

جامعة سيدي محمد بن عبد الله +ه۵۵۸۵۵۲ عند معرف باناه مه۵۸۵۲۵ + ۵۵۸۵ Université Sidi Mohamed Ben Abdellah

Année Universitaire : 2017-2018

Master Sciences et Techniques : CMBA

Chimie des Molécules Bio Actives

MEMOIRE DE FIN D'ETUDES

Pour l'Obtention du Diplôme de Master Sciences et Techniques

Identification de la matière première par la spectroscopie Raman

Présenté par:

Mlle. OUSTA Hajar

Encadré par:

✓ Mme. FARAJ Khadija (Maphar)
✓ Pr. MOUGHAMIR Khadija (FST-Fès)

Soutenu Le 12 juin 2018 devant le jury composé de:

- Pr. Kh. MOUGHAMIR

- Pr. A. BOULAHNA

- Pr. ELH. ALILOU

Stage effectué à : Maphar (Casablanca)

Remerciements

Avant tout, je tiens à rendre grâce à Dieu pour la vie, la santé et la force qu'il m'a accordé pour pouvoir parfaire ce travail.

Je remercie la direction de la société **MAPHAR** de m'avoir offert cette opportunité d'apprendre aux côtés de leur personnel qualiticiens et industriels ; messieurs, dames, ce fut pour moi un honneur de vous avoir côtoyé.

Je voudrais adresser toute ma reconnaissance à Madame FARAJ Khadija, responsable du laboratoire de contrôle de qualité pour son accueil, son encadrement et sa compréhension.

Aussi, je voudrais témoigner toute ma profonde gratitude au personnel du laboratoire nominativement MIle MACHALLAH Meryem, Mme ELGROUH Ikram, Mr YIDDER Benhaddou et Mr AMJIIFY Mohammed pour leur aide et leur soutien et de m'avoir accordé de leur temps et veillé à ce que mon stage soit déroulé dans les meilleures conditions.

Daignons remercier vivement Madame **MOUGHAMIR Khadija** pour son encadrement.

Aux Professeur **A.BOULAHNA** et **ELH. ALILOU**, je voudrais vous dire ma profonde reconnaissance pour avoir accepté de porter un jugement sur ce travail.

A tous ceux qui liront un jour ce rapport, j'espère qu'il vous sera d'une utilité dans la connaissance de ce sujet.

Dédicaces

A la lumière de mes jours, la source de mes efforts, la flamme de mon cœur, ma vie et mon bonheur ; maman que j'adore.

A l'homme de ma vie, mon soutien moral et source de joie et de bonheur, celui qui s'est toujours sacrifié pour me voir réussir ; à toi mon père.

Aux personnes dont j'ai bien aimé la présence dans ce jour, à toutes mes sœurs : Kisrine, Amal, Fati et Karima, ma tante Samila et mon amie de coeur Fadoua, je dédie ce travail dont le grand plaisir leurs revient en premier lieu pour leurs aides et encouragements.

Aux personnes qui m'ont toujours aidé et encouragé, qui étaient toujours à mes côtés, et qui m'ont accompagnaient durant mon chemin d'études supérieures, mes aimables amis, collègues d'étude et frères de cœur.

جامعة سيدي محمد بن عبد الله +ه٥٥٨٥ Δ٥٢ - ٥٤٨٢ Ε٥٨٤ + ٥٤٨٥ Université Sidi Mohamed Ben Abdellah

Table des matières

Remerciement Dédicaces Liste des abréviations Liste des figures Liste des tableaux

Introduction......1

Partie théorique

Chapitre I: Présentation de la société Maphar

I.	Présentation de l'industrie pharmaceutique Maphar	2
II.	Historique	2
III.	Activités	2
IV.	Organigramme du site industriel Maphar Zenata	3

Chapitre II : Spectroscopie Raman

I.	Introdution	. 4
II.	Historique	. 4
III.	Principe	. 4
IV.	Les caractéristiques de la spectroscopie Raman	. 5
V.	Comparaison entre la spectroscopie infrarouge et Raman	. 5
	Chapitre III : Spectromètre Raman portatif « TruScan RM »	
I.	A propos de l'appareil « TruScan RM »	. 7
II.	Application	. 7
III.	L'appareil TruScan et accessoires	. 7
IV.	Fiche technique du TruScan	. 10
V.	Propriétés du spectromètre TruScan RM	. 10
VI.	Utilisation de l'appareil TruScan RM	. 11
	1. Test de performance	. 11
	2. Identification de la matière première	. 13
	2.1 Préparation des échantillons pour l'analyse	. 13
	1 1 7	

كلية العلوم و التقنيات فاس +٥٤٢٥٥٥ ١ + ٢٥٥٥٥٤ م Faculté des Sciences et Techniques de Fès

2.2 Procédure d'analyse des échantillons	
3. Méthodes et principes	
3.1 Préparation des échantillons	
3.1.1 MP en poudre (Solide)	
3.1.2 MP liquide	
3.2 Acquisition des signatures	
3.3 Connexion au WEBADMIN	
3.4 Création d'une méthode	
3.4.1 Activation de la signature	
3.4.2 Création de la méthode	
3.4.3 Test de sélectivité	
3.4.4 Test de robustesse	

Partie pratique: Validation des méthodes dans l'appareil TruScan RM

	Objectif	. 28
[.	La liste des MP à valider	. 28
I.	Validation des méthodes dans l'appareil TruScan RM	. 28
	1. Acébutolol chlorhydrate	. 28
	1.1 Acquisition de la signature	. 29
	2. Clarithromycine	. 30
	2.1 Acquisition de la signature	. 30
	2.2 Test de sélectivité	. 30
	2.3 Test de robustesse	. 31
	2.3.1 Test de robustesse à travers Sac PE simple épaisseur	. 31
	2.3.2 Test de robustesse à travers Sac PE double épaisseur	. 32
	2.3.3 Test de robustesse à travers vial en verre incolore	. 32
	2.4 Résumé	. 33
	3. Le paracétamol	. 33
	3.1 Acquisition de la signature	. 33
	3.2 Test de sélectivité	. 34
	3.3 Test de robustesse	. 35
	3.3.1 Test de robustesse à travers Sac PE simple épaisseur	. 35
	3.3.2 Test de robustesse à travers sac PE double épaisseur	. 36
	3.3.3 Test de robustesse à travers vial en verre incolore	. 36
	3.4 Résumé	. 37

کلیة العلوم و التقنیات فاس +οΨΣΠοΙΗ Ι +ΕοΟΟοΙΣΙ Λ +ΟΙΣΧΣ+ΣΙ Faculté des Sciences et Techniques de Fès

4. L'a	cide acétylsalicylique	3
4.1 4	Acquisition de la signature	3
4.27	Test de sélectivité	3
4.3	Test de robustesse	3
	4.3.1 Test de robustesse à travers sac PE simple épaisseur	3
	4.3.2 Test de robustesse à travers sac PE double épaisseur	3
	4.3.3 Test de robustesse à travers vial en verre incolore	4
4.41	Résumé	4
5. L'ao	cide benzoïque	4
5.1 A	Acquisition de la signature	4
5.2 7	Test de sélectivité	4
5.3 1	Test de robustesse	4
	5.3.1 Test de robustesse à travers Sac PE simple épaisseur	4
	5.3.2 Test de robustesse à travers sac PE double épaisseur	4
	5.3.3 Test de robustesse à travers vial en verre incolore	4
5.4	Résumé	4
6. Eud	ragit	4
6.1 /	Acquisition de la signature	4
6.27	Test de sélectivité	4
7. Esse	ence de géranium	4
7.1 /	Acquisition de la signature	4
7.2 7	Test de sélectivité	4
7.3 7	Test de robustesse	4
	7.3.1 Test de robustesse à travers pipette pasteur	4
	7.3.2 Test de robustesse à travers vial en verre incolore	4
	7.3.3 Test de robustesse à travers vian en verre HPLC incolore	4
7.41	Résumé	4
8. Lab	rafil M 1944 CS	4
8.1 A	Acquisition de la signature	4
8.27	Test de sélectivité	4
9. L'es	ssence de menthe	-
9.1 A	Acquisition de la signature	-
9.27	Test de sélectivité	5
10 Se	nisperse AP 5523 Rose	4

كلية العلوم و التقنيات فاس +٥٤٥٥٥٤ ٨ عامοοοιΣι ٨ +٥٩ Faculté des Sciences et Techniques de Fès

10.1 Acquisition de la signature	. 52
10.2 Test de sélectivité	. 52
10.3 Test de robustesse	. 53
10.3.1 Test de robustesse à travers une pipette pasteur	. 53
10.3.2 Test de robustesse à travers vial en verre incolore	. 54
10.3.3 Test de robustesse à travers vial en verre HPLC incolore	. 54
10.4 Résumé	. 55
11. Alpha tocopheryl	. 55
12. Gel d'hydroxyde d'aluminium	. 55
Conclusion	. 56
0 0 2 2 0 2 0 2 2 0 0 2 2 0 0 0 0 0 0 0	

Liste des abréviations

- BPF: Les bonnes pratiques de fabrication
- **CPG** : Chromatographie en phase gazeuse
- **FDA** : Food and Drug Administration (Agence américaine des produits alimentaires et médicamenteux)
- HPLC : Chromatographie liquide à haute performance
- LCQ : Laboratoire de contrôle de qualité
- MP: Matière première
- PE: Polyéthylène

جامعة سيدي محمد بن عبد الله به معمد بن عبد الله مهره بن عبد الله مهره بن عبد الله به معنو بن عبد الله Université Sidi Mohamed Ben Abdellah

Liste des figures

Figure 20 : Spectre Raman de l'acide benzoïque	45
Figure 21 : Rapport du test de sélectivité de l'acide benzoïque	46
Figure 22 : Spectre Raman d'Eudragit	48
Figure 23 : Rapport du test de sélectivité d'Eudragit	49
Figure 24 : Spectre Raman de l'essence de géranium	50
Figure 25 : Rapport du test de sélectivité d'essence de géranium	51
Figure 26 : Spectre Raman de Labrafil	53
Figure 27 : Rapport du test de sélectivité de Labrafil	54
Figure 28 : Spectre Raman d'essence de menthe	55
Figure 29 : Rapport du test de sélectivité d'essence de menthe	55
Figure 30 : Spectre Raman de sepisperse AP	56
Figure 31 : Rapport du test de sélectivité de sepisperse AP	57

Liste des tableaux

Tableau 16 : Test de robustesse de l'acide acétylsalicylique à sac PE double épaisseur
Tableau 17 : Test de robustesse de l'acide acétylsalicylique à travers vial enverre incolore
Tableau 18: Caractéristiques de l'acide benzoïque
Tableau 19 : Principales bandes Raman caractéristiques de l'acide benzoïque 41
Tableau 20 : Test de robustesse de l'acide benzoïque à travers sac PE simpleépaisseur
Tableau 21 : Test de robustesse de l'acide benzoïque à travers sac PE doubleépaisseur
Tableau 22 : Test de robustesse de l'acide benzoïque à travers vial en verre incolore
Tableau 23 : Test de robustesse de l'essence de géranium à travers pipette pasteur
Tableau 24 : Test de robustesse de l'essence de géranium à travers vial en verre incolore 48
Tableau 25 : Test de robustesse d'essence de géranium à travers vial en verreHPLC incolore
Tableau 26 : Test de robustesse de sepisperse à travers pipette pasteur
Tableau 27 : Test de robustesse de sepisperse à travers vial en vers incolore 54
Tableau 28 : Test de robustesse de sepisperse à travers vial en verre HPLC 54

جامعة سيدي محمد بن عبد الله +هαλουΣ + ΟΣΛΣ ΣΒΑΕΓοΛ ΘΙ ΗΘΛΒИΛοΦ Université Sidi Mohamed Ben Abdellah

Introduction

Le marché pharmaceutique et des matières premières à usage pharmaceutique est aujourd'hui fortement mondialisé. La pression sur les prix et les coûts a entraîné une délocalisation massive de la production des principes actifs et des excipients. Cette situation pose des problèmes pour les autorités de contrôle ; elle induit des risques au niveau de la qualité des produits.

Dans ce cadre, les fabricants de produits pharmaceutiques et de biotechnologie doivent contrôler toutes les matières premières qui entrent dans leurs installations de fabrication. Ce travail de contrôle est énorme et impératif car le nombre de matières premières utilisées est considérable. Vérifier la conformité des matières premières achetées par rapport aux normes convenues avec le fournisseur, et la conformité des compositions vendues de façon à assurer aux clients la continuité d'un produit dans le temps.

La première étape de ce contrôle consiste en une identification de chaque matière première réceptionnée. Elle vérifie l'adéquation entre le produit commandé et le produit reçu.

Au niveau du laboratoire de contrôle de qualité de MAPHAR, cette identification de la matière première se fait à l'aide du spectromètre Raman portatif « TruScan RM ».

