant assigné de cou	rte durée admi	issible (kA eff)	lcw	1 s	42	65	85	30	50
V CA 50/60 Hz				3 s	22	36	50	30	50
protection instantanée i					-	-	190	80	
pouvoir assigné de fern	neture (KA crete	?)	Icm	220/415/440 V	88	143	220	330	-
V CA 50/60 Hz				525 V	88	143	187	286	-
				690 V	88	143	187	220	-
				1150 V	-	-	-	-	105
emps de coupure (ms)	de l'ordre de d	léclenchement à l'e	xtinction de l'arc		25	25	25	10	25
temps de fermeture (ms)				< 70				
disjoncteurs sans prote	ection								
déclenchement par déc	lencheur shun	t suivant IEC 60947	7-2						
type de disjoncteur					HA	HF (3)			
pouvoir de coupure ulti	me Icu (kA eff)	V CA 50/60 Hz	lcu	220690 V	50	85			
pouvoir assigné de cou			lcs	% Icu	100%				
courant assigné de cou			lcw	1 s	50	85			
oourant assigne as sou	rec darec dam	isolate (is tolly	1011	3 s	36	50			
	at da court o	ensult.		0.5	-	-			
protection de surcharge relais de protection extr			otection de court-ci	ircuit - 350 me (4)					
relais de protection exte	erne : temporis	ation maxi de la pr			106	197			
	erne : temporis	ation maxi de la pr	otection de court-ci Icm	ircuit : 350 ms (4) 220690 V	105	187			
relais de protection exte pouvoir assigné de fern	erne : temporis neture (kA crêt	ation maxi de la pr e) V CA 50/60 Hz							
relais de protection exte pouvoir assigné de fern interrupteurs suivant IEC	erne : temporis neture (kA crêt	ation maxi de la pr e) V CA 50/60 Hz			NW08/NW10	/NW12/NW16	ur	WATO	
relais de protection exte pouvoir assigné de fern interrupteurs suivant IEC type d'interrupteur	erne : temporis neture (kA crêt C 60947-3 et An	ation maxi de la pro e) V CA 50/60 Hz nexe A	Icm	220690 V	NW08/NW10	/NW12/NW16 HA	HF	HA10	
relais de protection exte pouvoir assigné de fern interrupteurs suivant IEC type d'interrupteur pouvoir assigné de fern	erne : temporis neture (kA crêt C 60947-3 et An neture (kA crête	ation maxi de la pro e) V CA 50/60 Hz nexe A		220690 V 220690 V	NW08/NW10	/NW12/NW16 HA 105	187	-	
relais de protection exte pouvoir assigné de fern interrupteurs suivant IEC type d'interrupteur pouvoir assigné de fern catégorie AC23A/AC3 V	erne : temporis neture (kA crêt C 60947-3 et An neture (kA crête CA 50/60 Hz	ation maxi de la pri e) V CA 50/60 Hz inexe A	lcm	220690 V 220690 V 1150 V	NW08/NW10 NA 88	/NW12/NW16 HA 105	187	105	
relais de protection exter pouvoir assigné de fern interrupteurs suivant IEC type d'interrupteur pouvoir assigné de fern catégorie AC23A/AC3 V courant assigné de cou	erne : temporis neture (kA crêt C 60947-3 et An neture (kA crête CA 50/60 Hz rte durée admi	ation maxi de la pri e) V CA 50/60 Hz inexe A	Icm	220690 V 220690 V 1150 V 1 s	NW08/NW10	/NW12/NW16 HA 105 -	187 - 85	105 50	
relais de protection exter pouvoir assigné de ferm interrupteurs suivant IEC type d'interrupteur pouvoir assigné de ferm catégorie AC23A/AC3 V courant assigné de cou catégorie AC23A/AC3 V	erne : temporis neture (kA crêt C 60947-3 et An neture (kA crête CA 50/60 Hz rte durée admi CA 50/60 Hz	ation maxi de la pri e) V CA 50/60 Hz inexe A	lcm	220690 V 220690 V 1150 V	NW08/NW10 NA 88	/NW12/NW16 HA 105	187	105	
relais de protection exter pouvoir assigné de ferm interrupteurs suivant IEC type d'interrupteur pouvoir assigné de ferm catégorie AC23A/AC3 V courant assigné de cou catégorie AC23A/AC3 V interrupteurs de mise à	erne : temporis neture (kA crêt C 60947-3 et An neture (kA crête CA 50/60 Hz rte durée admi CA 50/60 Hz	ation maxi de la pri e) V CA 50/60 Hz inexe A	lcm	220690 V 220690 V 1150 V 1 s	NW08/NW10 NA 88 - 42	/NW12/NW16 HA 105 -	187 - 85	105 50	
