

جامعة سيدي محمد بن عبد الله +٥٥٨٥ Δ٢ + ٥٤٨٢ ٢٥٨٢ ٢٥٨٥ Université Sidi Mohamed Ben Abdellah

Année Universitaire : 2017-2018

Master Sciences et Techniques : Géoressources et Environnement

MEMOIRE DE FIN D'ETUDES

Pour l'Obtention du Diplôme de Master Sciences et Techniques

Apport de l'imagerie spatiale à la quantification des mouvements des dunes de sable de Marzouga

Présenté par :

EL-GUENNOUNI Nabil

Encadré par :

Pr. TABYAOUI Hassan (FP- Taza) et Pr. Lahcen BENAABIDATE (FST-Fès)

Soutenu le 13 Juin 2018 devant le jury composé de :

- Pr. Fatima EL HAMMICHI
- Pr. Abderrahim LAHRACH
- Pr. Abdel-Ali CHAOUNI
- Pr. Lahcen BENAABIDATE
- Pr. Hassan TABYAOUI

Stage effectué à : Faculté Polydisciplinaire de Taza

Remerciement

J'adresse mes vifs remerciements à **Mr. le Doyen de la FST**, ainsi que tout le personnel d'administration de la manière de mener leurs travails administratifs de cet établissement d'enseignement.

J'exprime ma gratitude et mes remerciements particuliers à mon professeur encadrant **Mr TABYAOUI Hassan**, pour son encadrement pédagogique, pour ses orientations et ses conseils qu'il m'a apporté à la réalisation de ce travail.

Je profite de cette occasion pour remercier également mes professeurs composants le jury Pr. Fatima EL HAMMICHI, Pr. Abderrahim LAHRACH, Pr. Abdel-Ali CHAOUNI, Pr. Lahcen BENAABIDATE, d'avoir examiné ce travail.

Mes remerciements à tous mes professeurs de la FST qui n'ont ménagé aucun effort pour la réussite de cette formation.

Finalement je tiens à remercier du fond du cœur toutes les personnes qui, directement ou indirectement ont contribué à la réalisation de ce travail.

Merci infiniment.

Liste des figures

Figure 1 : Localisation de la zone d'étude	9
Figure 2 : Vue satellitaire, la localisation de Marzouga « l'erg Chebbi »	10
Figure 3 : Variations des Températures moyennes mensuelles et annuelles	12
Figure 4 : Variations des précipitations moyennes mensuelles et annuelles	13
Figure 5 : Diagramme Ombrothermique de la région d'Errachidia	13
Figure 6 : Moyennes mensuelles des vitesses de vents enregistrées à Marzouga (2003-2016)	14
Figure 7 : La carte géologique de Tafilalt 1/200000, et localisation de Marzouga	16
Figure 8 : Carte géologique simplifiée de la région de Marzouga	17
Figure 9 : Coupe géologique de la région de Marzouga	18
Figure 10 : Localisation des différentes formes dunaires dans la région de Tafilalt	20
Figure 11 : Les barkhanes	21
Figure 12 : Les Aklés	22
Figure13 : Vue superficielle d'une Nebka	23
Figure 14 : Dunes pyramidales	24
Figure 15 : Les Sifs	25
Figure 16 : Image QuickBird géo référenciée (date d'acquisition 2016).	29
Figure 17 : (a, b, c, d, e, f, et g). Echantillon de chaque image traitée montrant quelques dunes	30
Figure 18 : Couche de dunes digitalisée à partir de l'image raster 2007	31
Figure 19 : (a, b, c, d, e, f, et g). structures dunaires digitalisées	33
Figure 20 : Variation des surfaces occupées par les dunes (2003-2016)	35
Figure 21 : Pourcentage de surface occupée par le sable	35
Figure 22 : Sens et distances de déplacement des dunes de sables entre 13-07-2003 et 30-03-2007	36
Figure 23 : Sens et distances de déplacement des dunes de sables entre 16-08-2009 et 30-03-2007	37
Figure 24 : Sens et distances de déplacement des dunes de sables entre 14-07-2011 et 16-08-2009	37
Figure 25 : Sens et distances de déplacement des dunes de sables entre 23-09-2012 et 14-07-2011	38
Figure 26 : Sens et distances de déplacement des dunes de sables entre 07-11-2013 et 23-09-2012	38
Figure 27 : Sens et distances de déplacement des dunes de sables entre 12-02-2016 et 07-11-2013	39
Figure 28 : Distances de déplacement des dunes de sables entre 13-07-2003 et 30-03-2007	40
Figure 29 : Vitesse de déplacement des dunes de sables entre 13-07-2003 et 30-03-2007	41
Figure 30 : Distance de déplacement des dunes de sables entre 30-03-2007 et 16-08-2009	41
Figure 31 : Vitesse de déplacement des dunes de sables entre 30-03-2007 et 16-08-2009	41
Figure 32 : Distances de déplacement des dunes de sables entre 16-08-2009 et 14-07-2011	42
Figure 33 : Vitesse de déplacement des dunes de sables entre 16-08-2009 et 14-07-2011	42
Figure 34: Distances de déplacement des dunes de sables entre 14-07-2011 et 23-09-2012	42
Figure 35 : Vitesse de déplacement des dunes de sables entre 14-07-2011 et 23-09-2012	42
Figure 36: Distances de déplacement des dunes de sables entre 23-09-2012 et 07-11-2013	43
Figure 37 : Distances de déplacement des dunes de sables entre 23-09-2012 et 07-11-2013	43
Figure 38 : Distances de déplacement des dunes de sables entre 07-11-2013 et 12-02-2016	43
Figure 39 : Vitesse de déplacement des dunes de sables entre 07-11-2013 et 12-02-2016	43