Le but de ce travail est de :

- Mettre en évidence l'utilité de cette nouvelle technologie dans l'industrie pharmaceutique
- Détailler la démarche d'identification des MP dans le TruScan RM
- Enrichir la bibliothèque de l'appareil par la validation de nouvelles méthodes

جامعة سيدي محمد بن عبد الله +٥٥٨٥Δ٥٢ ٥٢٨ ٤٦ ٢٥٨٥ + ٥٤٨٥ Université Sidi Mohamed Ben Abdellah

Partie théorique

CHAPITRE I : Présentation de la société MAPHAR

I. Présentation de l'industrie pharmaceutique Maphar :

Maphar est une filiale du Groupe Sanofi, un leader mondial de la santé centré sur les besoins des patients.

Le site industriel de Maphar Zenâta s'étend sur une superficie de $25670m^2$ (dont $12900m^2$ de surface construite). Il emploie un effectif de plus de 350 collaborateurs dont 50 ingénieurs et cadres avec un chiffre d'affaire d'environ 84,7 millions d'Euro.

Le site de Zenata dispose d'une double certification de son système de management intégré en environnement (ISO 14001) et en Santé et Sécurité (OHSAS 18001). Il possède aussi une préqualification par l'OMS (Organisation Mondiale de la Santé) pour la production d'ASAQ Winthrop ®, (Antipaludéen) qui est exporté dans plus de 30 pays d'Afrique subsaharienne.^[1]

II. Historique :

- **1951** : Création de Copharma
- 1964 : Changement de raison sociale : Copharma devient MAPHAR
- 1978 : Construction de l'usine Cyprès à Ain Sebaâ
- **1981** : Maphar devient filiale du Groupe Sanofi
- **1989** : Acquisition de Sopharma basée à Zenata qui a permis à Maphar de renforcer son activité vétérinaire et diététique
- **1990** : fusion de Sanofi et Synthélabo au niveau international qui a donné naissance au groupe Sanofi-Synthélabo,
- **2004** : Création du groupe Sanofi-Aventis
- 2011 : Sanofi-aventis devient Sanofi
- 2012 : Maphar devient Maphar A SANOFI COMPANY
- **2017** : Intégration de la division Healthcare d'Eurapharma du groupe français CFAO^[1]

III. Activités :

On distingue essentiellement quatre domaines d'activités : la pharmacie, la cosmétique, la diététique et la parapharmacie.

Les laboratoires Maphar exploitent à Casablanca le site de production « Zenâta » dont les activités sont les suivantes :

- La fabrication et la distribution des produits.
- Le façonnage des produits pour des laboratoires qui se chargent de la distribution.
- Plus de 500 spécialités pharmaceutiques.

جامعة سيدي محمد بن عبد الله +ه٥٥٨٥٥٢ ٥٤٨ ٥٤ بن عبد الله Université Sidi Mohamed Ben Abdellah

• Plus de 30 laboratoires partenaires commettants.^[1]

IV. Organigramme du site industriel Maphar Zenata :

Figure 1 : Organigramme du site industriel

جامعة سيدي محمد بن عبد الله +ه۵۵۸۵ عنه ٥٤٨ عنه الله معنه بن عبد الله Université Sidi Mohamed Ben Abdellah

CHAPITRE II : Spectroscopie Raman

I) Introduction :

La spectroscopie Raman est une méthode optique analysant la dynamique des atomes au travers du couplage tensoriel entre une lumière monochromatique et la variation de polarisabilité des liaisons chimiques, en d'autres termes la déformation du nuage électronique lors du mouvement des atomes. Cette méthode exploite le phénomène physique selon lequel un milieu modifie légèrement la fréquence de la lumière y circulant. Ce décalage en fréquence correspond à un échange d'énergie entre le rayon lumineux et le milieu, et donne des informations sur le substrat lui-même.

II) Historique :

La **diffusion Raman**, ou **effet Raman**, est un phénomène optique découvert indépendamment en 1928 par les physiciens *Chandrashekhara Venkata Râman* et *Leonid Mandelstam*. Le rayonnement émis par des molécules bombardées contient des photons de même fréquence que ceux du rayonnement incident, mais aussi des photons de fréquences différentes. Cet effet est très faible - approximativement 1 photon sur 1 million (0.0001%) sera émis avec une longueur d'onde légèrement différente de la longueur d'onde incidente. Ce processus a été ensuite appelé d'après le nom de son découvreur, et le changement de fréquence est appelé effet Raman.^[2]

III) Principe :

La spectroscopie Raman utilise le principe de la diffusion inélastique de la lumière par la matière. Ce phénomène de diffusion correspond à la création, par l'onde électromagnétique excitatrice, d'un dipôle induit qui rayonne. Ce dipôle induit est lié à la polarisabilité de la molécule et correspond à une déformation de son nuage électronique.

Pour qu'il y ait diffusion Raman, il faut qu'il y ait une variation de la polarisabilité de la molécule (en quelque sorte, que le nuage électronique de l'édifice moléculaire se déforme) lors de la vibration.

En Raman, l'excitation est monochromatique, et possède donc une énergie fixe, supérieure en ordre de grandeur à celle des vibrations moléculaires. Lors de l'interaction, la molécule est portée dans un état énergétique élevé et de courte durée de vie : il est appelé « état virtuel ». Lors de la désexcitation de la molécule, trois cas peuvent être envisagés :

- La désexcitation se fait à la même fréquence que l'excitation : c'est la diffusion Rayleigh élastique. (*figure 2 : a*)
- La désexcitation se fait à une fréquence inférieure à celle de l'excitation : c'est la diffusion Raman inélastique Stokes. (*figure 2 : b*)

جامعة سيدي محمد بن عبد الله +هαمە μ ο κολει κοι κολευσο Université Sidi Mohamed Ben Abdellah

- La désexcitation se fait à une fréquence supérieure à celle de l'excitation : c'est la diffusion Raman inélastique anti-Stokes. (*figure 2 : c*)

Figure 2 : Principe de la spectroscopie

IV) Les caractéristiques de la spectroscopie Raman :

- L'échantillon n'est pas dégradé. La méthode est non-destructive et non intrusive.
- Elle est facile à mettre en œuvre. Le temps de préparation est nul ou quasi nul.
- Elle est utilisable sur des échantillons de très petite taille (jusqu'à 10-18 m³.)
- L'effet Raman est indépendant de la longueur d'onde de la source utilisée ce qui permet de supprimer certains phénomènes indésirables (fluorescence, dégradation des substances) par un choix adéquat de la source d'excitation (laser bleu, vert, rouge ou IR)
- Aucune polarisation permanente de molécules n'est nécessaire (donc une méthode efficace sur les molécules diatomiques et mononucléaires)
- La présence de l'eau n'est pas gênante car l'eau diffuse très peu la lumière ^[3]

V) Comparaison entre la spectroscopie infrarouge et Raman :

Le Raman est une technique de spectroscopie vibrationnelle mais ne repose pas, contrairement à l'infrarouge moyen et proche, sur l'absorbance d'un échantillon mais sur sa capacité à diffuser de manière inélastique la lumière.

La différence principale entre l'infrarouge (proche et moyen) et le Raman réside dans la nature des règles de sélection pour permettre une transition vibrationnelle. Pour que cette transition ait lieu par absorption en infrarouge, la vibration doit engendrer une variation du **moment dipolaire permanent** de la molécule. Ainsi, les liaisons polaires pourvues d'un fort

جامعة سيدي محمد بن عبد الله +هα٥٨٥μ - ٥٤٨٢ Σελειολ ΘΙ ΗΘΛ8ΝΛοΦ Université Sidi Mohamed Ben Abdellah

moment dipolaire, comme O-H, N-H, C-H, ... présenteront une forte absorption dans l'infrarouge.

Dans le cas de l'effet Raman, la vibration doit provoquer une variation du **moment dipolaire induit** de la molécule, autrement dit une modification de la polarisabilité de la molécule. Cette notion de polarisabilité représente l'aptitude (ou la facilité) d'un élément apolaire à se polariser en présence d'un champ électrique extérieur (elle est symbolisée par la lettre α), à ne pas confondre avec **la polarisation** qui représente la capacité qu'a un atome d'attirer les électrons d'une liaison covalente dont il participe vers lui.

Ces règles de sélection ont également une conséquence directe sur le choix de la technique adaptée en fonction du solvant rencontré. Les solutions aqueuses par exemple ne pourront pas faire l'objet de mesure en moyen infrarouge (possible en NIR sous certaines conditions) mais seront très facilement étudiées en Raman.

En effet, la molécule d'eau, en raison de sa polarité extrême, entraine une absorption totale du faisceau IR alors qu'en spectroscopie Raman, elle conduit à des raies très faibles et peu nombreuses. L'infrarouge est donc sensible aux liaisons σ des groupements fonctionnels (polaires et peu polarisables) alors que la diffusion Raman représente davantage les liaisons π du squelette carboné (où les électrons peuvent se délocaliser facilement). Une vibration très active en Raman engendrera un signal faible en infrarouge et inversement. Les spectres Raman et infrarouge d'une molécule complexe représentent donc chacun une partie seulement de son histoire vibrationnelle.

Il faut noter que les liaisons ioniques, qui font que les molécules se comportent comme des aimants sont invisibles en IR et en Raman.

Le Raman semble avoir le potentiel pour supplanter l'infrarouge, elle doit en réalité être considérée comme complémentaire. La complémentarité avec l'IR consiste en meilleure détection des vibrations en provenance de groupements peu polaires, par exemple C=C, S-S, etc. ^[4]

جامعة سيدي محمد بن عبد الله +٥٥٨٥Δ٤ - ٥٤٨٢ Ε ΒΑΕΓολ ΘΙ ΗΘΛ8ИΛοΦ Université Sidi Mohamed Ben Abdellah

CHAPITRE III :

Spectromètre Raman portatif « TruScan RM »

جامعة سيدي محمد بن عبد الله +ه٥٥٨٥ ع ٥٤٨٢ ٢٥٨٤ بن عرف +٥٥٥٥ Université Sidi Mohamed Ben Abdellah

I. A propos de l'appareil « TruScan RM » :

Le spectromètre Raman portatif « TruScan RM » est un appareil portable d'identification de matière première qui a été introduit dans le marché en 2011. C'est la première génération mise en œuvre par 400 installations pharmaceutiques à travers le monde.

Comme son nom l'indique, le TruScan RM est un spectromètre Raman. Il émet une lumière laser à 785 nm et détecte les photons dispersés à d'autres longueurs

d'onde. Cette lumière diffuse est une empreinte digitale unique pour ce matériel. En utilisant cette empreinte spectrale, le TruScan RM peut identifier de manière unique chaque matière première.

II. Application :

L'identification systématique de chaque contenant reçu de l'ensemble des matières premières mises en œuvre est une exigence dans les industries pharmaceutiques. Etant donné l'importance des volumes des matières reçues, les techniques d'identification ont évolués de manière à être plus rapide et facile de réalisation en comparaison avec l'identification avec le moyen infrarouge (équipement non portable, ayant un temps de traitement plus long).

Par conséquent, le service qualité de Maphar a décidé d'améliorer la réalisation de ce test afin de gagner le temps et de remplacer cette technique (Moyen Infrarouge) par une technique plus rapide : la spectroscopie Raman qui permet d'identifier la MP directement dans son contenant sans avoir besoin de faire un prélèvement.

III. L'appareil TruScan et accessoires :

کلیة العلوم و التقنیات فاس +۵۲ΣΝ۵۱۲ + ۲۵۵۵۵۱۶۱ + ۲۵۵Σ۲۶ Faculté des Sciences et Techniques de Fès

جامعة سيدي محمد بن عبد الله +ه۵۵۸۵۵۲ عند معرف بان۵۸۵ + ۵۵۸۵ Université Sidi Mohamed Ben Abdellah

Figure 3 : Coffret de transport de l'appareil

Figure 4 : Vue de devant du TruScan RM

Figure 5 : Compartiment de batterie du TruScan RM

جامعة سيدي محمد بن عبد الله +ه٥٥٨٥ Δ٥ + ٥٤٨٢ Δ٥٨٥ + Δ٥٥٥ Université Sidi Mohamed Ben Abdellah

Connexion Ethernet via une mini-clé USB Ethernet

Figure 6: Port d'insertion du câble du TruScan RM

Fixation des accessoires sur l'ouverture laser

- On utilise l'accessoire tête de mesure lors d'identification d'une substance dans un sac ou une bouteille ou lors de l'identification directe d'une substance. L'installation de la tête de mesure est indiquée dans la figure ci-dessous (*figure 6*).
- Le détenteur de fiole est utilisé pour les matières liquides qui ne sont pas inidentifiable directement à travers l'emballage (*Figure 7*).