relais de protection exter pouvoir assigné de ferm interrupteurs suivant IEC type d'interrupteur pouvoir assigné de ferm catégorie AC23A/AC3 V courant assigné de cou catégorie AC23A/AC3 V interrupteurs de mise à	erne : temporis neture (kA crêt C 60947-3 et An neture (kA crête CA 50/60 Hz rte durée admi CA 50/60 Hz	ation maxi de la pri e) V CA 50/60 Hz inexe A	lcm	220690 V 220690 V 1150 V 1 s	NW08/NW10 NA 88	/NW12/NW16 HA 105 -	187 - 85	105 50	
relais de protection exter pouvoir assigné de ferm interrupteurs suivant IEC type d'interrupteur pouvoir assigné de ferm catégorie AC23A/AC3 V courant assigné de cou catégorie AC23A/AC3 V	erne : temporis neture (kA crêt C 60947-3 et An neture (kA crête CA 50/60 Hz rte durée admi CA 50/60 Hz I a terre A crête)	ation maxi de la pri e) V CA 50/60 Hz inexe A e)	lcm	220690 V 220690 V 1150 V 1 s	NW08/NW10 NA 88 - 42	/NW12/NW16 HA 105 -	187 - 85	105 50	
relais de protection exterpouvoir assigné de ferminterrupteurs suivant IEC type d'interrupteur pouvoir assigné de ferminterrupteur AC23A/AC3 Vicourant assigné de coucatégorie AC23A/AC3 Vinterrupteurs de mise à pouvoir de fermeture (k.	erne : temporis neture (kA crêt C 60947-3 et An neture (kA crête CA 50/60 Hz rte durée admi CA 50/60 Hz I a terre A crête)	ation maxi de la pri e) V CA 50/60 Hz inexe A e)	lcm lcm	220690 V 220690 V 1150 V 1 s 3 s	NW08/NW10 NA 88 - 42 -	/NW12/NW16 HA 105 -	187 - 85	105 50	
relais de protection exter pouvoir assigné de ferm interrupteurs suivant IEC type d'interrupteur pouvoir assigné de ferm catégorie AC23A/AC3 V courant assigné de cou catégorie AC23A/AC3 V interrupteurs de mise à pouvoir de fermeture (k courant assigné de cou	erne : temporis neture (kA crêt C 60947-3 et An neture (kA crêt CA 50/60 Hz rte durée admi CA 50/60 Hz I la terre A crête) rte durée admi	eation maxi de la pro e) V CA 50/60 Hz enexe A e) essible (kA eff)	lcm lcm	220690 V 220690 V 1150 V 1 s 3 s	NW08/NW10 NA 88 - 42 -	/NW12/NW16 HA 105 -	187 - 85	105 50	
relais de protection exter pouvoir assigné de ferm interrupteurs suivant lEt type d'interrupteur pouvoir assigné de ferm catégorie AC23A/AC3 V courant assigné de cou catégorie AC23A/AC3 V interrupteurs de mise à pouvoir de fermeture (k courant assigné de cou durabilité mécanique et	erne : temporis neture (kA crêt C 60947-3 et An neture (kA crêt CA 50/60 Hz rte durée admi CA 50/60 Hz I la terre A crête) rte durée admi	eation maxi de la pro e) V CA 50/60 Hz enexe A e) essible (kA eff)	lcm lcm	220690 V 220690 V 1150 V 1 s 3 s	NW08/NW10 NA 88 - 42 -	/NW12/NW16 HA 105 -	187 - 85	105 50	
relais de protection exterpouvoir assigné de ferminterrupteurs suivant IEC type d'interrupteur pouvoir assigné de ferminterrupteur AC23A/AC3 Vicourant assigné de coucatégorie AC23A/AC3 Vinterrupteurs de mise à pouvoir de fermeture (k.	erne : temporis neture (kA crêt C 60947-3 et An neture (kA crêt CA 50/60 Hz rte durée admi CA 50/60 Hz I la terre A crête) rte durée admi t électrique sui	eation maxi de la pro e) V CA 50/60 Hz inexe A e) issible (kA eff) issible (kA eff)	lcm lcm	220690 V 220690 V 1150 V 1 s 3 s	NW08/NW10 NA 88 - 42 - 135 60 Hz 50 Hz	/NW12/NW16 HA 105 -	187 - 85	105 50	
relais de protection exterpouvoir assigné de ferminterrupteurs suivant IEC type d'interrupteur pouvoir assigné de ferminatégorie AC23A/AC3 Vicurant assigné de courant assigné de couran	erne : temporis neture (kA crêt C 60947-3 et An neture (kA crêt CA 50/60 Hz rte durée admi CA 50/60 Hz I la terre A crête) rte durée admi t électrique sui	eation maxi de la pro e) V CA 50/60 Hz inexe A e) issible (kA eff) issible (kA eff) ivant IEC 60947-2/3 avec maintenance	lcm lcm	220690 V 220690 V 1150 V 1 s 3 s	NW08/NW10 NA 88 - 42 - 135 60 Hz 50 Hz	/NW12/NW16 HA 105 -	187 - 85	105 50	