Liste des tableaux

Tableau 1 : Température moyenne mensuelles et annuelle 11
Tableau 2 : Précipitation moyenne mensuelle et annuelle
Tableau 3 : Caractéristiques et date d'acquisition des images Landsat
Tableau 4 : Résultats des calculs de surface pour chaque image
Tableau 5 : Résultats de calcul des vitesses annuelles entre chaque deux images44
Tableau 6 : Résultats des calculs de surface pour l'image 13-07-2003
Tableau 7 : Résultats des calculs de surface pour l'image 30-03-2007
Tableau 8 : Résultats des calculs de surface pour l'image 16-08-200946
Tableau 9 : Résultats des calculs de surface pour l'image 14-07-201146
Tableau 10 : Résultats des calculs de surface pour l'image 23-09-2012
Tableau 11 : Résultats des calculs de surface pour l'image 07-11-2013
Tableau 12 : Résultats des calculs de surface pour l'image 12-02-201647
Tableau 13 : Distance et vitesse de déplacement des dunes de sables entre 13-07-2003 et 30-03-200748
Tableau 14 : Distance et vitesse de déplacement des dunes de sables entre 30-03-2007 et 16-08-200948
Tableau 15 : Distance et vitesse de déplacement des dunes de sables entre 16-08-2009 et 14-07-201148
Tableau 16 : Distance et vitesse de déplacement des dunes de sables entre 14-07-2011 et 23-09-201248
Tableau 17 : Distance et vitesse de déplacement des dunes de sables entre 23-09-2012 et 07-11-201349
Tableau 18 : Distance et vitesse de déplacement des dunes de sables entre 07-11-2013 et 12-02-201649

Table des matières

Remerciement	0
Liste des figures	2
Liste des tableaux	3
Introduction	6

PARTIE I

Présentation de la zone d'étude et du risque naturel et sa vulnérabilité dans la région

Chap	oitre I	: Présentation du site Marzouga	9
1.	Situ	uation géographique	9
2.	Cli	mat	11
	2.1	Données météorologiques : température et précipitation	11
	2.2	Les Vents	14
3.	Cor	ntexte géologique de Marzouga	15
Chap	oitre I	I : Le risque naturel et sa vulnérabilité dans la zone d'étude	19
Int	troduc	ction	19
1.	Le	phénomène d'ensablement à Marzouga	19
2.	Loc	calisation du processus d'ensablement dans les grandes unités morphologiques de la ré	gion20
	2.1	Les différentes formes dunaires.	20
	А.	Barkhanes	21
	B.	Cordons barkhanoïdes	21
	C.	Akles	22
	D.	Nebkas	22
	E.	Dunes en etoile ou pyramidales	23
	F.	Dunes lineaires ou sifs	24