Figure 7: L'accessoire tête de mesure

Figure 8: L'accessoire détenteur de fiole

Échantillonnage à travers l'emballage

IV. Fiche technique du TruScan :

Description	Ordinateur de poche Raman pour vérification matérielle
Gamme spectrale	250-2875 cm ⁻¹
Résolution	8-10.5 cm ⁻¹
Excitation λ	785 ±0.5 nm
Puissance de production	$250 \text{mW} \pm 25 \text{mW}$
Détecteur	2048 element silicon CCD, TE cooled
Batterie	>3 heures
Analyse de données	Administration à base de Web Pouvoir synchronisation pour archivage de données ^[5]

V. Propriétés du spectromètre TruScan RM :

Conçu pour un fonctionnement intuitif, l'analyseur TruScan RM pour la vérification de matériaux s'appuie sur le principe d'échantillonnage de type pointer-acquérir non destructif pour la vérification d'un vaste éventail de composés chimiques :

 ✓ Analyse sans contact à travers les sacs en plastique, les récipients en verre, les blisters et les bouchons permettant de réduire considérablement le risque d'exposition du personnel à des substances chimiques dangereuses et à des ingrédients pharmaceutiques actifs et très puissants pendant les inspections

- ✓ Portatif, il pèse moins de 0,9 kg
- ✓ Résultats clairs ("ÉCHEC" ou "RÉUSSITE") offrant aux utilisateurs une grande indépendance et ne nécessitent aucune interprétation secondaire
- ✓ Mise au point des méthodes rapide et simple grâce à l'acquisition de signatures / références assistée
- ✓ Adapté au dépistage des contrefaçons
- ✓ Réduit considérablement le coût des analyses et les frais généraux
- ✓ Meilleure conformité aux normes 21 CFR Part 11 et BPF grâce à la connexion biométrique, l'option de mots de passe complexes et de piste d'audit complète ^[6]

*La réglementation 21 CFR Part 11

Emise par la FDA (Food & Drug Administration) en 1997, la réglementation finale 21 CFR Part 11 a été conçue pour permettre d'utiliser de manière la plus exhaustive possible la technologie électronique. Elle se compose de deux grandes sections distinctes :

- Enregistrements électroniques
- Signatures électroniques

Il s'agit là d'une extension naturelle de l'utilisation traditionnelle des enregistrements sur support papier. Les enregistrements sur support papier procurent une sécurité des données et peuvent comporter des signatures manuscrites pour indiquer la correction de certaines données et le journal des événements qui ont eu lieu. Toute tentative de falsification des données ou signatures est facilement détectable.

D'un point de vue élémentaire, les enregistrements électroniques fournissent des données sécurisées offrant un seuil de confiance élevé identique à celui des enregistrements sur support papier. Les signatures électroniques requièrent une identification électronique des opérateurs et des superviseurs, similaire à celle des signatures manuscrites. La norme établie permet également le recours aux techniques de biométrie, telles que les dispositifs d'empreintes digitales ou de numérisation rétinal.

VI. Utilisation de l'appareil TruScan RM : 1) Test de performance :

Le test de performance ou le 'self test' consiste à contrôler la performance de l'appareil TruScan RM pour garantir l'obtention de résultats fiables et permet également à l'utilisateur de vérifier si l'instrument est en bon état.

Ce test est obligatoire chaque 24 heures. Il se fait à l'aide de l'un des cinq standards suivants :

جامعة سيدي محمد بن عبد الله +٥٥٨٥ Δ٥ + ٥٤٨٢ Δ٥٨٤ - Δ٥٥ Université Sidi Mohamed Ben Abdellah

- Acetaminophen
- Benzonitrile
- Cyclohexane
- Polystyrene
- Toluene

L'exécution de ce test se fait selon les étapes suivantes :

 Allumez l'appareil et saisir le nom d'utilisateur et le mot de passe, l'appareil dispose d'un contrôle de mot de passe pour empêcher l'utilisation non autorisée. La fenêtre suivante apparait :

- Saisir Test (PQ)

- Insérez ensuite le 'Sample ID' pour renseigner l'identifiant du barreau polystyrène (numéro de saisie) utilisé dans notre cas pour le test de performance
- Placez ensuite correctement le barreau polystyrène dans le détenteur de fiole

جامعة سيدي محمد بن عبد الله

+οΟΛοΠΣ+ ΟΣΛΣ ΕΒΛΕΓοΛ ΘΙ ΗΘΛΒΙΝοΦ Université Sidi Mohamed Ben Abdellah

- Cliquez 'Start test' pour amorcer le test, l'écran scanning montrera le progrès de l'analyse

- Quand le test est achevé, la fenêtre du résultat apparaît, deux cas sont possibles :
 - Si le test passe avec succès, l'écran 'Pass' apparait en vert

Test-newus	er4-2011	0111 ¹³ 11-Jan-20	:47
	Pass		
\sim			
	stdilot#		
Note:			
Repeat	Test	Main Menu	

• Si le test a échoué, l'écran 'Fail' apparait en rouge

Dans ce dernier cas, il faut vérifier d'abord que l'analyseur TruScan RM et l'échantillon sont correctement positionnés, que la méthode correcte a été sélectionnée, l'échantillon correct choisi, etc.

Si la cause première de l'erreur a été facilement identifiée, une note peut être ajoutée à l'enregistrement du test.

Si la raison de l'échec est inconnue, il faut signaler l'échec au gestionnaire d'unité / à la personne désignée pour une investigation plus détaillée de la cause première.

جامعة سيدي محمد بن عبد الله +هممد بن عبد الله معند محمد بن عبد الله به الممعن عبد الله Université Sidi Mohamed Ben Abdellah

2) Identification de la matière première :

2.1 Préparation des échantillons pour l'analyse :

La clé pour obtenir un bon résultat est de positionner avec précision le point focal laser sur la substance inconnue. Le point focal est l'endroit du faisceau laser le plus intense qui produit le plus grand signal moléculaire.

Pour les MP de forme pharmaceutique poudre contenus dans des sacs transparents ou semi-transparents ou conteneurs :

- Il faut utiliser la tête de mesure. Si le matériau est dans un sac, il faut préparer un endroit plat sur le sac pour le tester.
- Positionnez la tête de mesure sur le TruScan RM afin qu'il soit en contact avec le conteneur.
- Une tête de mesure mal positionné peut entraîner des lacunes et des résultats de test médiocres.

Pour les MP de forme pharmaceutique liquide, placez le détenteur de fiole pour analyse liquide sur l'appareil, remplir à l'aide de pipette pasteur les vials avec la solution à analyser, mettre le vial dans le détenteur et lancer le scan.

Pour les récipients épais et transparents (entre 3 mm et 7 mm d'épaisseur):

- Retirez la tête de mesure ou le détenteur de fiole s'ils sont attachés.
- Positionnez la tête de mesure de l'appareil TruScan RM directement en contact avec le conteneur. Il faut s'assurer qu'il y a un bon contact et qu'il n'y a pas de lacunes (bulles d'air).

Certains conteneurs épais peuvent augmenter considérablement le temps de test des

échantillons. Si l'analyseur TruScan RM indique que le temps d'échantillonnage est relativement long, il peut être nécessaire d'annuler le test, de retirer une partie de l'échantillon et de le placer dans un flacon ou un sac plus fin pour le tester.

2.2 Procédure d'analyse des échantillons :

Tout d'abord, il faut effectuer le test de performance et s'assurer que la batterie a la charge suffisante pour exécuter le test (3 à 4 barres au minimum), puis suivre les étapes suivantes :

• Dans le menu principal de TruScan RM, sélectionnez « Run » (Exécuter)

Main Menu	13:37 11-Jan-2011	N
Run Run a method		
Self Test		
Sync		
Tools		

• Sélectionnez 'Method' pour afficher la liste des méthodes valides construisant la bibliothèque du TruScan RM

• Choisissez la méthode appropriée à l'échantillon à analyser

• La fenêtre 'Run Method' réapparait, sélectionner 'Batch', puis choisissez 'New Batch' et renseignez la désignation, le code et le lot de la MP.

Select Batch		16:07 21-Oct-2010	Batch ID 14:28 11-Jan-2011
New Batch			:
test	Polystyrene	(5)	
			1234567890 qwertyuiop asdfghjkl- zxcvbnm Caps Delete

- Placer et scanner les échantillons selon la forme pharmaceutique des MP.
- L'analyse est complète une fois que le résultat 'Pass' ou 'Fail' est affiché sur l'écran de l'appareil.
- Si le résultat d'analyse affiche ''Fail'', il faut vérifier d'abord que le TruScan RM et la MP sont correctement placés, ainsi que la méthode et la MP sont correctement choisis.
- Si la cause première de l'erreur a été facilement identifiée, on peut ajouter une note au rapport d'essai ; on peut choisir parmi les notes prédéterminées celle qui pourra être la cause principale.

3) Méthodes et principes :

Pour pouvoir identifier une matière, il faut tout d'abord créer ce qu'on appelle méthode dans l'appareil TruScan RM. Cette méthode portera le nom de cette matière et son spectre Raman.

L'appareil TruScan RM renferme une bibliothèque (Factory Library) interne fournit avec l'appareil contenant plus de 4380 matières premières avec leurs spectres Raman. De plus, une bibliothèque est créée dans l'appareil au niveau de la société nommée bibliothèque Maphar.

L'identification de la matière première se fait en comparant le spectre de la matière à identifier avec son spectre contenu dans la bibliothèque Maphar.

A ce jour-là, il y a 115 MP validées dans le TruScan RM de la société Maphar et dans cette partie, on va détailler la démarche pour valider une MP dans l'appareil TruScan RM.

3.1 Préparation des échantillons :

Pour assurer une bonne validation d'une **méthode** qui portera le nom de la MP, les échantillons doivent être préalablement préparés, pour ce faire suivre les étapes suivantes : 3.1.1 MP en poudre (Solide)

Sortir des échantillons de MP de l'échantillothèque. Généralement, on utilise pour la validation de méthode 5 à 6 échantillons de lots différents, conditionnés sous différents types d'emballage adéquats, et répartis comme suit :

- 1 lot de MP pour acquisition de signature, conditionnés dans un sac PE
- 1 lot de MP pour le test de sélectivité, conditionné dans un sac PE
- 3 lots de MP pour le test de robustesse, conditionnés dans un sac PE simple épaisseur, double épaisseur et dans un vial en verre incolore fourni avec l'appareil

Pour prélever les échantillons de MP dans un sac PE, peser une quantité d'environ 1,5g de MP puis la mettre dans un sac PE d'une surface d'environ 100 cm² préalablement découpé, en formant une boule de MP prélevée et à l'aide d'une attache, fermer et serrer le sac PE.

كلية العلوم و التقنيات فاس +٥٢٥٥٥٢ ٨ الال٥٥٥٥٢ + ا Faculté des Sciences et Techniques de Fès

Pour le prélèvement des échantillons dans un vial en verre, placer directement assez de MP dans le vial pour remplir au moins le 1/3 du vial, tasser doucement le vial sur une table ou un comptoir pour compresser la MP en poudre et éliminer les grands trous d'aération.

3.1.2 MP liquide

En procédant de la même manière que les MP en poudre, les échantillons sont répartis comme suit :

- 1 lot de MP pour acquisition de signature, conditionné dans une pipette pasteur grade 3ml en plastique
- 1 lot de MP pour le test de sélectivité, conditionné dans une pipette pasteur grade 3ml en plastique
- 3 lots de MP pour le test de robustesse, conditionnés dans une pipette pasteur grade 3 ml en plastique, un vial en verre incolore fourni avec l'appareil et un vial HPLC en verre incolore

Pour le prélèvement des échantillons liquides et l'exécution des tests sur des pipettes pasteur suivre les étapes suivantes :

- Prélever à l'aide de la poire d'une pipette pasteur une quantité d'environ 3 ml d'échantillon MP
- Inverser la pipette pasteur pour faire couler le liquide dans la poire, puis tapoter doucement pour le faire
- Utiliser l'adaptateur de fiole pour exécuter les tests à travers les pipettes pasteur grade 3 ml

Remarque :

- La validation n'est effectuée qu'avec des échantillons de MP antérieurement contrôlés conformes
- Pour les MP liquide, le prélèvement n'est effectué qu'au moment d'exécution des tests
- Une validation peut être réalisée qu'avec 4 lots différents à condition d'utiliser un même lot pour deux tests différents

3.2 Acquisition des signatures :

Une signature est un spectre Raman de référence d'une substance connue (MP), contrôlée conforme. L'acquisition de signature de référence pour des méthodes diffère tout à fait d'une mesure normale. La différence principale est que ces signatures de référence sont acquises à une exactitude beaucoup plus grande, et ont tendance à prendre plus de temps que des mesures ordinaires d'un essai.

La force du signal Raman peut être tout à fait variable à travers des matériaux, quelques matériaux exigeront 5 minutes ou moins pour acquérir une signature de référence, tandis que d'autres exigeront une demi-heure ou plus, c'est pour cela. Les échantillons doivent être préalablement préparés.

جامعة سيدي محمد بن عبد الله +ه٥٥٨٥٥٢ ٥٢٨ ٥٢ + ٥٥٨٥ Université Sidi Mohamed Ben Abdellah

Avant tout, il faut s'assurer que le test de performance est antérieurement exécuté, et que la batterie a la charge suffisante pour exécuter les tests (3 à 4 barres au minimum), puis suivre les étapes suivantes :

• Du menu principal du TruScan, choisir « Tools » et sélectionner « Acquire Signature »

• Placer l'échantillon pour l'analyse, choisissez ' Start Scan' et appuyez sur la touche "enter".

• Une barre de progrès sur l'écran indique le temps restant pour acquérir une signature de haute qualité.

• Quand l'acquisition se termine, l'allure du spectre de signature apparait sur l'écran

کلیة العلوم و التقنیات فاس +ο+Σμοι+ ۱ +Γο00οιΣι Λ +ΟιΣΧΣ+Σι Faculté des Sciences et Techniques de Fès

- Sélectionner « Save » ou « Discard »
- La Signature apparaîtra maintenant dans l'écran des « Signatures Inactives »

Inactive Signatures	16:19 💾 12-Jan-2011 📲				
Sig-newuser4-20110112-161607					

L'étape qui suit consiste à connecter l'appareil TruScan RM avec un ordinateur pour pouvoir activer la signature et créer la méthode qui portera le nom de la MP à valider et son spectre Raman.