relais de protection exterpouvoir assigné de ferminterrupteurs suivant lE0 type d'interrupteur pouvoir assigné de fermicatégorie AC23A/AC3 V courant assigné de cou catégorie AC23A/AC3 V interrupteurs de mise à pouvoir de fermeture (ki courant assigné de cou durabilité mécanique et durée de vie cycles F/O x 1000 type de disjoncteur	erne : temporis neture (kA crêt C 60947-3 et An neture (kA crêt CA 50/60 Hz rte durée admi CA 50/60 Hz I la terre A crête) rte durée admi t électrique sui	eation maxi de la pro e) V CA 50/60 Hz inexe A e) issible (kA eff) issible (kA eff) ivant IEC 60947-2/3 avec maintenance	lcm lcm	220690 V 220690 V 1150 V 1 s 3 s	NW08/NW10 NA 88 - 42 - 135 60 Hz 50 Hz 25 12,5	/NW12/NW16 HA 105 - 50 36	187 - 85 50	105 50	
relais de protection exterpouvoir assigné de ferminterrupteurs suivant lE0 type d'interrupteur pouvoir assigné de fermicatégorie AC23A/AC3 Vicourant assigné de cou catégorie AC23A/AC3 Vinterrupteurs de mise à pouvoir de fermeture (kicourant assigné de cou durabilité mécanique et durée de vie cycles F/O x 1000 type de disjoncteur courant assigné	erne : temporis neture (kA crét C 60947-3 et An neture (kA crét C A 50/60 Hz rte durée admi C A 50/60 Hz I a terre A crête) rte durée admi t électrique sui mécanique	eation maxi de la pro e) V CA 50/60 Hz inexe A e) issible (kA eff) issible (kA eff) ivant IEC 60947-2/3 avec maintenance sans maintenance	lcm lcw lcw	220690 V 220690 V 1150 V 1 s 3 s	NW08/NW10 NA 88 42 135 60 Hz 50 Hz 25 12,5 N1/H1/H2 800/1000/125	/NW12/NW16 HA 105 - 50 36	187 - 85 50	105 50	
relais de protection exterpouvoir assigné de ferminterrupteurs suivant lE0 type d'interrupteur pouvoir assigné de ferminatégorie AC23A/AC3 V courant assigné de cou catégorie AC23A/AC3 V interrupteurs de mise à pouvoir de fermeture (k courant assigné de cou durabilité mécanique et durée de vie cycles F/O x 1000 type de disjoncteur courant assigné cycles F/O x 1000	erne : temporis neture (kA crêt C 60947-3 et An neture (kA crêt CA 50/60 Hz rte durée admi CA 50/60 Hz I la terre A crête) rte durée admi t électrique sui	eation maxi de la pro e) V CA 50/60 Hz inexe A e) issible (kA eff) issible (kA eff) ivant IEC 60947-2/3 avec maintenance	lcm lcw lcw	220690 V 220690 V 1150 V 1 s 3 s	NW08/NW10 NA 88 - 42 - 135 60 Hz 50 Hz 25 12,5 N1/H1/H2 800/1000/125	/NW12/NW16 HA 105 - 50 36	187 - 85 50	105 50	
relais de protection exterior assigné de ferminature de l'interrupteur suivant lE0 type d'interrupteur pouvoir assigné de ferminatégorie AC23A/AC3 Vicourant assigné de coucatégorie AC23A/AC3 Vinterrupteurs de mise à pouvoir de fermeture (kicourant assigné de coudurabilité mécanique et durée de vie cycles F/O x 1000 type de disjoncteur courant assigné cycles F/O x 1000	erne : temporis neture (kA crét C 60947-3 et An neture (kA crét C A 50/60 Hz rte durée admi C A 50/60 Hz I a terre A crête) rte durée admi t électrique sui mécanique	eation maxi de la pro e) V CA 50/60 Hz inexe A e) issible (kA eff) issible (kA eff) ivant IEC 60947-2/3 avec maintenance sans maintenance	lcm lcw lcw	220690 V 220690 V 1150 V 1 s 3 s 1 s 3 s	NW08/NW10 NA 88 42 135 60 Hz 50 Hz 25 12,5 N1/H1/H2 800/1000/125	/NW12/NW16 HA 105 - 50 36	187 - 85 50	105 50	
relais de protection exteriouvoir assigné de ferminterrupteurs suivant le type d'interrupteur pouvoir assigné de ferminterrupteur pouvoir assigné de coupatégorie AC23A/AC3 Vinterrupteurs de mise à pouvoir de fermeture (kopourant assigné de coupatrie de vie protection de disjoncteur courant assigné de coupatrie de vie protection de disjoncteur courant assigné cycles F/O x 1000 type de disjoncteur courant assigné cycles F/O x 1000 EC 60947-2	erne : temporis neture (kA crêt C 60947-3 et An neture (kA crêt CA 50/60 Hz rte durée admi CA 50/60 Hz Italia terre A crête) rte durée admi t électrique sui mécanique	eation maxi de la pro e) V CA 50/60 Hz inexe A e) issible (kA eff) issible (kA eff) ivant IEC 60947-2/3 avec maintenance sans maintenance	lcm lcw lcw	220690 V 220690 V 1150 V 1 s 3 s	NW08/NW10 NA 88 - 42 - 135 60 Hz 50 Hz 25 12,5 N1/H1/H2 800/1000/125 10	/NW12/NW16 HA 105 50 36	187 - 85 50	105 50	