PARTIE II

Evolution spatio-temporelle de l'ensablement à Marzouga

Chapitre I : Apport de l'outil satellitaire				
Introduction				
1. Materiel				
1.1 Images satellitaires utilisées :				
1.2 Les images QuickBird	27			
1.3 Autres données	27			
1.4 Les logiciels				
2. Méthodes				

2.1	Acquisition des images satellites	
2.2	Traitements effectués	29
A.	Calibration et géo-référencement	29
B.	Repérage et délimitation des dunes de sable	
Chapitre l	I : Résultats et discussions	34
1. Ev	olution des surfaces occupées par le sable dans le temps	34
.2 Le	taux de déplacement des dunes	36
Conclusio	n générale	45
Annexes	l	46
Annexes	2	48
Référence	s bibliographiques	50

Introduction

Le Maghreb est connu par le phénomène de désertification qui a des conséquences directes sur le climat. Les mécanismes climatiques et l'importance des reliefs sont au Maghreb moins favorables à l'absence prolongée et généralisée des pluies.

Les problèmes d'ensablement ont pris une grande acuité dans les pays semi-arides et arides et particulièrement au Maroc. Le phénomène se développe sur tout dans le sud et le sud-Est du pays : à l'Est du Haut Atlas, dans le bassin du Ziz moyen et du Bas Ziz, autour d'Errachidia, Gueramma, Erfoud et vers le sud dans le Tafilalet et le bassin de Draa (Coude-Gaussen et Rognon, 1993).

Nous nous intéressons dans cette étude à la plaine de Tafilalt et plus exactement à la région de Marzouga qui souffrent d'une suralimentation de sable et de l'apparition récente et actuelle des manifestations suivantes :

- Dégradation des sols
- Accumulations sableuses
- Salinisation des terres

La mise en mouvements du sable est devenue très inquiétante et menaçante ces derniers temps, se manifestant par la migration des champs des dunes.

Les techniques de lutte contre ce grand fléau n'ont pas donné de résultats satisfaisants. Les études et les travaux menés ces dernières décennies dans la plaine de Tafilalet ont montré que les causes de la dégradation du milieu naturel sont liées extrêmement aux conditions climatiques et une mauvaise gestion de l'espace et aux mauvaises préservations des ressources naturelles.

Le recours à l'imagerie satellitaire multi-source est actuellement le moyen le plus efficace afin d'appréhender le phénomène de l'ensablement.

Le présent travail a pour objet l'étude de l'ensablement à Marzouga et quantifier les mouvements des dunes de sable appelées Erg Chebbi via la télédétection spatiale et les systèmes

d'information géographiques (SIG). A cet effet, nous avons utilisé une série d'imagerie satellitaires QuickBird et des données climatiques sur une durée de 14 ans, allant de 2003 à 2016.

Ces images nous donnent une vue d'ensemble, et permettent d'expliquer le fonctionnement du phénomène à une échelle locale, afin de pouvoir quantifier les mouvements des dunes de sable.

La méthodologie adoptée dans ce travail tient compte des objectifs et de la problématique énoncée précédemment. Elle comprend les étapes suivantes :

- Une recherche bibliographique concernant les actions érosives de la région à travers les études réalisées (les thèses, les mémoires, ouvrages et articles).
- Une exploitation de différentes cartes : topographiques, géologiques, climatiques, traitement et interprétation des images satellitaires multi-dates. (2003, 2007, 2009, 2011, 2012, 2013 et 2016))
- Une analyse des données climatiques recueillies auprès de la station météorologique d'Errachidia, particulièrement l'analyse de la température, des précipitations et enfin des vents afin d'avoir une meilleure compréhension du comportement du processus éolien avec le milieu physique et urbain.

Le travail est devisé en 2 parties :

La première partie est basée sur la revue bibliographique et vise à présenter la région d'étude dans son contexte environnemental. Nous aborderons la notion du risque naturel en générale et d'ensablement.