3.3 Connexion au WEBADMIN :

WebAdmin est une interface web directement liée au dispositif de configuration du TruScan RM, et a été spécifiquement conçu ainsi qu'aucun logiciel complémentaire n'est exigé autre que le navigateur standard Internet comme Internet Explorer ou Google Chrome.

Quand le dispositif TruScan RM est connecté à un réseau, n'importe quel ordinateur sur le même réseau avec un navigateur peut être utilisé pour ouvrir l'utilité WebAdmin du TruScan RM. Pour se connecter au WebAdmin, il faut procéder comme suit :

- Installer l'adaptateur USB/Ethernet
- Ouvrir le navigateur « Internet Explorer »

• L'utilité WebAdmin répond à une connexion couronnée de succès avec un écran d'établissement de la connexion (login screen)

جامعة سيدي محمد بن عبد الله +هممد بن عبد الله معند محمد بن عبد الله به الممعن المعند محمد بن عبد الله به معند بن عبد الله المعند بن عبد الله

• Il faut saisir le nom d'utilisateur et le mot de passe pour pouvoir accéder.

3.4 Création d'une méthode :

La création d'une méthode se déroule en quatre étapes :

3.4.1 Activation de la signature

Toutes les signatures acquises se déplacent automatiquement aves les signatures inactives, donc il faut les activer pour pouvoir créer les méthodes.

- Dans WebAdmin, choisissez l'onglet « Signatures » ensuite sélectionnez « Inactive Signatures »
- Cliquer sur le nom de la signature acquise, placée dans la colonne « Name/UID » et renommer la signature par exemple : Nom MP Code MP-Lot MP
- Changer le statut de « Inactif » à « Actif » pour la rendre disponible et la faire joindre à une méthode, puis sauvegarder

3.4.2 Création de la méthode

• Dans WebAdmin, choisissez l'onglet « Méthods »

كلية العلوم و التقنيات فاس +٥٢٤١٥٥ / ١ - ١ - ٢٥٥٥٥٢٤ Faculté des Sciences et Techniques de Fès

جامعة سيدي محمد بن عبد الله +هαλουΣ + ΟΣΛΣ ΣΒΑΕΓοΛ ΘΙ ΗΘΛΒИΛοΦ Université Sidi Mohamed Ben Abdellah

🖻 TruScan	RM WebAdmin - Method List - Windows Intern	et Explorer					- (-) (-) 🔀
00-	http://192.168.99.100/			~	😽 🗙 🔎 Googl	e Search	P-
🔆 Favorites	III) TruScan RM WebAdmin - Method List						
		(]					
s c	TRUSCAN	RM			,	Administrator Log Out	0
[M	thods Bignatures		-	Archive	Use	rs Setting	gs
	Name	Barcode	Prefix	Enabled	Sianatures		
	Acetaminophen	A0235		yes	1	E	
	Hydrogen peroxide	-		yes	1		
	MCC	-		yes	1		
	Polysorbate 80	-		yes	2		
	Polystyrene	-		yes	1		
	TIO2	-		yes	1		
						Delete Selected	
						Export Selected	
						Export All	
	Items per page 25						

• L'écran de tous les Méthodes validées apparait, choisissez « Add Method » pour ajouter une nouvelle méthode

🏉 TruSca	an RM WebAdmin - Add	Method - Windows Internet	Explorer	
0	http://192.168.99.100/	newmethod.aspx		🕶 (+y) 🗶 🔎
🚖 Favorite:	s 🔛 TruScan RM WebAdm	nin - Add Method		
	herme Trus	SCAN RM		
1	Methods Signatu	ires		Archive
	Method Name			
	Barcodes		*	
	Prefix			
	Info Text (.html)	Browse		
	Info Image (.bmp)	Browse		
	Enabled	Iv		
	Signatu	ures in Method		Unattached Signatures
			Sig-A	dministrator-20101213-133051
	Add Method Cancel			

- Il y a six champs associés aux méthodes sur l'écran d'édition de la méthode ci-dessus, et dont quatre sont à renseigner obligatoirement :
 - ✓ Method Name : Ce champ sert à créer ou éditer le nom de la méthode, ce dernier sera montré sur le dispositif TruScan et la liste des méthodes dans l'utilité WebAdmin.

Renseigner ce champ en saisissant le nom de la matière première.

- ✓ Info image : Peut inclure une image de la signature acquise avec la méthode préalablement enregistrée.
- ✓ Enabled : Cliquer pour changer le statut de la méthode entre permis (enabled) ou mis hors de service (disabled). On doit Permettre aux méthodes d'être disponible (enabled) pour pouvoir lancer des scans.

Si une méthode est mise hors de service (disabled), il n'apparaîtra pas dans la liste de méthodes sur le dispositif TruScan RM.

✓ **Signatures :** Il y a deux panneaux de signature : 'Signatures in Method' et 'unattached signatures'.

(1) Une signature active libre peut être attachée à cette méthode en la sélectionnant dans le panneau 'unattached signatures'

(2) Au contraire, une signature peut être enlevée de la méthode en y cliquant dans le panneau gauche puis sur ' \rightarrow ' le bouton de flèche entre les panneaux.

N.B : Pour que la méthode soit permise, elle doit contenir au moins une seule signature.

- Après que la configuration désirable est mise, cliquer ensuite ' Add Method'.
- La nouvelle méthode est maintenant prête à l'emploi.

3.4.3 Test de sélectivité

L'attribut de performance critique à être validé pour un essai d'identification est la sélectivité (la spécificité). La sélectivité (la spécificité) est décrite comme la capacité d'une méthode à distinguer sélectivement l'identité d'un échantillon parmi toutes les substances interférentes. L'objectif est donc d'assurer que le TruScan RM rejette successivement des substances de défi, qui ont des spectres semblables à la méthode d'intérêt.

Quand le TruScan RM compare deux spectres, il calcule une p-valeur avec un seuil de 0.05 (limite de confiance de 95%), la p-valeur exprime le degré de cohérence entre le matériau d'essai et la référence. Si deux spectres sont statistiquement cohérents, la p-valeur est plus grande ou égale à 0.05, le TruScan RM déclare donc " un passage ". Plus la p-valeur est grande, plus la sélectivité est bonne.

p-valeur	Résultat
p < 0.05	ECHEC (pas de cohérence)
p ≥ 0.05	PASSAGE (cohérence)

Le TruScan RM peut exécuter une analyse de sélectivité qui indiquera lesquelles des substances dans la bibliothèque de recherche intégrée (Factory librairie) dans l'appareil et dans la bibliothèque Maphar sont semblables à la méthode étant validée. Le test de sélectivité peut être exécuté avec la bibliothèque interne (Factory librairie) activée ou désactivée.

Exemple :

L'éphédrine et la pseudoéphédrine sont deux diastéréoisomères, dérivés de la phénéthylamine, identiques dans leur formule moléculaire, mais légèrement différentes dans leur arrangement des molécules.

Figure 9 : Le test de sélectivité de l'ephedrine HCl et la pseudoephedrine

Le spectre 1 est le résultat du test de sélectivité d'un échantillon d'éphédrine HCl analysé par sa méthode de référence l'éphédrine HCl correspondante. La p-valeur était de 0,57 dépassant de loin la limite minimale de 0,05 du p-valeur. Lorsque ce même échantillon d'éphédrine HCl a été analysé par la méthode de la pseudoéphédrine HCl (spectre 2), la p-valeur est de $3,1x10^{-12}$, ce qui est exponentiellement inférieur à la limite de 0,05. L'appareil a pu différencier entre les deux composés même si ils diffèrent seulement au niveau d'arrangement des molécules

Pour exécuter le test de sélectivité, il faut suivre les étapes ci-dessous :

- Dans le menu principal, choisissez 'Tools'.
- Sélectionnez 'Methods', une liste de méthodes apparaît sur l'écran de l'appareil.
- Sélectionnez la méthode désirée, un menu apparaît.
- Sélectionnez 'Selectivity Test', qui est au fond de la diapositive dans le menu.

Review Methods	16-22 11-Jan-2011
AII A C D H	LPST
Acetaminophen Aspirin Calcium Carbonate	Signatures
Cyclohexane	View Info
Dextrin	
Dextrose Anhydrous Hexane	Selectivity Test

• Un message apparaît, demandant de placer l'échantillon dans la position pour le balayage, dans le détenteur de fiole, ou l'utilisation de la tête de mesure.

جامعة سيدي محمد بن عبد الله +هαλουΣ + ΟΣΛΣ ΣΒΑΕΓοΛ ΘΙ ΗΘΛΒИΛοΦ Université Sidi Mohamed Ben Abdellah

Test - Position Sample							
Method Selectivity Test							
Insert standard in vial holder: Cyclohexane							
Factory Library: ON							
Sample ID:							
Start Test Cancel Test X							

- Placer l'échantillon dans la position correcte.
- Si on désire exécuter le test de sélectivité en utilisant seulement les méthodes et signatures crées dans l'analyseur TruScan RM, et non pas l'optionnelle bibliothèque Factory Library, on utilise les touches flèches pour effleurer le champ 'Factory Library' et choisir l'état de désactivation « OFF ».
- Si on désire exécuter le test sélectivité en utilisant la bibliothèque Factory, il faut procéder de la même manière ci-dessus en choisissant l'état d'activation « ON ». Il y a plus de 4000 composés dans la bibliothèque qui seront contre évalués, par conséquent tous les résultats doivent être expliqués lorsqu'un composé dit faux positif se présente.
- Dans le champ « Sample ID », saisir l'identifiant de l'échantillon : Nom MP Code MP - Lot
- Sélectionnez « Start Test »

Test - Position Sample	22 Scanning 16-01 9
Method Selectivity Test	Scan in progress
Insert standard in vial holder: Cyclohexane	Hold unit still, at arm's length away
Factory Library: OFF	from eyes, for
Sample ID: 56789	X Cancel
Start Test Cancel Test	Auto Exposure

• Quand l'analyse est achevée, l'écran montre les résultats du test sélectivité pour la méthode choisie.

Selectivity Test	16:39 11-Jan-2011 📍
Cyclohexane Selectivity: Needs investi	gation
Cyclohexane	Þ
🔴 Cydohexane	
Factory library item	
🥮 strong similarity 🛛 🔘 waa	ak similarity

Les résultats du test peuvent se présenter sous 3 catégories, indiquées par des cercles vertes, rouges ou jaunes (" \bigcirc ", " \bigcirc ", " \bigcirc ") en fonction de la p-valeur, faisant l'objet d'une évaluation du test de sélectivité.

● → Le rapport de validation idéal et le plus fréquent (p-valeur ≥ 0,05)

- La méthode est sélective contre toutes les autres substances dans la bibliothèque.
- ✓ Aucun risque de faux passage

Selectivity Test 29-Dec-2010	Selectivity Matches Matches: Pval UAEUGI cenicosce AP 5523 Rose UAEUTHJ Sepispers: AP 5523 Rose M1D.4891 No Near Neighbors Good selectiv	23 Rose
Selectivity: Good	Reviewed by: Date:	
Acetaminophen Method (tested for selectivity)	Manh	- Run - September AP 9523 Rues
	800 1000 1500 Remen Shift (cm -1)	2000 2500 3000
	Sepisperse AP 5523 Rose Selectivity	24-Apr-2018 10:13

● → Rapport de validation avec évaluation de risque (p-valeur> 0.05)

- ✓ La méthode n'est pas sélective contre toutes les substances dans la bibliothèque. Les substances détectées sont dites substances complémentaires.
- ✓ Lorsqu'il s'agit d'une substance contenue dans la Factory library, un rapport de monographie de cette substance prouvant la ressemblance d'identité chimique entre celle-ci et la substance étant évaluée (MP) doit être préparé, mais si on n'arrive pas à montrer cette ressemblance, la méthode doit être désactivée.
- ✓ Si la substance complémentaire est contenue dans la bibliothèque Maphar et sa nomenclature est différente de celle de la substance à valider, on passe à un test faux positif, si les deux noms se ressemblent, il s'agit dans la plupart des cas d'une matière déjà validée.

➡ Rapport de validation moins désirable et peu commun (0.001 < p-valeur < 0.05)</p>

- La méthode est sélective contre toutes les autres substances dans la bibliothèque.
- ✓ A identifié quelques substances (nommées proches structuraux) qui pose un risque d'interférence. Ce sont des matériaux avec des caractéristiques Raman similaires à la substance traitée et ils peuvent produire un faux résultat positif lorsque la méthode à valider est exécutée contre eux.
- ✓ Si ces proches structuraux sont contenus dans la bibliothèque Maphar, on passe à un test faux positif, mais s'ils figurent dans la Factory library, on désactive la méthode.

Figure 12 : Rapport de sélectivité avec « proches structural »

(Nearest Neighbors)

Le test faux positif :

Le test faux positif consiste à identifier toutes « les substances à risque » contre la méthode d'intérêt.