relais de protection extresouvoir assigné de ferminarrupteurs suivant le type d'interrupteur souvoir assigné de ferminatégorie AC23A/AC3 Vicourant assigné de coupatégorie AC23A/AC3 Vinterrupteurs de mise à couvoir de fermeture (kicourant assigné de coupatrie de vier et de viere de	erne : temporis neture (kA crêt C 60947-3 et An neture (kA crêt CA 50/60 Hz rte durée admi CA 50/60 Hz ta terre A crête) rte durée admi t électrique sui mécanique électrique	eation maxi de la pro e) V CA 50/60 Hz inexe A e) issible (kA eff) issible (kA eff) ivant IEC 60947-2/3 avec maintenance sans maintenance	Icm Icw à In/Ie In (A)	220690 V 220690 V 1150 V 1 s 3 s 440 V (5) 690 V 1150 V	NW08/NW10 NA 88 - 42 - 135 60 Hz 50 Hz 25 12,5 N1/H1/H2 800/1000/125 10	/NW12/NW16 HA 105 50 36	187 - 85 50	105 50	
relais de protection extresouvoir assigné de ferministrupteurs suivant le type d'interrupteur souvoir assigné de ferministrupteur souvoir assigné de ferministrupteurs de mise à couvoir de fermeture (kilourant assigné de courant assigné de disjoncteur courant assigné excles F/O x 1000 et courant d'emploi assigné courant d'emploi assigné courant d'emploi assigné de disjoncteur ou courant d'emploi assigné excles F/O x 1000 et courant d'emploi assigné courant d'emploi assigné de disjoncteur ou courant d'emploi assigné et la ferministrupteur de disjoncteur ou courant d'emploi assignée.	erne : temporis neture (kA crêt C 60947-3 et An neture (kA crêt CA 50/60 Hz rte durée admi CA 50/60 Hz Ita terre A crête) rte durée admi t électrique sui mécanique électrique	elation maxi de la pro e) V CA 50/60 Hz inexe A e) issible (kA eff) issible (kA eff) ivant IEC 60947-2/3 avec maintenance sans maintenance	lcm lcw lcw	220690 V 220690 V 1150 V 1 s 3 s 440 V (5) 690 V 1150 V AC23A	NW08/NW10 NA 88 - 42 - 135 60 Hz 50 Hz 25 12,5 N1/H1/H2 800/1000/125 10 - H1/H2/NA/H/ 800/1000/125	/NW12/NW16 HA 105 50 36	187 - 85 50	105 50	
relais de protection exterior de la constitución de ferminar relation de la constitución	erne : temporis neture (kA crêt C 60947-3 et An neture (kA crêt CA 50/60 Hz rte durée admi CA 50/60 Hz ta terre A crête) rte durée admi t électrique sui mécanique électrique	eation maxi de la pro e) V CA 50/60 Hz inexe A e) issible (kA eff) issible (kA eff) ivant IEC 60947-2/3 avec maintenance sans maintenance	Icm Icw à In/Ie In (A)	220690 V 220690 V 1150 V 1 s 3 s 440 V (5) 690 V 1150 V AC23A 440 V (5)	NW08/NW10 NA 88 - 42 - 135 60 Hz 50 Hz 25 12,5 N1/H1/H2 800/1000/125 10 - H1/H2/NA/H/ 800/1000/125 10	/NW12/NW16 HA 105 50 36	187 - 85 50	105 50	
elais de protection exteres de la conservat de	erne : temporis neture (kA crêt C 60947-3 et An neture (kA crêt CA 50/60 Hz rCA 50/60 Hz t a terre A crête) rte durée admi t électrique sui mécanique électrique d'interrupteur né électrique	elation maxi de la pro e) V CA 50/60 Hz inexe A e) issible (kA eff) issible (kA eff) ivant IEC 60947-2/3 avec maintenance sans maintenance	Icm Icw à In/Ie In (A)	220690 V 220690 V 1150 V 1 s 3 s 440 V (5) 690 V 1150 V AC23A	NW08/NW10 NA 88 - 42 - 135 60 Hz 50 Hz 25 12,5 N1/H1/H2 800/1000/125 10 - H1/H2/NA/H/ 800/1000/125	/NW12/NW16 HA 105 - 50 36 L1 60/1600 3 3 - WHF 60/1600	187 - 85 50	105 50	