La deuxième partie est expérimentale où l'outil télédétection est utilisé pour suivre l'évolution du risque d'ensablement et l'orientation des constructions, par une évolution spatio-temporelle :

- Dans le premier chapitre nous avons présenté les différentes images satellitaires et leurs caractéristiques. Sept dates ont été choisies selon la disponibilité des images qui couvrent toute la zone « à travers le capteur QuickBird ».
- Dans le deuxième chapitre nous avons présenté les résultats obtenus, les interprétations possibles.

PARTIE I

<u>Présentation de la zone d'étude et du</u> <u>risque naturel et sa vulnérabilité dans la</u> <u>région</u>

Chapitre I : Présentation du site Marzouga

1. Situation géographique

La plaine du Tafilalet est située au SE du Maroc, dans la zone présaharienne. Large de 15 à 20 km et longue de 50km, elle se développe surtout longitudinalement entre les latitudes 31"30' et 31".

Le site que nous avons étudié, fait partie de la Plaine de Tafilalet, où se trouvent les dunes de sable de Marzouga-Chebbi.

L'erg Chebbi, est un petit erg, ensemble de dunes de sable, situé à la terminaison orientale de la chaine de montagnes de l'Anti-Atlas, au sud du Haut-Atlas (voir la Figure 2). Ces dunes se développent généralement dans la région au pied du bassin d'Errachidia -Boudenib, Guir Hammada.

L'erg Chebbi, d'une longueur de 20 km (nord-sud) pour une largeur d'environ 7 km (est-ouest), abrite les plus hautes du Maroc.

2. Climat

La zone d'étude est dotée d'un climat désertique. A Marzouga, la pluie est pratiquement inexistante. La température moyenne annuelle est de 21.7 °C. La moyenne des précipitations annuelles atteint 59 mm.

2.1 Données météorologiques : température et précipitation

Nous avons obtenu l'enregistrement météorologique trihoraire pour la station d'Errachidia, la plus proche de Marzouga, pour une durée de 14 ans, (Années 2003, 2007, 2009, 2011, 2012, 2013 et 2016).

Les données ont été obtenues sur le site https : //fr.tutiemo.net/climat/ws-602100.html et elles sont résumées dans les tableaux 1 et 2.

Année	J	F	Μ	Α	М	J	J	Α	S	0	Ν	D	Tmoy annuelle
													en ∘C
2003	9,9	11,7	15,3	18,6	19,8	28,6	32,6	31,4	26,7	22	12	10,4	19,8
2007	10,7	12,3	16,7	20,9	22,5	29,08	33,9	32,7	26,5	24,9	13,2	10,8	21,6
2009	11,8	10	17,9	22,1	23,03	28,7	32,6	33,1	27,8	25,6	12,8	11,2	22,3
2011	12,3	12,9	18,3	22,3	24,5	30,5	33,6	33,2	26,1	28,5	15,9	10,2	22
2012	11,6	14,1	16,8	23,7	27,3	28,9	33,8	33,2	27,4	22,7	14,6	10	22,1
2013	9,2	11	15,5	22,6	26,4	28,8	33,9	31,9	26,6	21,9	15	11	21,3
2016	12	12,9	15,3	22,1	24,6	30,9	34,8	32,2	27,7	22,2	14,1	9,7	21,6

Tableau 1 : Température moyenne mensuelles et annuelle (durant la période d'étude)- Station d'Errachidia

Les températures extrêmes relevées sont enregistrées en janvier (le mois le plus humide) et en juillet (le mois le plus sec). Les températures moyennes mensuelles varient entre 9,2°C en janvier 2013 et 12,3°C en janvier 2011 à 32,6°C en juillet 2003 et 34,8°C en juillet 2016.

D'après le diagramme (Figure 3), la température moyenne annuelle dans la région a connu une augmentation très remarquable durant les années 2003 à 2016.

Figure 3 : Variations des Températures moyennes mensuelles et annuelles (durant la période 2003-2016)

Les précipitations moyennes annuelles la plus élevées sont de 201,15 mm enregistrées en 2012, dont 79 mm reçu en mois de novembre, mois le plus pluvieux et les précipitations moyennes annuelles les plus basses sont de 51mm enregistrées en 2009.