Lorsque le résultat est indiqué par un cercle rouge :

- Les substances dites complémentaires existantes dans la bibliothèque Maphar font l'objet d'un test faux positif. Les résultats de ce test se présentent sous deux cas de figure :
 - Un « Pass » : il s'agit de la même matière, et par conséquent on désactive la méthode pour éliminer le risque du faux passage.
 - Un « Fail » : il s'agit de deux substances différentes, dans ce cas, on peut continuer la validation de la méthode.

Lorsque le résultat est indiqué par un cercle jaune :

• Les substances dites « proches structuraux » subissent un test faux positif si seulement ils existent dans la bibliothèque Maphar et on s'attend à un « Fail ».

3.4.4 **Test de robustesse :**

Le test de robustesse consiste à examiner la candidature d'une méthode avec des échantillons indépendants et chimiquement représentatifs de la méthode pour vérifier sa robustesse sur différents types d'emballages.

کلیة العلوم و التقنیات فاس +۵۲۵۵۵۲۶ ۸ اΣ۱۵۵۵۵۲۶ ۱ +۱۵۵۲ Faculté des Sciences et Techniques de Fès

Le nombre de reproduction exécuté pendant la validation de méthodes pour un même type d'emballage n'est pas spécifié, cependant, un triple scan est généralement reconnu comme la norme.

La bonne pratique standard est d'inclure toutes les configurations de prélèvement d'échantillon, que l'on pourrait s'attendre dans l'opération ordinaire d'identification des MP (Par exemple les sacs PE, le nombre de couche de sacs PE, la bouteille de verre incolore ou brune, etc.)

Exécution du test robustesse :

• Du menu principal, choisir 'Run'

Main Menu	13:37 11-Jan-2011
Run Run a method	
Self Test	
Sync	
Tools	

• Pour choisir la méthode manuellement, le champ 'Method' est sélectionné, presser la touche 'entrer' pour faire apparaître l'écran 'Select Method'

Run Method	14:25 11-Jan-2011
Select method - Position sample ready.	and sample ID info. and start when
Method:	
Batch:	
Sample:	
Start Run	Cancel Run 🗙

• Dans l'écran 'Select Method' qui apparait, choisissez la méthode appropriée à l'échantillon MP.

Select Method	15:43 21-Oct-2010
AIAHP	
Acetone	
Hydrogen peroxide	
Polystyrene	

• Appuyer ensuite sur 'Batch', et choisir ' New Batch'

• Renseigner manuellement les informations de l'échantillon MP servant au test, sous la forme : Nom MP Code MP - Lot MP

									-
1	2		4	5	6	7		9	0
q	w			t	Y	u		0	P
a	s	d	f	g	h	1	k	Œ.	-
	x			Ь	n	m	1	Don	e
	Cape	6					D	ele	te

- Une fois les informations sont renseigner, choisir 'Done'
- Placer l'analyseur TruScan RM et l'échantillon conditionné correctement pour l'analyse et choisir 'Start Run'

• Sur l'achèvement de l'analyse, l'appareil TruScan RM annoncera si le test d'identification a abouti à un 'Pass' ou un 'Fail'

Run-newuser4-20110111 14-32	Run-newuser4-20110111 14-38
Pass	Fail
poly_oq	poly_oq
Batch: 123456	Batch: 123456
Sample: 123456-001	Sample: 123456-002
Note:	Note:
Next Repeat Cancel	Next Repeat Cancel

• Dans le cas d'un 'Pass', repositionner le TruScan RM vers une autre surface du même échantillon, sélectionner 'Next' puis appuyer sur 'entrer'. Répéter le scan

جامعة سيدي محمد بن عبد الله +ه۵۵۸۵۵۲ عدیک + ۵۵۸۵ به اط۵۸۵۸۵ Université Sidi Mohamed Ben Abdellah

pour avoir au total 3 scans pour le même échantillon, conditionné dans le même type d'emballage.

• Si le test a abouti à un 'Fail', vérifiez d'abord pour vous assurer que le TruScan RM et l'échantillon est correctement placé, l'échantillon et la méthode ont été choisis correctement, etc.

Batch ID	Acide Citrique Anh	Acide Citrique Anhydre M44092 142001					
Method	Acide Citrique Anh	ydre					
Device SN	TM2307						
Software Version	2.5.0 (16772)						
Sample ID	Run Time	Result	P-Value	Note			
Acide Citrique Anhydre M44092 142001-001	10-May-2016 10:42	PASS	0.708477	A travers sac PE simple épaisseur			
Acide Citrique Anhydre M44092 142001-002	10-May-2016 10:43	PASS	0.705759	A travers sac PE simple épaisseur			
Acide Citrique Anhydre M44092 142001-003	10-May-2016 10:43	PASS	0.723265	A travers sac PE simple épaisseur			

Tableau 2 : Exemple de résultat du test de robustesse

Interprétation des résultats :

- Un minimum de trois échantillons différents conditionnés dans différents types d'emballage prévues devront être évalué et avoir un résultat de passage avec une p-valeur au-dessus de 0.05
- Pendant la mise à l'épreuve de robustesse de méthode à travers un type d'emballage, le résultat 'Fail' avec une p-valeur inférieur strictement à 0.05, indique que la matière première est non identifiable sur ce type d'emballage. ^[5]

جامعة سيدي محمد بن عبد الله +ه٥٥٨٥ Δ٥٢ - ٥٤٨٢ Δ٥٢٥ + Δ٥٥٥ Université Sidi Mohamed Ben Abdellah

Partie pratique

Validation des méthodes dans l'appareil TruScan RM

Faculté des Sciences et Techniques - Fès. B.P. 2202 – Route d'Imouzzer. FES. 🛢 212 (0) 5 35 60 29 53 Fax : 212 (0) 5 35 60 82 14

I) Objectif :

L'objectif de notre travail est de valider le maximum de MP dans l'appareil TruScan RM et de savoir les difficultés rencontrées lors de cette opération sensible et déterminante. On va essayer également d'analyser quelques spectres Raman obtenus.

II) La liste des MP à valider :

Selon les MP réceptionnés au niveau du magasin, le LCQ reçoit chaque période une liste de MP à valider dans le TruScan RM.

Le tableau ci-dessous regroupe la liste des MP sur laquelle nous avons travaillé :

III) Validation des méthodes dans l'appareil TruScan RM :

Dans cette partie, on va détailler la démarche pour valider chaque MP de la liste présentée ci-dessus.

1. Acébutolol chlorhydrate :

L'**acébutolol** est la substance active d'un médicament bêta-bloquant utilisé comme antihypertenseur. Il est administré sous forme de chlorhydrate d'acébutolol.

Nom UICPA	(RS)-N-{3-acétyl-4-[2- hydroxy-3-(propan-2- ylamino)propoxy]phényl}but anamide	
Formule brute	$C_{18}H_{28}N_2O_4$	- N
Masse molaire	336,4259 ± 0,018 g/mol	
T° fusion	121 °C	

1.1 Acquisition de la signature :

L'acébutolol chlorhydrate est une poudre cristalline, on procède à l'échantillonnage de MP poudre mentionné dans la partie théorique.

A l'aide de l'accessoire tête de mesure, on place correctement l'échantillon et on appuis sur start scan. La fenêtre suivante a apparait :

Un photoblanchiment a été détecté. Dans ce cas, on déplace l'échantillon vers une autre surface et on continue, le même message réapparait et à la fin du scan on obtient le spectre suivant:

Interprétation des résultats :

Le **photoblanchiment** est la perte de fluorescence d'une molécule. Une molécule fluorescente à l'état excitée peut soit émettre un photon, soit être engagée dans une réaction photochimique qui va empêcher son retour à un état excitable. Il peut s'agir d'une réaction avec l'oxygène sous forme de radicaux libres. Le photoblanchiment peut être une limite à plusieurs méthodes de microscopie utilisant la fluorescence.

On remarque que le spectre obtenu est insignifiant, aucun pic n'a été détecté, et puisque les méthodes avec des signatures de référence blanchies ne sont pas aussi robustes, on a arrêté l'acquisition de la signature en cliquant sur 'discard' (écarter). کلیة العلوم و التقنیات فاس +٥٢٢٥٥٥٦٤ / المصυعا + المصυعا + الماα Faculté des Sciences et Techniques de Fès

2. Clarithromycine :

La **clarithromycine** est un antibiotique macrolide utilisé pour traiter les pharyngites, les angines, les sinusites aiguës maxillaires, en association avec d'autres antibiotiques pour traiter l'infection à *Helicobacter pylori* (principal responsable de maladies ulcéreuses de l'estomac et du duodénum), les complications bactériennes aiguës de la bronchite chronique, les pneumonies (en particulier les pneumonies atypiques associées à *Chlamydia pneumoniae*), les infections cutanées, et, chez les patients porteurs de VIH, pour prévenir et traiter le *Mycobacterium avium complex* disséminé ou MAC.

Tableau 4: Caracteristiques de clarithromycine

Nom UICPA	6-o-méthyl érythromycine A
Formule brute	<u>C₃₈H₆₉NO₁₃</u>
Masse molaire	747,9534 ± 0,0393 g/mol
<u>T° fusion</u>	217 à 220 °C

2.1 Acquisition de la signature :

Le premier lot servira pour l'acquisition de la signature. Clarithromyicine est une poudre, on procède à l'échantillonnage de MP poudre mentionné dans la partie théorique.

Le spectre Raman obtenu est le suivant

Figure 14 : Spectre Raman de clarithromycine

Faculté des Sciences et Techniques - Fès. B.P. 2202 – Route d'Imouzzer. FES. 212 (0) 5 35 60 29 53 Fax : 212 (0) 5 35 60 82 14

جامعة سيدي محمد بن عبد الله +ه۵۵۸۵۵۲ ۵۵۸۲ ۵۲۵ + ۵۵۸۵۰ Université Sidi Mohamed Ben Abdellah

Après l'activation de la signature, on crée la méthode à l'aide de l'intefrace Web Admin puis on passe au test de sélectivité.

2.2 Test de sélectivité :

Le 2ème lot servira pour effectuer un test de sélectivité. On échantillonne de la même manière et on commence le test.

Le résultat du test de sélectivité est le spectre suivant :

Figure 15 : Rapport du test de sélectivité de clarithromycine

Interprétation des résultats :

Comme il est indiqué sur le rapport, le test a aboutit à une bonne séléctivité, aucun proche structural n'a été détecté. L'appareil compare le spectre obtenu pour l'acquisition de la signature et le spectre obtenu pour le 2ème lot. La p-valeur est égale à 0,6499 et est supérieur à 0,05.

2.3 Test de robustesse :

L'étape suivante consiste à effectuer un test de robustesse. Il se fait sur trois types d'emballages : sac PE simple épaisseur, sac PE double épaisseur, vial en verre incolore.

2.3.1 Test de robustesse à travers Sac PE simple épaisseur :

On met environ 1,5g de MP clarithromycine du 3ème lot dans un sac PE simple épaisseur, on lance un scan standard 'Run' et on le répète trois fois, le test donne un 'Pass' et le résultat se présente sous la forme d'un tableau :

Tableau 5 : Résultat du test de robustesse de clarithromycine à travers sac PE simple épaisseur

Batch ID	Clarithromycine M0000711 171132				
Method	Clarithromycine T1000 MCG MG		CG MG		
Device SN	TM2307				
Software Version					
Sample ID		Result	P-Value	Note	
Clarithromycine M0000711 171132-001		PASS	0.663034	A travers Sac PE simple épaisseur	
Clarithromycine M0000711 171132-002		PASS	0.711475	A travers Sac PE simple épaisseur	
Clarithromycine M0000711 171132-003		PASS	0.662929	A travers Sac PE simple épaisseur	

Interprétation des résultats :

Les trois tests ont abouti à des résultats 'Pass' avec des p-valeur supérieur à 0,05. Un résultat 'Pass' signifie que la matière 'clarithromycine' est identifiable à travers un sac PE simple épaisseur.

2.3.2 Test de robustesse à travers Sac PE double épaisseur

Du 4ème lot, on prélève 1,5g de la poudre et on la met dans un sac PE double épaisseur. On commence le scan et on le répète trois fois. Le test donne un 'Pass' et le résultat se présente sous la forme du tableau suivant :

Tableau 6 :	Résultat du t	test de robustesse	de clarithromyc	ine à travers sac	PE double épaisseur
			•		_

Batch ID	Clarthromycine M	0000711				
Method	Clarithromycine T1000 MCG MG					
Device SN	TM2307					
Software Version						
Sample ID		Result	P-Value	Note		
Clarthromycine M0000711 160315-001		PASS	0.690868	A travers Sac PE double épaisseur		
Clarthromycine M0000711 160315-002		PASS	0.644640	A travers Sac PE double épaisseur]	
Clarthromycine M0000711 160315-003		PASS	0.746533	A travers Sac PE double épaisseur		

Les trois tests ont abouti à des résultats 'Pass' avec des p-valeurs supérieurs à 0,05. Le résultat 'Pass' signifie que la matière 'clarithromycine' est identifiable à travers un sac PE double épaisseur.