elais de protection exteriouvoir assigné de ferminarrupteurs suivant le type d'interrupteur pouvoir assigné de ferminarrupteur pouvoir assigné de ferminatégorie AC23A/AC3 Vicourant assigné de cou interrupteurs de mise à pouvoir de fermeture (k. courant assigné de cou durabilité mécanique et durée de vie cycles F/O x 1000 type de disjoncteur courant assigné cycles F/O x 1000 EC 60947-2 type de disjoncteur ou courant d'emploi assigné cycles F/O x 1000 EC 60947-3 type de disjoncteur ou courant d'emploi assigné cycles F/O x 1000 EC 60947-3 type de disjoncteur ou courant d'emploi assigné cycles F/O x 1000 EC 60947-3 type de disjoncteur ou courant d'emploi assigné cycles F/O x 1000 EC 60947-3 type de disjoncteur ou courant d'emploi assigné cycles F/O x 1000 EC 60947-3 type de disjoncteur ou courant d'emploi assigné cycles F/O x 1000 EC 60947-3 type de disjoncteur ou courant d'emploi assigné cycles F/O x 1000 EC 60947-3 type de disjoncteur ou courant d'emploi assigné cycles F/O x 1000 EC 60947-3 type de disjoncteur ou courant d'emploi assigné cycles F/O x 1000 EC 60947-3 type de disjoncteur ou courant d'emploi assigné cycles F/O x 1000 EC 60947-3 type de disjoncteur ou courant d'emploi assigné cycles F/O x 1000 EC 60947-3 type de disjoncteur ou courant d'emploi assigné cycles F/O x 1000 EC 60947-3 type de disjoncteur ou courant d'emploi assigné cycles F/O x 1000 EC 60947-3 type de disjoncteur ou courant d'emploi assigné cycles F/O x 1000 EC 60947-3 type de disjoncteur ou courant d'emploi assigné cycles F/O x 1000 EC 60947-3 type de disjoncteur ou courant d'emploi assigné cycles F/O x 1000 EC 60947-3 type de disjoncteur ou courant d'emploi assigné cycles F/O x 1000 EC 60947-3 type de disjoncteur ou courant d'emploi assigné cycles F/O x 1000 EC 60947-3 type de disjoncteur ou courant d'emploi assigné cycles F/O x 1000 EC 60947-3 type de disjoncteur ou courant d'emploi assigné cycles F/O x 1000 EC 60947-3 type de disjoncteur ou courant d'emploi assigné cycles F/O x 1000 EC 60947-3 type de disjoncteur ou cycles EC 60947-3	erne : temporis neture (kA crêt C 60947-3 et An neture (kA crêt CA 50/60 Hz rte durée admi CA crête) rte durée admi t électrique d'interrupteur né électrique d'interrupteur	elation maxi de la pro e) V CA 50/60 Hz inexe A e) issible (kA eff) issible (kA eff) ivant IEC 60947-2/3 avec maintenance sans maintenance	Icm Icm Icw Icw à In/Ie In (A)	220690 V 220690 V 1150 V 1 s 3 s 440 V (5) 690 V 1150 V AC23A 440 V (5) 690 V	NW08/NW10 NA 88 - 42 - 135 60 Hz 50 Hz 25 12,5 N1/H1/H2 800/1000/125 10 - H1/H2/NA/H/ 800/1000/125	/NW12/NW16 HA 105 - 50 36	187 - 85 50 H10 - - 0,5	105 50 50	
elais de protection exteres de la conservat de	erne : temporis neture (kA crêt C 60947-3 et An neture (kA crêt CA 50/60 Hz rte durée admi CA crête) rte durée admi t électrique d'interrupteur né électrique d'interrupteur	elation maxi de la pro e) V CA 50/60 Hz inexe A e) issible (kA eff) issible (kA eff) ivant IEC 60947-2/3 avec maintenance sans maintenance	Icm Icw à In/Ie In (A)	220690 V 220690 V 1150 V 1 s 3 s 440 V (5) 690 V 1150 V AC23A 440 V (5)	NW08/NW10 NA 88 - 42 - 135 60 Hz 50 Hz 25 12,5 N1/H1/H2 800/1000/125 10 - H1/H2/NA/H/ 800/1000/125	/NW12/NW16 HA 105 - 50 36 L1 60/1600 3 3 - WHF 60/1600	187 - 85 50 H10 - 0,5	105 50	
relais de protection exterpouvoir assigné de ferminterrupteurs suivant IEC type d'interrupteur pouvoir assigné de ferminterrupteur pouvoir assigné de ferminterrupteur AC23A/AC3 Victurant assigné de courant assigné cycles F/O x 1000 IEC 60947-2 Type de disjoncteur ou courant d'emploi assigné cycles F/O x 1000 IEC 60947-3 Type de disjoncteur ou courant d'emploi assigné cycles F/O x 1000 IEC 60947-3 Type de disjoncteur ou courant d'emploi assigné cycles F/O x 1000 IEC 60947-3 Type de disjoncteur ou courant d'emploi assigné cycles F/O x 1000 IEC 60947-3	erne : temporis neture (kA crêt C 60947-3 et An neture (kA crêt CA 50/60 Hz rte durée admi CA crête) rte durée admi t électrique d'interrupteur né électrique d'interrupteur	elation maxi de la pro e) V CA 50/60 Hz inexe A e) issible (kA eff) issible (kA eff) ivant IEC 60947-2/3 avec maintenance sans maintenance	Icm Icm Icw Icw à In/Ie In (A)	220690 V 220690 V 1150 V 1 s 3 s 440 V (5) 690 V 1150 V AC23A 440 V (5) 690 V	NW08/NW10 NA 88 - 42 - 135 60 Hz 50 Hz 25 12,5 N1/H1/H2 800/1000/125 10 - H1/H2/NA/H/ 800/1000/125	/NW12/NW16 HA 105 - 50 36	187 - 85 50 H10 - - 0,5	105 50 50	900