Année	J	F	М	А	М	J	J	А	S	0	Ν	D	Pmoy annuelle
													en mm
2003	0	26,16	1,04	14,23	26,42	7,87	б,1	3,55	11,42	7,63	10,17	12,96	127,53
2007	13,4	3,9	5,7	2,5	0	0.87	12,32	9.09	0	10,1	3,5	2,4	86,63
2009	10,6	19	10,5	8,09	13	0	2,98	12,01	6,9	2,7	8,9	0	53,9
2011	0	0	33,02	2,03	0	0,51	10,68	0,76	9,16	0	8,89	0,76	65,81
2012	15,74	0	9,14	5,33	17,78	5,33	0	12,19	47	8,13	79	1,51	201,15
2013	7,37	39,88	3,81	11,94	2,04	10,17	0	6,09	56,14	21,33	0	0	158,77
2016	36,3	3,3	10,17	0	18,29	0	3,57	6,09	40,37	27,42	9,14	46,75	165,1

Tableau 2 : Précipitation moyenne mensuelle et annuelle (durant la période d'étude)- Station d'Errachidia

Figure 4 : Variations des précipitations moyennes mensuelles et annuelles (durant la période 2003-2016)

Contrairement à l'évolution de la température, les précipitations ont connu une diminution intense qui arrive jusqu' au 50 mm par an en 2009. Après 2011 une augmentation a eu lieu, les précipitation moyennes annuelles ont arrivé à 200 mm en 2012.

Figure 5 : Diagramme Ombrothermique de la région d'Errachidia

Le diagramme montre que la région est caractérisée par une longue période sèche qui débute en moi de mars et se termine en novembre, ce qui implique qu'on est dans une zone saharienne.

2.2 Les Vents

L'action du vent dépend essentiellement de son intensité qui dépend de deux paramètres : la durée du vent et sa force ; le vent est lié aussi à la vitesse. Selon la vitesse on peut classer les vents en plusieurs classes :

- Vents faibles ou calmes ;
- Vents moyens ;
- Vents forts ;
- Vents très forts.

Dans la pratique, on parle suivant une autre classification qui est basée sur le rôle morphologique du vent et/ou son pouvoir érosif ; on parle ainsi de vents inactifs et de vents actifs. Le niveau de séparation de ces deux vents définit la vitesse critique ou efficace qui correspond au seuil de vélocité. On qualifie d'efficace tout vent capable en un lieu donné de provoquer l'arrachage des particules du sol (Benalla, 2003).

Les vitesses moyennes mensuelles des vents enregistrées dans notre zone d'études sont résumé dans le diagramme (figure 6).

Figure 6 : Moyennes mensuelles des vitesses de vents enregistrées à Marzouga (2003-2016)

L'analyse des moyennes mensuelles des vitesses des vents montre que le Marzouga est soumis à l'influence de vents de forte vitesse au printemps et en été, tandis que l'automne et l'hiver sont les saisons où l'on relève les plus faibles vitesses.

La moyenne des vitesses peut atteindre une moyenne de 8 m/s, Marzouga et considéré comme la région là moins ventée du Tafilalet.

Au terme de cette analyse du régime éolien, a Marzouga (erg Chebbi), domine un vent à deux directions opposées, SE-NW et E-W, qui soufflent toujours pendant les deux saisons (printemps et été) et qui sont à l'origine des dunes pyramidales existantes (Mansour Benalla, 2003).

3. Contexte géologique de Marzouga

D'après la carte géologique de Tafilalt, la zone est constituée essentiellement de roches sédimentaires, dont les âges s'étendent de l'ère primaire pour le « socle » au quaternaire récent pour les termes les plus superficiels de la couverture, dont les dunes. Le sous-sol de la vallée du Ziz est constitué pour l'essentiel de sédiments de l'ère Primaire, du Cambrien au Carbonifère.

La série primaire, plissée, comprend en majorité des dépôts terrigènes, sédimentés en domaine marin peu profond. Absents du Cambrien (Km) gréseux. Des niveaux carbonatés apparaissent épisodiquement vers le sommet de l'Ordovicien (Os). Le Dévonien, inférieur et moyen, voit une influence carbonatée plus marquée.