2.3.3 Test de robustesse à travers vial en verre incolore

On place directement assez de MP du 5ème lot dans le vial pour remplir au moins le 1/3 du vial, on le tasse doucement sur une table ou un comptoir pour compresser la MP en poudre. On commence le scan on le répétant trois fois. Le test donne un 'Pass' et le résultat se résume dans le tableau suivant :

Tableau 7 : Résultat du test de robustesse de clarithromycine à travers vial en verre incolore

Batch ID	Clarithromycine M0000711 163449					
Method	Clarithromycine T1000 MCG MG					
Device SN	TM2307					
Software Version						
Sample ID		Result	P-Value	Note		
Clarithromycine M0000711 163449-001		PASS	0.088885	A travers Vial en verre incolore	1	
Clarithromycine M0000711 163449-002		PASS	0.075192	A travers Vial en verre incolore	1	
Clarithromycine M0000711 163449-003]	PASS	0.067757	A travers Vial en verre incolore	1	

Interprétation des résultats :

Les trois tests ont aboutit à des résultats 'Pass' avec des p-valeurs supérieurs à 0,05. Le résultat 'Pass' signifie que la matière 'clarithromycine' est identifiable à travers vial en verre incolore.

2.4 Résumé :

La méthode 'clarithromycine' a été créé et validée dans l'appareil 'TruScan RM'.

3. Le paracétamol :

Le paracétamol, aussi appelé acétaminophène, est un composé chimique utilisé comme antalgique (anti-douleur) et antipyrétique (anti-fièvre), qui figure parmi les médicaments les plus communs, utilisés et prescrits au monde.

Le paracétamol

Tableau 8: Caractéristiques du paracétamol

Nom UICPA	N-(4- hydroxyphényl)éthanamide
Formule brute	$C_{20}H_{22}N_2S$
Masse molaire	$322,467 \pm 0,023$ g/mol
T° fusion	130,5 °C

3.1 Acquisition de la signature :

Le premier lot servira pour l'acquisition de la signature. L'ibuprofène est une poudre, on procède à l'échantillonnage de MP poudre mentionné dans la partie théorique.

Le spectre Raman obtenu est le suivant :

Figure 16 : Spectre Raman du paracétamol

Interprétation :

Tableau 9 : principales bandes Raman caractéristiques du paracétamol

Nombre d'onde (cm ⁻¹)	Liaison et type de vibration
1650	Vibration d'élongation de C=O
1445-1510	Vibration d'élongation du demi-cercle du cycle
	aromatique
1560-1620	Vibration d'élongation du quadrant du cycle
	aromatique
1370	Vibration de déformation dans le plan de O=(C-
	C)
1325	Vibration d'élongation de C-N (C aromatique)
1235	Vibration d'élongation de C-O de l'alcool
655-860	Vibration de déformation hors du plan du
	C-H aromatique

Après l'activation de la signature, on passe à la création de la méthode puis au test de sélectivité.

3.2 Test de sélectivité :

Le 2ème lot servira pour effectuer un test de sélectivité. On échantillonne de la même manière et on commence le test.

Le résultat du test de sélectivité est le spectre suivant :

Figure 17 : Rapport du test de sélectivité du paracétamol

Comme il est indiqué sur le rapport, l'appareil a détecté une substance complémentaire 'l'acétaminophène' avec une p-valeur de 0,355 qui est supérieur à 0,05. L'acétaminophène est un autre nom du paracétamol, donc il s'agit de la même matière.

3.3 Test de robustesse :

3.3.1 Test de robustesse à travers sac PE simple épaisseur

On met environ 1,5g de MP paracétamol du 3ème lot dans un sac PE simple épaisseur. On lance un scan standard 'Run' et on le répète trois fois, le test donne un 'Pass' et le résultat se présente sous la forme d'un tableau :

Batch ID	Paracet	amol M11	819 142533
Method	Paracet	amol	
Device SN	TM2307		
Software Version	2.5.0 (16772)		
Sample ID	Result	P-Value	Note
Paracetamol M11819 142533-001	PASS	0.549236	A travers sac PE simple épaisseur
Paracetamol M11819 142533-002	PASS 0.607535		A travers sac PE simple épaisseur
Paracetamol M11819 142533-003	PASS	0.596350	A travers sac PE simple épaisseur

Les trois tests ont aboutit à des résultats 'Pass' avec des p-valeur supérieur a 0,05. Un résultat 'Pass' signifie que la matière 'paracétamol' est identifiable à travers un sac PE simple épaisseur.

3.3.2 Test de robustesse à travers Sac PE double épaisseur

Du 4ème lot, on prélève 1,5g de la poudre et on la met dans un sac PE double épaisseur. On commence le scan et on le répète trois fois. Le test donne un 'Pass' et le résultat se présente sous la forme du tableau suivant :

Batch ID	Paracetamol M11819 160163								
Method	Paracetamol								
Device SN	TM2307								
Software Version	2.5.0 (16772)								
Sample ID	Result	P-Value	Note						
Paracetamol M11819 160163-001	PASS	0.597114	A travers sac PE double épaisseur						
Paracetamol M11819 160163-002	PASS	0.595350	A travers sac PE double épaisseur						
Paracetamol M11819 160163-003	PASS	0.649438	A travers sac PE double épaisseur						

Tableau 11 : test de robustesse du paracétamol à travers sac PE double épaisseur

Interprétation des résultats :

Les trois tests ont aboutit à des résultats 'Pass' avec des p-valeur supérieur a 0,05. Un résultat 'Pass' signifie que la matière 'paracétamol' est identifiable à travers un sac PE double épaisseur.

جامعة سيدي محمد بن عبد الله +ه۵۵۸۵ عند ٥٤٨ علاهه اله ٩٤٨٥ بن عبد الله Université Sidi Mohamed Ben Abdellah

3.3.3 Test de robustesse à travers vial en verre incolore

On place directement assez de MP du 5ème lot dans le vial pour remplir au moins le 1/3 du vial, on le tasse doucement sur une table ou un comptoir pour compresser la MP en poudre. On commence le scan on le répétant trois fois. Le test donne un 'Pass' et le résultat se résume dans le tableau suivant :

Batch ID	Parace	tamol M11	819 160163
Method	Parace	tamol	
Device SN	TM230	7	
Software Version	2.5.0 (1	.6772)	
Sample ID	Result	P-Value	Note
Paracetamol M11819 160163-001	PASS	0.597114	A travers vial en verre incolore
Paracetamol M11819 160163-002	PASS	0.595350	A travers vial en verre incolore
Paracetamol M11819 160163-003	PASS	0.649438	A travers vial en verre incolore

Tableau 12 : test de robustesse du paracétamol à travers vial en verre incolore

Interprétation des résultats :

Les trois tests ont aboutit à des résultats 'Pass' avec des p-valeurs supérieurs à 0,05. Le résultat 'Pass' signifie que la matière 'paracétamol' est identifiable à travers un vial en verre incolore.

3.4 Résumé :

La méthode 'paracétamol' a été créé et validée dans l'appareil 'TruScan RM'.

4. L'acide acétylsalicylique :

L'acide acétylsalicylique, plus connu sous le nom commercial d'aspirine, est la substance active de nombreux médicaments aux propriétés antalgiques, antipyrétiques et antiinflammatoires. Il est aussi utilisé comme antiagrégant plaquettaire. Il s'agit d'un antiinflammatoire non stéroïdien. C'est un acide faible, dont la base conjuguée est l'anion acétylsalicylate.

L'acide acétylsalicylique

Nom UICPA	<u>acide 2-</u> acétyloxybenzoïque
Formule brute	<u>C9H8O4</u>
Masse molaire	<u>180,1574 ± 0,009 g/mol</u>
T° fusion	<u>135 °C</u>

4.1 Acquisition de la signature :

On prend 5 lots différents, le lot 1 servira pour l'acquisition de la signature. L'acide acétylsalicylique est une poudre, on procède à l'échantillonnage de MP poudre mentionné dans la partie théorique.

Le spectre Raman obtenu est le suivant :

Figure 18 : Spectre Raman de l'acide acétylsalicylique

Interprétation :

Tableau 14 : Principales bandes Raman caractéristiques de l'acide acétylsalicylique

Nombre d'onde (cm ⁻¹)	Liaison et type de vibration
1750	Vibration d'élongation de C=O de l'ester
1630	Vibration d'élongation dans le plan de C=O de l'acide carboxylique
1580-1610	Vibration d'élongation du quadrant du cycle aromatique
1430-1480	Vibration d'élongation du demi-cercle du cycle aromatique
1370	Vibration de déformation dans le plan de C-C (C-C=O)
1200-1300	Vibration d'élongation de C-O de l'acide carboxylique
1190	Vibration d'élongation hors du plan de C-O-C (C-O-C=O)
710-810	Vibration de déformation hors du plan de C-H aromatique

Après l'activation de la signature, on passe à la création de la méthode puis au test de sélectivité.

4.2 Test de sélectivité :

Le 2ème lot servira pour effectuer un test de sélectivité. On échantillonne de la même manière et on commence le test.

Le résultat du test de sélectivité est le spectre suivant :

Figure 19 : Rapport du test de sélectivité de l'acide acétylsalicylique

La méthode n'est pas sélective contre toutes les substances dans la bibliothèque, une substance complémentaire a été détectée 'acetylsalicylic acid'. Il s'agit du nom anglais de l'acide acétylsalicylique, donc on peut continuer la validation de la méthode.

4.3 Test de robustesse :

4.3.1 Test de robustesse à travers sac PE simple épaisseur

On prélève environ 1,5g de l'acide acétylsalicylique dans un sac PE simple épaisseur. On lance un scan standard 'Run' et on le répète trois fois, le test donne un 'Pass' et le résultat se présente sous la forme d'un tableau :

Tableau 1	5:	Test	de r	obuste	esse d	e l'a	acide	acét	vlsali	icvlia	ue à	trave	rs sa	c PE	sim	ole é	paiss	eur
Labicau 1		ICSU	uci	obusit	lost u	CI (aciac	acci	yisan	ic y niq	ut a	uave	19 94		51111		parss	cui

Acide Acetylsalicyl M44084 3P00732					
Acide /	Acetylsali	cyl Crist			
TM230	7				
2.5.0 (1	l6772)				
Result	P-Value	Note			
PASS	0.633409	Atravers sac PE simple épaisseur			
PASS	0.659717	Atravers sac PE simple épaisseur			
PASS	0.614654	Atravers sac PE simple épaisseur			
	Acide A Acide A TM230 2.5.0 (1 Result PASS PASS PASS	Acide Acetylsali Acide Acetylsali TM2307 2.5.0 (16772) Result P-Value PASS 0.633409 PASS 0.659717 PASS 0.614654			

Les trois tests ont abouti à des résultats 'Pass' avec des p-valeur supérieur à 0,05. Un résultat 'Pass' signifie que la matière 'acide acétylsalicylique' est identifiable à travers sac PE simple épaisseur.

4.3.2 Test de robustesse à travers sac PE double épaisseur

Du 4ème lot, on prélève 1,5 g d'acide acétylsalicylique dans un sac PE double épaisseur. On commence le scan et on le répète trois fois. Le test donne un 'Pass' et le résultat se présente sous la forme du tableau suivant :

T 11	11			•						•		DT		
Tableau	16:	Test	de re	obustesse	de	l'acide	acety	ylsalı	cyliq	ue a	sac.	PE	double	epaisseur

Batch ID	Acide A	cetylsalic	cyl M44084 3P00733				
Method	Acide A	Acetylsalic	yl Crist				
Device SN	TM2307	7					
Software Version	2.5.0 (1	6772)					
Sample ID	Result	P-Value	Note				
Acide Acetylsalicyl M44084 3P00733-001	PASS	0.475905	A travers sac PE double épaisseur				
Acide Acetylsalicyl M44084 3P00733-002	PASS	0.545768	A travers sac PE double épaisseur				
Acide Acetylsalicyl M44084 3P00733-003	PASS	0.382475	A travers sac PE double épaisseur				

Interprétation des résultats :

Les trois tests ont abouti à des résultats 'Pass' avec des p-valeur supérieur à 0,05, donc la matière 'acide acétylsalicylique' est identifiable à travers sac PE double épaisseur.

4.3.3 Test de robustesse à travers vial en verre incolore

Du 5ème lot, on remplit le 1/3 du vial par l'acide acétylsalicylique. On commence le scan et on le répète trois fois. Le test donne un 'Pass' et le résultat se présente sous la forme du tableau suivant :

Tableau 17 : Test de robustesse de l'acide acétylsalicylique à travers vial en verre incolore

Batch ID		Acide Acetylsalicyl M44084 152539				
Method		Acide Acetylsalicyl Crist				
Device SN		TM2307				
Software Version		2.5.0 (167	772)			
Sample ID	Result	P-Value	Note			
Acide Acetylsalicyl M44084 152539-001	PASS	0.660206	A travers vial en verre incolore			
Acide Acetylsalicyl M44084 152539-002	PASS	0.691868	A travers vial en verre incolore			
Acide Acetylsalicyl M44084 152539-003	PASS	0.620045	A travers vial en verre incolore			

Interprétation des résultats :

Les trois tests ont abouti à des résultats 'Pass' avec des p-valeurs supérieur à 0,05. La matière 'acide acétylsalicylique' est identifiable à travers vial en verre incolore.

4.4 Résumé :

La méthode 'acide acétylsalicylique' a été créée et validée dans l'appareil 'TruScan RM'.