relais de protection exterpouvoir assigné de ferminterrupteurs suivant lE0 type d'interrupteur pouvoir assigné de ferminatégorie AC23A/AC3 Vicourant assigné de couratégorie AC23A/AC3 Vinterrupteurs de mise à pouvoir de fermeture (kocourant assigné de coudurabilité mécanique et durée de vie	erne : temporis neture (kA crêt C 60947-3 et An neture (kA crêt CA 50/60 Hz rte durée admi CA crête) rte durée admi t électrique d'interrupteur né électrique d'interrupteur	elation maxi de la pro e) V CA 50/60 Hz inexe A e) issible (kA eff) issible (kA eff) ivant IEC 60947-2/3 avec maintenance sans maintenance	Icm Icm Icw Icw à In/Ie In (A)	220690 V 220690 V 1150 V 1 s 3 s 1 s 3 s 440 V (5) 690 V AC23A 440 V (5) 690 V AC3 (6)	NW08/NW10 NA 88 - 42 - 135 60 Hz 50 Hz 25 12,5 N1/H1/H2 800/1000/125 10 - H1/H2/NA/H/ 800/1000/125	/NW12/NW16 HA 105 - 50 36 L1 60/1600 3 3	187 - 85 50 H10 - 0,5	105 50 50	

Tableau 15 : disjoncteurs Masterpact

NW20					NW25	NW32	NW40		NW40b	NW50	NW63
2000					2500	3200	4000		4000	5000	6300
2000					2500	3200	4000		4000	5000	6300
1000 à 200	00				1250 à 25	00 1600 à 32	00 2000 à	4000		2500 à 5000	3200 à 630
H1 (7)	H2	H3	L1 (2)	H10	H1	H2	Н3	H10	H1	H2	
65	100	150	150	-	65	100	150		100	150	
65	85	130	130	-	65	85	130		100	130	
65	85	100	100	-	65	85	100	-	100	100	
	-	-		50	-	-		50	-	-	
100%					100%				100%		
В					В				В		
65	85	65	30	50	65	85	65	50	100	100	
36	75	65	30	50	65	75	65	50	100	100	
	190	150	80	-		190	150	-		270	
143	220	330	330		143	220	330	-	220	330	
143	187	286	286	-	143	187	286	-	220	286	
143	187	220	220	-	143	187	220		220	220	
143					143				220		
	-			105	-		-	105	-	-	
25	25	25	10	25	25	25	25	25	25	25	
< 70					< 70				< 80		
HA	HF (3)				HA	HF (3)			HA		
50	85				55	85			85		
100%	0.5				100%	00			100%		
50	85				55	85			85		
									_		
36	75				55	75			85		
	-					•			-		
105	187				121	187			187		
NW20					NW25/NW	/32/NW40			NW40b/NW	50/NW63	
HA	HF			HA10	HA	HF		HA10	HA	300111103	
105	187			-	121	187			187		
105				105	121				-		
	-							105			
50	85			50	55	85		50	85		
36	75			50	55	75		50	85		
20									10		
10									5		
H1/H2	H3		L1	H10	H1/H2	H3		H10	H1	H2	
2000					2500/3200				4000b/5000		
8	2		3	I-	5	1,25		I.	1,5	1,5	
6	2		3		2,5	1,25		1.	1,5	1,5	
0	2		3	0.5	2,3	1,25		0.5	1,0	1,5	
H4/Harles	WANE -		-	0,5	H1/H2/H3/	MA/NE		0,5	H1/H2/HA	l-	
H1/H2/H3/	HAMP									10000	
2000					2500/3200	N4000			4000b/5000	v6300	
8					5				1,5		
6					2,5				1,5		
H1/H2/H3/ 2000	HA/HF										
	0										
900 à 1150											
900 à 1150	00										
900 à 1150 1000 à 130 1600 à 200	00										

Tableau 16 : disjoncteurs Masterpact

Annexe 6 : choix des appareils de protection

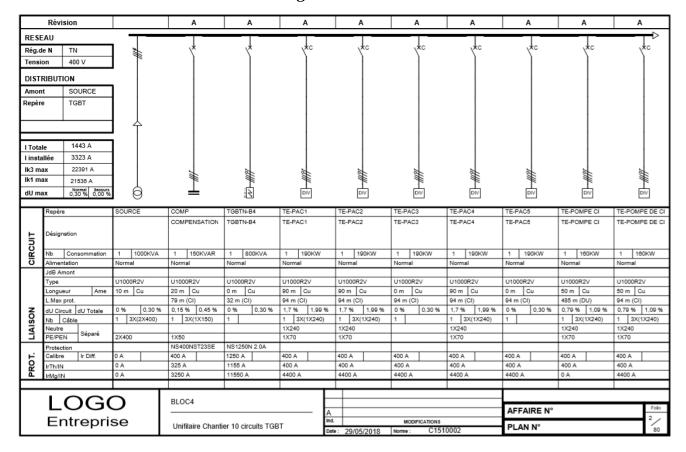
	T	1	1		T	_	T	
CABLE	PUISSANCE (KVA)	Ib (A)	ICC(KA)	Calibre(A)	Pvc (KA)	Appareil	Déclencheur	Désignation
Transformateur	1000	1443,42	19,72	1600	150	Disjoncteur Général	Electronique	Masterpact NW16
TB4 Normal	833,3	1202,80	12,98	1250	100	Disjoncteur Général	Electronique	Masterpact NW12
Coffret de	200	288,68	17,66	400	36	Disjoncteur	Micrologic 2.3	Compact NSX400
compensation 200KVAR						Interrupteur	-	Compact NSX400A
TE-PAC01	190	274,25	15,06	400	36	Disjoncteur	Micrologic 2.3	Compact NSX400
TE-PAC02	190	274,25	15,06	400	36	Interrupteur Disjoncteur	Micrologic 2.3	Compact NSX400A Compact NSX400
1E-1 AC02	190	274,23	13,00	400	30	Interrupteur	- Wilciologic 2.3	Compact NSX400A