L'ordovicien supérieur et le silurien sont des schistes, avec des niveaux carbonatés épisodiques. Le Carbonifère constitue le substratum du village de Marzouga et de l'erg Chebbi. Le carbonifère inférieur est constitué de schistes argileux et d'argilites et le carbonifère supérieur d'une succession de poudingues, de grès et de pelites, et de roches biogéniques comme les calcaires récifaux. Le Permien n'affleure pratiquement pas dans cette zone.

Figure 7 : La carte géologique de Tafilalt, et localisation de Marzouga.

Figure 8 : Carte géologique simplifiée de la région de Marzouga. Le village de Marzouga est situé au bord ouest de l'erg Chebbi, entouré d'affleurements de carbonates du Carbonifère.

La série primaire repose en discordance sur un substratum précambrien constituée de séries volcano-sédimentaires et volcaniques. Affectée par de faibles déformations, elle a enregistré une tectonique synsédimentaire cassante (Montenat et al 1996). Des accidents actifs pendant la sédimentation ont été repris ultérieurement, lors des déformations hercyniennes, la structuration hercynienne de la zone reste faible. On remarque des plis de grande longueur d'onde, ainsi que le résultat du rejeu des failles synsédimentaire.

Toute la série primaire est recoupée par des intrusions de dykes et de sills de dolerite et de diorite. Les évènements volcaniques sont triasico-liasiques, dates à 181-187 Ma et liés à l'ouverture de l'océan Atlantique.

Figure 9 : Coupe géologique schématique de la région de Marzouga

Discordant sur cette série primaire, on trouve les roches principalement calcaires du crétacé (Cm) et du tertiaire. Leurs termes en sont continentaux, lacustres. Les affleurements sont très tabulaires, donnant notamment naissance au paysage des Hamadas. En prolongement de cette série, ou en discordance directement sur les terrains primaires, on trouve les sédiments quaternaires, notamment un pléistocène reposant discordant sur le viséen à proximité immédiate de Marzouga.

La Figure 9 synthétise ces observations sous la forme d'une coupe à main levée.

Chapitre II : Le risque naturel et sa vulnérabilité dans la zone d'étude

Introduction

En géographie les espaces à risque se présentent comme étant le produit d'un aléa et de vulnérabilités et se définissent par l'existence d'enjeux de développements qui peuvent être menacés en fonction de leur vulnérabilité et de leur exposition à des phénomènes de rupture, naturels ou anthropiques.

La vulnérabilité d'un espace à risque est donc la proportion à perdre des éléments considérés comme essentiels au développement environnemental « urbain ou agricole ».

1. Le phénomène d'ensablement à Marzouga

L'ensablement est le résultat des dépôts éoliens favorisés par la nature du sol où le vent arrache les particules fines de la surface de la terre dans les zones arides et semi arides ; donc un double danger menace les sols de ces régions :

- Celui d'être réduit à l'état squelette après le départ des éléments fins enlevés par le vent.
- Celui d'être recouvert par le sable.

L'ensablement présente un risque lorsqu'il touche aux enjeux économiques (agriculture et zones urbanisées) d'une région et il est basé sur les critères suivants :

- Lorsque le sol est couvert d'une couche de sable et devient de ce fait stérile.
- Lorsque les cultures disparaissent sous une couche de sable sur laquelle pousse des espèces végétales naturelles.
- Ou lorsque les labours n'atteignent plus le sol.
- Quand il y a un voile sablonneux sur les routes, et présente un danger pour l'homme (les conducteurs et passagers des véhicules)
- Quand les systèmes de lutte contre l'ensablement des terres productives ne sont plus efficaces (baisse de la production).

- Quand il y a des accumulations sableuses dans les zones urbaines et les axes routiers.
- Quand les secteurs touristiques sont menacés par la destruction du système dunaire, donc perte de la faune et ensablement issus des processus érosifs.

C'est à travers ces critères que nous pouvons dire que la zone Marzouga connait un phénomène d'ensablement en proie à des risques importants.