5. L'acide benzoïque :

L'acide benzoïque est un acide organique que l'on trouve naturellement dans certaines plantes. C'est en particulier l'un des principaux constituants du benjoin, une substance résineuse aromatique utilisée en pharmacie. L'acide benzoïque est essentiellement utilisé comme conservateur et comme additif alimentaire, et empêche la croissance de la levure et de certaines bactéries. Il est produit de manière industrielle à partir du toluène.

Tableau 18: Caractéristiques de l'acide benzoïque

Nom UICPA	Acide benzoïque
Formule brute	$\underline{\mathbf{C}_7 \mathbf{H}_6 \mathbf{O}_2}$
Masse molaire	<u>122,1213 ± 0,0066 g/mol</u>
T° fusion	<u>122,35 °C</u>

L'acide benzoïque

5.1 Acquisition de la signature :

On prend 5 lots différents, le lot 1 servira pour l'acquisition de la signature. L'acide benzoïque est une poudre, on procède à l'échantillonnage de MP poudre mentionné dans la partie théorique.

Le spectre Raman obtenu est le suivant :

Figure 20 : Spectre Raman de l'acide benzoïque

Interprétation :

Tableau 19 : Principales bandes Raman caractéristiques de l'acide benzoïque

Nombre d'onde (cm ⁻¹)	Liaison et type de vibration
1630	Vibration d'élongation dans le plan de C=O
1600	Vibration d'élongation du quadrant du cycle
	aromatique
1440	Vibration d'élongation du demi-cercle du cycle
	aromatique
1290	Vibration d'élongation de C-O
1000	2, 4,6 radial in phase stretch
790	Vibration de déformation hors du plan de
	C-H aromatique
620	Vibration de déformation dans le plan du cycle
	aromatique

Après l'activation de la signature, on passe à la création de la méthode puis au test de sélectivité.

5.2 Test de sélectivité :

Le 2ème lot servira pour effectuer un test de sélectivité. On échantillonne de la même manière et on commence le test.

Le résultat du test de sélectivité est le spectre suivant :

Figure 21 : Rapport du test de sélectivité de l'acide benzoïque

Interprétation des résultats :

La méthode n'est pas sélective contre toutes les substances dans la bibliothèque, une substance complémentaire a été détectée 'benzoic acid'. Il s'agit du nom anglais de l'acide benzoïque, donc on peut continuer la validation de la méthode.

5.3 Test de robustesse :

5.3.1 Test de robustesse à travers Sac PE simple épaisseur

On met environ 1,5g de MP acide benzoïque du 3ème lot dans un sac PE simple épaisseur. On lance un scan standard 'Run' et on le répète trois fois, le test donne un 'Pass' et le résultat se présente sous la forme d'un tableau :

Tableau	20:	Test	de robi	istesse	de l	'acide	benzoïqu	e à	travers	sac I	PE si	imple	épaisse	eur
							1					-	1	

Batch ID	Acide E	Benzoique	M10939 0P02628				
Method	Acide Benzoique						
Device SN	TM230	7					
Software Version	2.5.0 (1	.6772)					
Sample ID	Result	P-Value	Note				
Acide Benzoique M10939 0P02628-001	PASS	0.462009	A travers sac PE simple épaisseur				
Acide Benzoique M10939 0P02628-002	PASS	0.487661	A travers sac PE simple épaisseur				
Acide Benzoique M10939 0P02628-003	PASS	0.526387	A travers sac PE simple épaisseur				

Interprétation des résultats :

Les trois tests ont abouti à des résultats 'Pass' avec des p-valeur supérieur à 0,05. Un résultat 'Pass' signifie que la matière 'acide benzoïque' est identifiable à travers un sac PE simple épaisseur.

5.3.2 Test de robustesse à travers Sac PE double épaisseur

Du 4ème lot, on prélève 1,5g de la matière et on la met dans un sac PE double épaisseur. On commence le scan et on le répète trois fois. Le test donne un 'Pass' et le résultat se présente sous la forme du tableau suivant :

Batch ID		Acide Benzoique M10939 0P02691				
Method		Acide Benzoique				
Device SN		TM2307				
Software Version		2.5.0 (167	72)			
Sample ID	Result	P-Value	Note			
Acide Benzoique M10939 0P02691-001	PASS	0.593197	A travers sac PE double épaisseur			
Acide Benzoique M10939 0P02691-002	PASS	0.569361	A travers sac PE double épaisseur			
Acide Benzoigue M10939 0P02691-003	PASS	0.536803	A travers sac PE double épaisseur			

Tableau 21 : Test de robustesse de l'acide benzoïque à travers sac PE double épaisseur

Interprétation des résultats :

کلیة العلوم و التقنیات فاس +۵۲۵۵۵۲۶ ۸ اک۵۵۵۵۵۲ ۱ +۱۵۵۵ Faculté des Sciences et Techniques de Fès

Les trois tests ont abouti à des résultats 'Pass' avec des p-valeur supérieur à 0,05. Un résultat 'Pass' signifie que la matière 'acide benzoïque' est identifiable à travers un sac PE double épaisseur.

5.3.3 Test de robustesse à travers vial en verre incolore

On place directement assez de MP du 5ème lot dans le vial pour remplir au moins le 1/3 du vial, on le tasse doucement sur une table ou un comptoir pour compresser la MP en poudre. On commence le scan on le répétant trois fois. Le test donne un 'Pass' et le résultat se résume dans le tableau suivant :

Tableau 22 : Test de robustesse de l'acide benzoïque à travers vial en verre incolore

			•			
Batch ID	Acide Benzoique M10939 150735					
Method	Acide E	Benzoique				
Device SN	TM230	7				
Software Version	2.5.0 (1	6772)				
Sample ID	Result	P-Value	Note			
Acide Benzoique M10939 150735-001	PASS	0.537370	A travers vial en verre incolore			
Acide Benzoique M10939 150735-002	PASS	0.596859	A travers vial en verre incolore			
Acide Benzoique M10939 150735-003	PASS	0.593570	A travers vial en verre incolore			

Interprétation des résultats :

Les trois tests ont abouti à des résultats 'Pass' avec des p-valeur supérieur à 0,05. Un résultat 'Pass' signifie que la matière 'acide benzoïque' est identifiable à travers un vial en verre incolore.

5.4 Résumé :

La méthode 'acide benzoïque' a été créé et validée dans l'appareil 'TruScan RM'.

6. Eudragit :

Eudragit est un copolymère cationique à base de méthacrylate de butyle et de méthacrylate de méthyle.

6.1 Acquisition de la signature :

Le premier lot servira pour l'acquisition de la signature. Eudragit est un liquide, on procède à l'échantillonnage de MP liquide mentionné dans la partie théorique.

Le spectre Raman obtenu est le suivant :

كلية العلوم و التقنيات فاس +٥٢٢٢٥٥٥ ٨ الما٥٥٥ ٢ + الماαν Faculté des Sciences et Techniques de Fès

جامعة سيدي محمد بن عبد الله +ه٥٥٨٥ Δ٥٢ - ٥٤٨٢ Δ٥٢٥ + Δ٥٥٥ Université Sidi Mohamed Ben Abdellah

Figure 22 : Spectre Raman d'Eudragit

Après l'activation de la signature, on passe à la création de la méthode puis au test de sélectivité.

6.2 Test de sélectivité :

Le 2ème lot servira pour effectuer un test de sélectivité. On échantillonne de la même manière et on commence le test.

Le résultat du test de sélectivité est le spectre suivant :

Figure 23 : Rapport du test de sélectivité d'Eudragit

La méthode n'est pas sélective contre toutes les substances dans la bibliothèque, un proche structural a été détecté, le 2-propanol ou l'alcool isopropylique contenue dans la Factory library et dans la bibliothèque Maphar avec une p-valeur de 0,0043. Dans ce cas, on désactive la méthode.

Eudragit a été dilué dans l'acétone et le 2-propanol, pour cela, on trouve le 2-propanol comme proche structural.

Pour éliminer tout risque de faux passage, on désactive la méthode.

7. Essence de géranium :

L'essence de géranium présente un profil biochimique variable selon sa provenance. A l'aide des résultats d'analyse par CPG, on peut dire que notre essence de géranium se compose de :

• Oxyde de rose, bergamyl acétate, isommenthone, linalol, linalyl acétate, citronellol, garaniol, oxyde de phenyl.

7.1 Acquisition de la signature :

L'essence de géranium est un liquide, on procède à l'échantillonnage de MP liquide mentionné dans la partie théorique.

Le spectre Raman obtenu est le suivant :

Figure 24 : Spectre Raman de l'essence de géranium

Après l'activation de la signature, on passe à la création de la méthode puis au test de sélectivité.

7.2 Test de sélectivité :

Le 2ème lot servira pour effectuer un test de sélectivité. On échantillonne de la même manière et on commence le test.

Le résultat du test de sélectivité est le spectre suivant :

Figure 25 : Rapport du test de sélectivité d'essence de géranium

Comme il est indiqué sur le spectre, le test a abouti à une bonne séléctivité, aucun proche structural n'a été détecté. L'appareil compare le spectre obtenu pour l'acquisition de la signature et le spectre obtenu pour le 2ème lot. La p-valeur est égale à 0,6304 et est supérieur à 0,05.

7.3 Test de robustesse :

7.3.1 Test de robustesse à travers une pipette pasteur

On prélève à l'aide de la poire d'une pipette pasteur une quantité d'environ 3 ml d'échantillon MP. On lance un scan standard 'Run' et on le répète trois fois, le test donne un 'Pass' et le résultat se présente sous la forme d'un tableau :

Batch ID	Essence de Gera	Essence de Geranium M234456 171846							
Method	Essence de Gera	anium							
Device SN	TM2307								
Software Version	2.5.0 (16772)								
Sample ID		Result	P-Value	Note					
Essence de Geranium M234456 171846-	001	PASS	0.650986	A travers pipette pasteur					
Essence de Geranium M234456 171846-	002	PASS	0.584973	A travers pipette pasteur					
Essence de Geranium M234456 171846-	-003	PASS	0.606681	A travers pipette pasteur					

Tableau 23 : Test de robustesse de l'essence de géranium à travers pipette pasteur

Les trois tests ont abouti à des résultats 'Pass' avec des p-valeur supérieur à 0,05. Un résultat 'Pass' signifie que la matière 'essence de géranium' est identifiable à travers une pipette pasteur

7.3.2 Test de robustesse à travers vial en verre incolore

Du 4ème lot, on remplit le 1/3 du vial par l'essence de géranium. On commence le scan et on le répète trois fois. Le test donne un 'Pass' et le résultat se présente sous la forme du tableau suivant :

TT 11 04		1 1		•	1 / 1	•	• •	• •
Tableau 24	: lest	de robust	tesse de l	essence (le geranii	im a trav	ers vial er	verre incolore

Batch ID	Essence de Gerani	um M2			
Method	Essence de Gerani	um			
Device SN	TM2307				
Software Version	2.5.0 (16772)				
Sample ID		Result	P-Value	Note	
Essence de Geranium M234456 162837-001		PASS	0.484147	A travers Vial en verre incolore	
Essence de Geranium M234456 162837-002		PASS	0.468047	A travers Vial en verre incolore	
Essence de Geranium M234456 162837-003		PASS	0.474436	A travers Vial en verre incolore	

Interprétation des résultats :

Les trois tests ont abouti à des résultats 'Pass' avec des p-valeur supérieur à 0,05. Un résultat 'Pass' signifie que la matière 'essence de géranium' est identifiable à travers un vial en verre incolore.

7.3.3 Test de robustesse à travers vial en verre HPLC incolore

Du 5ème lot, on remplit le 1/3 du vial par l'essence de géranium. On commence le scan et on le répète trois fois. Le test donne un 'Pass' et le résultat se présente sous la forme du tableau suivant :

Tableau 25 : Test de robustesse d'essence de géranium à travers vial en verre HPLC incolore

Batch ID	Essence de G	erani	um M2	234456 171			
Method	Essence de G	erani	um				
Device SN	TM2307						
Software Version	2.5.0 (16772)						
Sample ID			Resul	P-Value	Note		
Essence de Geranium M234456 17184		13:51	PASS	0.410182	A travers Vial en verre		.3:14
Essence de Geranium M234456 17184		13:52	PASS	0.366448	A travers Vial en verre		.3:14
Essence de Geranium M234456 17184		13:52	PASS	0.383203	A travers Vial en verre		.3:14

Interprétation des résultats :

Les trois tests ont abouti à des résultats 'Pass' avec des p-valeurs supérieurs à 0,05. Le résultat 'Pass' signifie que la matière 'essence de géranium' est identifiable à travers un vial en verre HPLC incolore.

7.4 Résumé :

La méthode 'essence de géranium' a été créée et validée dans l'appareil 'TruScan RM'.

8. Labrafil M 1944 CS :

Il s'agit d'un tensioactif non ionique hydrodispersible pour des formulations à base de lipides. Il s'émulsifie dans des milieux aqueux formant une dispersion grossière, c'est-à-dire une émulsion. Parfois, il agit comme co-émulsifiant dans des formulations topiques pour améliorer la stabilité des émulsions.

Labrafil se compose de :

• Méthyl myristate, méthyl palmitate, méthyl stéarate, méthyl oléate, arachidate de méthyl, méthyl eicosenoate, méthyl linoléate, méthyl linolinate.