TE-PAC03	190	274,25	15,06	400	36	Disjoncteur	Micrologic 2.3	Compact NSX400
		ĺ	ĺ			Interrupteur	-	Compact NSX400A
TE-PAC04	190	274,25	15,06	400	36	Disjoncteur	Micrologic 2.3	Compact NSX400
						Interrupteur	-	Compact NSX400A
TE-PAC05	190	274,25	15,06	400	36	Disjoncteur	Micrologic 2.3	Compact NSX400
TE DOLEDE CI	1.00	220.05	14.07	250	22	Interrupteur	-	Compact NSX400A
TE. POMPE CI	160	230,95	14,87	250	22	Disjoncteur	Micrologic 2.3	Compact NSX250
TGBT NS	247,32	356,99	15,40	400	36	Interrupteur Disjoncteur	Micrologic 2.3	Compact NSX250A Compact NSX400
TODINS	247,32	330,77	13,40	400	30	Interrupteur	-	Compact NSX400A
TB4 RDC N°1	17,51	25,27	6,77	32	10	Disjoncteur Modulaire	Magnétothermique Courbe C	DT40N
TB4 RDC N°2	15,64	22,58	3,36	32	6	Disjoncteur Modulaire	Magnétothermique Courbe C	DT40
TB4 RDC N°3	37,23	53,74	7,38	63	10	Disjoncteur	Magnétothermique	DT60N
TB4 RDC N°4	26,78	38,65	10,73	40	15	Modulaire Disjoncteur Modulaire	Courbe C Magnétothermique	DT60H
TB4 R+1 N°1	32,46	46,85	11,91	50	15	Disjoncteur	Courbe C Magnétothermique	DT60H
TB4 R+1 N°2	39,93	57,64	10,01	63	15	Modulaire Disjoncteur	Courbe C Magnétothermique	DT60H
TB4 R+1 N°3	30,96	44,69	5,25	50	10	Modulaire Disjoncteur	Courbe C Magnétothermique	DT40N
TB4 R+1 N°4	35,31	50,97	9,72	63	10	Modulaire Disjoncteur	Courbe C Magnétothermique	DT60N
TD 4 D . 2 NO1	25.55	51.21	16.70	(2	25	Modulaire	Courbe C	NGIOSN
TB4 R+2 N°1	35,55	51,31	16,72	63	25	Disjoncteur Modulaire	Magnétothermique Courbe C	NG125N
TB4 R+2 N°2	40,58	58,57	9,65	63	10	Disjoncteur Modulaire	Magnétothermique Courbe C	DT60N
TB4 R+2 N°3	40,53	58,50	7,18	63	10	Disjoncteur Modulaire	Magnétothermique Courbe C	DT60N
TB4 R+2 N°4	32,63	47,10	6,88	50	10	Disjoncteur Modulaire	Magnétothermique Courbe C	DT40N
TB4 R+3 N°1	44,13	63,70	15,21	70	25	Disjoncteur Modulaire	Magnétothermique Courbe C	NG125N
TB4 R+3 N°2	45,1	65,10	9,32	70	10	Disjoncteur Modulaire	Magnétothermique Courbe C	C120N
TB4 R+3 N°3	36,4	52,54	7,00	63	10	Disjoncteur Modulaire	Magnétothermique Courbe C	DT60N
TB4 R+3 N°4	25,52	36,84	9,07	40	10	Disjoncteur Modulaire	Magnétothermique Courbe C	C120N
TB4 R+4 N°1	22,68	32,74	11,91	40	15	Disjoncteur Modulaire	Magnétothermique Courbe C	DT60H
TB4 R+4 N°2	45,76	66,05	6,56	70	10	Disjoncteur Modulaire	Magnétothermique Courbe C	C120N
TB4 R+4 N°3	39,94	57,65	10,81	63	15	Disjoncteur	Magnétothermique	DT60H

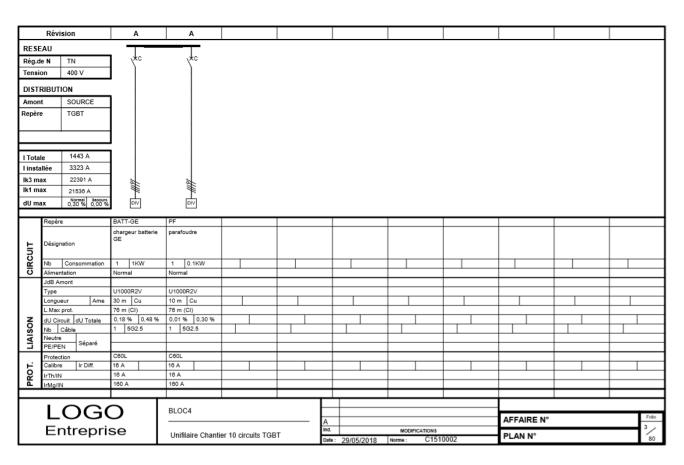
						Modulaire	Courbe C	
TB4 R+4 N°4	40,04	57,80	8,72	63	10	Disjoncteur	Magnétothermique	DT60N
		1	<u> </u>	1		Modulaire	Courbe C	
Ascenseurs 1	10	14,43	9,83	16	10	Disjoncteur	Magnétothermique	DT40N
		1 '	<u> </u>	1		Modulaire	Courbe C	
Ascenseurs 2	10	14,43	0,90	16	6	Disjoncteur	Magnétothermique	DT40
		1	<u> </u>	1		Modulaire	Courbe C	
Monte-charge 1	20	28,87	1,52	32	6	Disjoncteur	Magnétothermique	DT40
		<u> </u>	<u> </u>	1		Modulaire	Courbe C	

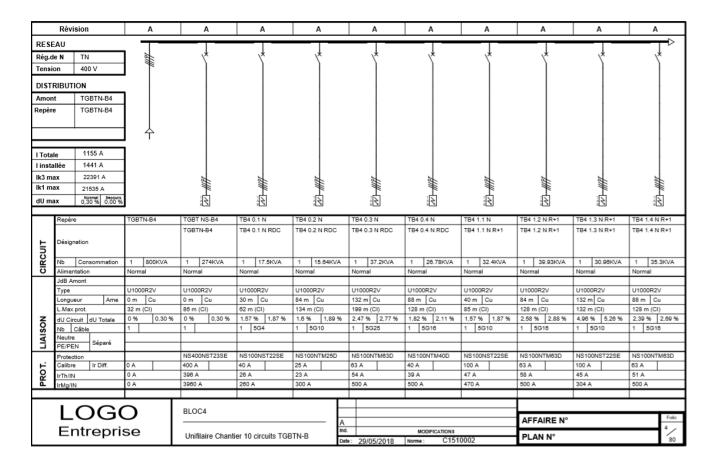
Tableau 17 : appareils de protection réseau normal

CABLE	PUISSANCE (KVA)	Ib (A)	ICC (A)	CALIBRE (A)	PVC (KA)	Appareil	Déclencheur	Désignation
TGBTO	117,07	168,98	11,56	250	25	Disjoncteur	Magnétothermique Intégré	Compact CVS250
TB4 RDC N°1	2,81	4,06	2,49	4	6	Disjoncteur modulaire	Magnétothermique Courbe C	DT40
TB4 RDC N°4	4,75	6,86	0,93	10	6	Disjoncteur modulaire	Magnétothermique Courbe C	DT40
TB4 R+1 N°1	14,00	20,21	5,13	25	10	Disjoncteur Modulaire	Magnétothermique Courbe C	DT40
TB4 R+1 N°2	13,00	18,76	2,12	20	6	Disjoncteur Modulaire	Magnétothermique Courbe C	DT40
TB4 R+1 N°3	12,25	17,68	1,18	20	6	Disjoncteur Modulaire	Magnétothermique Courbe C	DT40
TB4 R+1 N°4	10,00	14,43	1,21	16	6	Disjoncteur Modulaire	Magnétothermique Courbe C	DT40
TB4 R+2 N°1	17,00	24,54	3,96	25	6	Disjoncteur Modulaire	Magnétothermique Courbe C	DT40