2. Localisation du processus d'ensablement dans les grandes unités morphologiques de la région.

2.1 Les différentes formes dunaires.

Dans le Tafilalet, on observe plusieurs types de dunes : certaines entrent dans la classification habituelle (nebkas, boucliers, barkhanes, dunes pyramidales...) tandis que d'autres sont plus difficiles à identifier, en particulier les aklés à structure cloisonnée où interfèrent plusieurs directions de dunes.

Figure 10 : Localisation des différentes formes dunaires dans la région de Tafilalt

A. BARKHANES

Il s'agit d'une forme d'accumulation sableuse liée à un régime de vent suffisamment stable et par conséquent très mobile. Elle est la plus menaçante pour l'ensablement vu sa capacité de déplacement rapide. Sa taille est très variable : on observe de véritables champs de barkhanes au sud de Jorf, de Hannabou et de Reg Moulay el Hassan.

Les barkhanes se déplacent rapidement sur des surfaces dures et cohérentes où les chocs entre les grains favorisent la saltation, mais lorsqu'elles arrivent sur une surface de sables meubles, elles s'estompent. C'est le cas observé au sud-ouest de Jorf, où on remarque la disparition des barkhanes à proximité des palmeraies ensablées. Il ne reste plus alors que des formes de grandes masses sableuses ondulées (Benalla 2003).

Figure 11 : Les barkhanes

B. CORDONS BARKHANOÏDES

Localisés surtout dans la zone de Lahmida, ils peuvent atteindre plusieurs centaines de mètres de long avec une tendance à évoluer en dunes transverses. On peut les rencontrer parfois au sud de Jorf et Hannabou. Ce type de dune est lié à un apport sableux plus important que pour les barkhanes, puisqu'il est localisé dans une zone inondée par les crues de l'oued Rhéris qui fournit un apport de matériel sableux facilement remaniable par l'action du vent, ce qui contribue à expliquer leur

développement ici. Ces formes dunaires se disposeraient presque perpendiculairement à la direction des vents efficaces mais avec une variabilité directionnelle plus complexe, favorisant l'accolement des dunes par leurs ailes au cours des changements de direction du vent (Benalla 2003).

C. AKLÉS

Cette structure d'erg à plusieurs directions de dunes de types différents (tendance barkhanique, tendance pyramidale, etc.) est très difficilement pénétrable car on assiste, en outre, à un resserrement des dunes, les unes contre les autres. Ce type de structure dunaire est observé au Tafilalet, dans la zone de Magha (Benalla 2003),

Figure 12 : Les Aklés

D. NEBKAS

Elles traduisent la direction du dernier vent efficace et existent uniquement derrière des obstacles, et plus particulièrement sur les aires à couverture végétale faible et clairsemée, rencontrée dans le Tafilalet (Zilla spinosa, Salsolasp. Et Aristida plumosa). Leur taille, liée à celle de l'obstacle, est faible et ne dépasse pas 50 cm de long et 20 cm de haut.

La variabilité directionnelle des vents contrarie l'évolution de ces formes en déplaçant à chaque fois la charge sableuse déposée lors de la tempête précédente, ce qui ne leur permet pas d'augmenter de taille (Benalla 2003).

Figure13 : Vue superficielle d'une Nebka

La plus grande concentration de nebkas formant un véritable champ dunaire, à l'est de Jorf, est favorisée principalement par la présence de l'espèce Salsolasp. Ce type de micro-dunes, peu évolué dans le Tafilalet, est essentiellement dû à la faible taille des plantes rencontrées dans la région.

Dans les zones de déflation, une végétation perchée, sans nebkas, indique soit une forte intensité d'érosion soit, plus simplement, un faible apport de matériel sableux (Benalla 2003).

E. DUNES EN ÉTOILE OU PYRAMIDALES

L'erg Chebbi à Marzouga atteint 10 km de large et 20 km de long et se caractérise par un sable à granulométrie particulièrement fine. Il est formé essentiellement de dunes pyramidales qui peuvent atteindre 100 m de haut, avec des lignes de crêtes irrégulières et multidirectionnelles qui résultent d'un vent tri- ou multidirectionnel.