8.1 Acquisition de la signature :

On prend 5 lots différents, le lot 1 servira pour l'acquisition de la signature. Labrafil est un solide cireux, on procède à l'échantillonnage de MP solide mentionné dans la partie théorique.

Le spectre Raman obtenu est le suivant :
کلیة العلوم و التقنیات فاس +۵۲۵۵۵۲۶ ۸ اΣ۱۵۵۵۵۲۶ ۱ +۱۵۵۲ Faculté des Sciences et Techniques de Fès

جامعة سيدي محمد بن عبد الله +ه۵۵۸۵۵۲ عند معرف بان۵۸۵ + ۵۵۸۵ Université Sidi Mohamed Ben Abdellah

Figure 26 : Spectre Raman de Labrafil

Après l'activation de la signature, on passe à la création de la méthode puis au test de sélectivité.

8.2 Test de sélectivité :

Le 2ème lot servira pour effectuer un test de sélectivité. On échantillonne de la même manière et on commence le test.

Le résultat du test de sélectivité est le spectre suivant :

Figure 27 : Rapport du test de sélectivité de Labrafil

La méthode n'est pas sélective contre toutes les substances dans la bibliothèque. Deux proches structuraux ont été détectés : l'oléate de méthyle avec une p-valeur de 0.0032 et l'huile d'arachide (peanut oil) avec une p-valeur de 0,0082 contenues dans la Factory library.

L'oléate de méthyle fait partie des composants de labrafil, et l'arachidate de méthyle est un composant en commun entre labrafil et l'huile d'arachide. Pour cela, la méthode va être désactivée pour éliminer tout risque de faux passage.

9. L'essence de menthe :

L'essence de menthe peut être obtenue par <u>distillation</u> complète des feuilles de <u>menthe</u>. C'est un liquide jaune pâle dont la très forte odeur est due aux <u>menthols</u> (menthe poivrée ou japonaise) ou au <u>linalol</u> (menthe citronnée).

L'analyse par CPG montre que l'essence de menthe se compose de :

• Limonène, cinéole, menthone, menthyl acétate, menthol, éthanol

9.1 Acquisition de la signature :

On prend 5 lots différents, le lot 1 servira pour l'acquisition de la signature. L'essence de menthe est un liquide, on procède à l'échantillonnage de MP liquide mentionné dans la partie pratique.

Le spectre Raman obtenu est le suivant :

Figure 28 : Spectre Raman d'essence de menthe

9.2 Test de sélectivité :

Le 2ème lot servira pour effectuer un test de sélectivité. On échantillonne de la même manière et on commence le test.

Le résultat du test de sélectivité est le spectre suivant :

Figure 29 : Rapport du test de sélectivité d'essence de menthe

La méthode n'est pas sélective contre toutes les substances dans la bibliothèque. Deux proches structuraux ont été détectés : l'éthanol (10%) avec une p-valeur de 0.0279 et l'éthylamine avec une p-valeur de 0.0018, les deux sont contenues dans la Factory library. De plus, six substances complémentaires : l'éthanol (p-valeur=0,3901), l'éthanol 95%(p-valeur=0,3842), 60% (0,255), 40% (0,1411), 20% (p-valeur=0,0627) et essence solution de mandarine (p-valeur=0,2869).

L'éthanol entre dans la composition de l'essence de menthe, pour cela, il a été détecté comme substance complémentaire. Pour éliminer tout risque de faux passage, on désactive la méthode.

10. Sepisperse AP 5523 rose :

Sepisperse AP est un agent de coloration liquide pour pelliculages, dispersible en milieu aqueux.

10.1 Acquisition de la signature :

On prend 5 lots différents, le lot 1 servira pour l'acquisition de la signature. Sepisperse AP est un liquide, on procède à l'échantillonnage de MP liquide mentionné dans la partie théorique.

Le spectre Raman obtenu est le suivant :

کلیة العلوم و التقنیات فاس +οΨΣΠοΙ+ Ι +ΓοΟΟοΙΣΙ Λ +ΟΙΣΧΣ+ΣΙ Faculté des Sciences et Techniques de Fès

جامعة سيدي محمد بن عبد الله به معمد بن عبد الله مهره بن عبد الله مهره بن عبد الله به مريد بن عبد الله Université Sidi Mohamed Ben Abdellah

Figure 30 : Spectre Raman de sepisperse AP

Après l'activation de la signature, on passe à la création de la méthode puis au test de sélectivité.

10.2 Test de sélectivité :

Le 2ème lot servira pour effectuer un test de sélectivité. On échantillonne de la même manière et on commence le test.

Le résultat du test de sélectivité est le spectre suivant :

Figure 31 : Rapport du test de sélectivité de sepisperse AP

La méthode est sélective contre toutes les substances dans la bibliothèque.

10.3 Test de robustesse :

10.3.1 Test de robustesse à travers une pipette pasteur

On prélève à l'aide de la poire d'une pipette pasteur une quantité d'environ 3 ml d'échantillon MP. On lance un scan standard 'Run' et on le répète trois fois, le test donne un 'Pass' et le résultat se présente sous la forme d'un tableau :

Batch ID	Sepisperse AP 552	23 M100	68 172546		
Method	Sepisperse AP 552	23 Rose			
Device SN	TM2307				
Software Version	2.5.0 (16772)				
Sample ID		Result	P-Value	Note	
Sepisperse AP 5523 M10068 172546-001		PASS	0.496178	Pipette pasteur grade 3 ml en plastique	
Sepisperse AP 5523 M10068 172546-002		PASS	0.498713	Pipette pasteur grade 3 ml en plastique	
Sepisperse AP 5523 M10068 172546-003		PASS	0.588666	Pipette pasteur grade 3 ml en plastique	

Les trois tests ont abouti à des résultats 'Pass' avec des p-valeur supérieur à 0,05. Un résultat 'Pass' signifie que la matière 'sepisperse AP' est identifiable à travers une pipette pasteur.

10.3.2 Test de robustesse à travers vial en verre incolore

Du 4ème lot, on remplit le 1/3 du vial par sepisperse AP. On commence le scan et on le répète trois fois. Le test donne un 'Pass' et le résultat se présente sous la forme du tableau suivant :

Batch ID	Sepisperse AP 5523 M10068 171445			
Method	Sepisperse AP 552	3 Rose		
Device SN	TM2307			
Software Version	2.5.0 (16772)			
Sample ID		Result	P-Value	Note
Sepisperse AP 5523 M10068 171445-001		FAIL	0.000000	A travers Vial en verre incolore
Sepisperse AP 5523 M10068 171445-001		FAIL	0.000000	A travers Vial en verre incolore
Sepisperse AP 5523 M10068 171445-002		FAIL	0.000000	A travers Vial en verre incolore

Tableau 27 : Test de robustesse de sepisperse à travers vial en vers incolore

Interprétation des résultats :

Les trois tests ont abouti à des résultats 'Fail' avec des p-valeur inférieur à 0,05, donc la matière 'sepisperse' est non identifiable à travers vial en verre incolore.

10.3.3 Test de robustesse à travers vial en verre HPLC incolore

Du 5ème lot, on remplit le 1/3 du vial par sepisperse. On commence le scan et on le répète trois fois. Le test donne un 'Fail' et le résultat se présente sous la forme du tableau suivant :

Batch ID	Sepisperse AP 552	23 M100	68 162788		
Method	Sepisperse AP 5523 Rose				
Device SN	TM2307				
Software Version	2.5.0 (16772)				
Sample ID		Result	P-Value	Note	
Sepisperse AP 5523 M10068 162788-001		FAIL	0.000001	Vial HPLC en verre incolore	
Sepisperse AP 5523 M10068 162788-002		FAIL	0.000002	Vial HPLC en verre incolore	
Sepisperse AP 5523 M10068 162788-003		FAIL	0.000001	Vial HPLC en verre incolore	

Tableau 28 : Test de robustesse de sepisperse à travers vial en verre HPLC

Les trois tests ont abouti à des résultats 'Fail' avec des p-valeurs inférieur à 0,05. La matière 'sepisperse est non identifiable à travers vial HPLC en verre incolore.

10.4 Résumé :

La méthode 'sepisperse' a été créée et validée dans l'appareil 'TruScan RM'.

11. Alpha tocopheryl acétate :

Alpha tocopheryl acétate est un liquide huileux et légèrement visqueux, sa texture ne permet pas de le prélever par une pipette pasteur en plastique donc on ne peut pas le valider dans l'appareil TruScan RM.

12. Gel d'hydroxyde d'aluminium :

Le gel d'hydroxyde d'aluminium est un liquide blanc et visqueux, sa texture ne permet pas de le prélever par une pipette pasteur en plastique donc on ne peut pas le valider dans l'appareil TruScan RM.

Conclusion

En somme nous pouvons dire que le stage effectué au sein du laboratoire de contrôle de qualité de MAPHAR, nous a permis d'approcher la nouvelle technologie et d'apprécier son rôle dans le domaine pharmaceutique.

D'après les résultats obtenus, on remarque que les MP qui sont des principes actifs comme le paracétamol, clarithromycine, acide acétylsalicylique... donnent une bonne sélectivité et on peut les valider facilement.

Par contre, l'exemple de Labrafil montre que les matières premières formées d'un mélange de composants (les excipients) posent un problème au niveau du test de sélectivité, leurs spectres interfèrent avec les spectres de leurs composants.

La solution à ce problème consiste à effectuer un test faux positif pour savoir si on aura un faux passage ou non. Par exemple, si on effectue ce test pour Labrafil contre l'oléate de méthyle et le résultat donne un 'Pass', cela veut dire que si on demande Labrafil et le fournisseur nous envoie l'oléate de méthyle, l'appareil donnera un 'Pass' et on aura un problème de faux passage. Dans ce cas il faut désactiver la méthode 'Labrafil', mais si le résultat du test donnera un 'Fail', on peut continuer la validation de la méthode car l'oléate de méthyle ne passera jamais en tant que 'Labrafil'.

Au niveau du LCQ, ce test ne s'effectue pas car dans la plupart des cas, le laboratoire ne dispose pas de ces matières qui interfèrent avec les matières premières à valider.

Pour les essences et les matières mélangées avec des alcools, le même problème se pose, le test de sélectivité détecte ces alcools avec les proches structuraux, ceci présente une limite pour l'identification de quelques matières premières par le TruScan RM.

La texture des matières à valider est un facteur important aussi dans le processus de validation, une matière très visqueuse et difficile à prélever ne peut pas être validée dans l'appareil TruScan RM.

Références bibliographiques

- [1] <u>www.Maphar.ma</u>
- [2] Adolf Smekal, «Zur Quantentheorie der Dispersion», *Naturwissenschaften*, vol. 11, nº 43, 1^{er} octobre 1923, p. 873–875
- [3] Axe " Génie des Procédés", centre SPIN, Ecole des Mines de Saint-Etienne
- [4] Metrohm France –Mathieu JOURDAIN –Complémentarités de la spectroscopie Infrarouge et Raman –Page | 3
- [5] Instruction Zenata : conception utilisation nettoyage et entretien du spectrophotomètre TruScan RAMAN
- [6] www.thermofisher.com

جامعة سيدي محمد بن عبد الله +٥٥٨٥Δ٥٢ ٥٥٨ ٤٦ ٥٤٨٤ ٥٤ + Δ٥٥٥ Université Sidi Mohamed Ben Abdellah

Mémoire de fin d'études pour l'obtention du Diplôme de Master Sciences et Techniques

Nom et prénom: OUSTA Hajar

Année Universitaire : 2017/2018

Titre: Identification de la matière première par la spectroscopie Raman

<u>Résumé</u>

Avec l'augmentation des pressions réglementaires et la tendance à travailler en flux tendu dans les phases de production, il est plus important que jamais pour les sociétés pharmaceutiques de mettre en œuvre des moyens d'identification efficaces des matières premières à réception. La spectroscopie RAMAN présente l'avantage d'être non destructive et permet d'analyser les produits sous différentes formes sans recourir à une étape de préparation d'échantillons pouvant se révéler fastidieuse. L'analyse peut ainsi se faire à travers les emballages en évitant toute contamination ou exposition aux produits toxiques.

Le TruScan RM est un spectromètre Raman portable, léger et spécifique, offrant aux producteurs pharmaceutiques, une identification rapide et fiable des matières premières en quelques secondes seulement. Il permet de diminuer les coûts d'échantillonnage et d'augmenter la rotation des stocks. Conçu pour une utilisation intuitive, sa technologie non destructive facilite la vérification d'un large éventail de composés chimiques, et minimise les risques de contamination puisque l'analyse peut se faire à travers un emballage.

L'utilisation de cet appareil nécessite la création d'une bibliothèque de matières premières avec leurs spectres Raman, cette opération se fait en suivant plusieurs étapes.

Ce travail met en évidence la démarche pour la validation des matières premières dans le TruScan RM et les problèmes rencontrés lors de cette opération.

Mots clés : Spectroscopie Raman, TruScan RM, Matière première.

جامعة سيدي محمد بن عبد الله به معرف بن عبد الله مهره بن عبد الله مهره بن عبد الله به مريد بن عبد الله Université Sidi Mohamed Ben Abdellah