TB4 R+2 N°2	16,60	23,96	1,66	25	6	Disjoncteur Modulaire	Magnétothermique Courbe C	DT40
TB4 R+2 N°3	18,75	27,06	1,65	32	6	Disjoncteur Modulaire	Magnétothermique Courbe C	DT40
TB4 R+2 N°4	17,25	24,90	1,77	25	6	Disjoncteur Modulaire	Magnétothermique Courbe C	DT40
TB4 R+3 N°1	14,75	21,29	4,19	25	6	Disjoncteur Modulaire	Magnétothermique Courbe C	DT40
TB4 R+3 N°2	15,50	22,37	1,62	25	6	Disjoncteur Modulaire	Magnétothermique Courbe C	DT40
TB4 R+3 N°3	13,50	19,49	1,10	20	6	Disjoncteur Modulaire	Magnétothermique Courbe C	DT40
TB4 R+3 N°4	12,75	18,40	1,68	20	6	Disjoncteur Modulaire	Magnétothermique Courbe C	DT40
TB4 R+4 N°1	10,75	15,52	2,66	16	6	Disjoncteur Modulaire	Magnétothermique Courbe C	DT40
TB4 R+4 N°2	15,75	22,73	1,52	25	6	Disjoncteur Modulaire	Magnétothermique Courbe C	DT40
TB4 R+4 N°3	14,75	21,29	1,06	25	6	Disjoncteur Modulaire	Magnétothermique Courbe C	DT40
TB4 R+4 N°4	14,75	21,29	1,59	25	6	Disjoncteur Modulaire	Magnétothermique Courbe C	DT40

Tableau 18 : appareils de protection réseau ondulé


DISTRUBITION	Puissance (Kva)	Ib (A)	Icc (A)	Calibre (A)	PVC (KA)	Appareil	Déclencheur	Désignation
TGBT N/S	247,32	356,99	12,84	400	25	Disjoncteur Interrupteur	Micrologic 2.3	Compact NSX400 Compact NSX400A
TB4 RDC N°1	9,10	13,14	5,365	16	6	Disjoncteur Modulaire	Magnétothermique Courbe C	DT40
TB4 RDC N°2	4,24	6,12	0,961	10	6	Disjoncteur Modulaire	Magnétothermique Courbe C	DT40
TB4 RDC N°3	3,03	4,37	0,596	6	6	Disjoncteur Modulaire	Magnétothermique Courbe C	DT40
TB4 RDC N°4	2,76	3,98	0,883	1	6	Disjoncteur Modulaire	Magnétothermique Courbe C	DT40
TB4 R+1 N°1	0,75	1,08	0,530	1	6	Disjoncteur Modulaire	Magnétothermique Courbe C	DT40
TB4 R+1 N°2	1,63	2,35	0,923	1	6	Disjoncteur Modulaire	Magnétothermique Courbe C	DT40
TB4 R+1 N°3	0,70	1,01	0,596	1	6	Disjoncteur Modulaire	Magnétothermique Courbe C	DT40
TB4 R+1 N°4	1,03	1,49	0,883	1	6	Disjoncteur Modulaire	Magnétothermique Courbe C	DT40
TB4 R+2 N°1	6,83	9,86	2,389	3	6	Disjoncteur Modulaire	Magnétothermique Courbe C	DT40
TB4 R+2 N°2	5,57	8,04	0,873	1	6	Disjoncteur Modulaire	Magnétothermique Courbe C	DT40
TB4 R+2 N°3	6,88	9,93	0,575	1	6	Disjoncteur Modulaire	Magnétothermique Courbe C	DT40
TB4 R+2 N°4	7,06	10,19	1,357	2	6	Disjoncteur Modulaire	Magnétothermique Courbe C	DT40
TB4 R+3 N°1	0,60	0,87	2,084	3	6	Disjoncteur Modulaire	Magnétothermique Courbe C	DT40
TB4 R+3 N°2	0,62	0,89	0,829	1	6	Disjoncteur Modulaire	Magnétothermique Courbe C	DT40
TB4 R+3 N°3	1,26	1,82	0,555	1	6	Disjoncteur Modulaire	Magnétothermique Courbe C	DT40
TB4 R+3 N°4	0,69	1,00	0,530	1	6	Disjoncteur Modulaire	Magnétothermique Courbe C	DT40
TB4 R+4 N°1	0,70	1,01	1,848	2	6	Disjoncteur Modulaire	Magnétothermique Courbe C	DT40
TB4 R+4 N°2	0,70	1,01	0,788	1	6	Disjoncteur Modulaire	Magnétothermique Courbe C	DT40
TB4 R+4 N°3	0,70	1,01	0,533	1	6	Disjoncteur Modulaire	Magnétothermique Courbe C	DT40
TB4 R+4 N°4	0,67	0,97	0,752	1	6	Disjoncteur Modulaire	Magnétothermique Courbe C	DT40
ASCENSEUR 2	12,86	18,56	1,701	2	6	Disjoncteur Modulaire	Magnétothermique Courbe C	DT40
DESENFUMAGE1	161,71	233,42	8,616	250	25	Disjoncteur Modulaire	Magnétothermique Intégré	Compact CVS250
DESENFUMAGE2	127,50	184,04	8,403	250	25	Disjoncteur Modulaire	Magnétothermique Intégré	Compact Cvs250
ONDULEUR	100,00	144,34	11,394	160	25	Disjoncteur Modulaire	Magnétothermique Intégré	Compact Ng160n
CENTRALE ECS INCENDIE	4,50	6,50	1,627	2	6	Disjoncteur Modulaire	Magnétothermique Courbe C	DT40
CENTRALE CMSI INCENDIE	4,50	6,50	0,759	1	6	Disjoncteur Modulaire	Magnétothermique Courbe C	DT40
GROUPE CLIM	15,00	21,65	2,795	3	6	Disjoncteur Modulaire	Magnétothermique Courbe C	DT40


Tableau 19 : appareils de protection réseau secouru Projet de fin d'étude 2017/2018


Annexe 7 : résultats logiciel CANECO BT