L'analyse des enregistrements anémométriques sur 14 ans révèle en effet une grande variabilité dans la direction des vents dominants, d'une année à l'autre et même à l'intérieur d'une même année, et il ne semble pas exister de direction dominante dans cette zone à régime éolien multidirectionnel (Benalla 2003).

Figure 14 : Dunes pyramidales

Les vents de direction NW, E, SW, S et EW sont représentés dans la région avec des fréquences assez proches mais néanmoins une prédominance des vents NW et E provenant de la transgression vers le NW du Maghreb de la masse d'air continentale saharienne.

Ces vents façonnent les dunes dans différentes directions mais sans provoquer leur déplacement. Ce régime éolien concorde avec le type de dunes de forme pyramidale observées sur le terrain.

F. DUNES LINEAIRES OU SIFS

Qui est un édifice allongé, étroit et de forme étirée sur toute sa longueur comme une épée (appelée sif en arabe). Il possède deux côtés à pentes fortes qui se rejoignent en une crête active. La longueur est toujours de huit à dix fois plus importante que la largeur.

En générale, les sifs ont de 2 à 3 km de long et 30 à 150 m de large. Quelquefois, ils peuvent être discontinus et assemblés en rides pouvant atteindre 30 à 40 km de longueur.

La direction de ces dunes est oblique par rapport à la résultante des vents dominants. Le mouvement d'une dune linéaire se fait par allongement, au fur et à mesure des nouveaux apports de sable par le vent (Benalla 2003).

Figure 15 : Les Sifs

Cette démonstration des différents types de dunes est un indicateur de lecture généralisée des formations sableuses qui existent dans un climat semi-aride et aride et qui présentent un risque d'ensablement.

PARTIE II :

<u>Evolution spatio-temporelle de</u> <u>l'ensablement à Marzouga</u>

Chapitre I : Apport de l'outil satellitaire

Introduction

L'un des grands avantages de la télédétection spatiale est sa capacité à amasser périodiquement de l'information d'une même région de la Terre. Les caractéristiques spectrales de la région observée peuvent changer avec le temps. L'imagerie spatiale est devenue actuellement l'outil principal de surveillance et de suivi des différents phénomènes terrestres. La comparaison d'images multi temporelles permet de détecter ces changements.

1. MATERIEL

1.1 Images satellitaires utilisées :

Les images QuickBird orthorectifiées ont été utilisées dans le cadre de cette étude parce qu'elles sont disponibles, gratuites et de grandes résolutions spatiales et spectrales. Avec un niveau de prétraitement : elles sont facilement téléchargeables à partir de Google-Earth sur une système géodésique mondial WGS84.

Dans la présente étude sept images satellitaires sont utilisées dont les dates : 2003, 2007, 2009, 2011, 2012, 2013 et 2016.

1.2 Les images QuickBird

QuickBird est un satellite à haute résolution de Digital Globe mis en orbite à la fin de 2001. Depuis 2004, l'imagerie produite par ce satellite offre la plus haute résolution (une résolution spatiale de 61 cm.) et une très forte précision.

Ce satellite est un bon outil pour acquérir des données environnementales, tout particulièrement pour déterminer les changements d'utilisation des sols ainsi que les changements dans les zones agricoles et forestières. L'imagerie QuickBird peut être utilisée pour de nombreuses applications, notamment l'exploration et la production de pétrole et de gaz, les travaux de génie et de construction et les études environnementales.

1.3 Autres données

L'étude a nécessité l'acquisition de données climatiques provenant de la base de données de la station météorologique d'Errachidia, et des données géologiques, topographiques...

1.4 Les logiciels

Le logiciel utilisé dans le cadre de cette étude est : Arc GIS Desktop 10.4 pour les applications SIG.

2. METHODES

2.1 Acquisition des images satellites

La base de données utilisée dans ce travail comprend des extraits d'images QuickBird prises à différentes dates (voir tableau) d'après les informations fournies par Google Earth© (Identifiant Catalogue Digital Globe). Les coordonnées du centre de l'image sont : 31° 5'0.93"N et 4° 0'29.26"O. Ces extraits d'image ont été acquis gratuitement depuis Google Earth© directement à partir de l'écran de visualisation. La résolution spatiale est de 1 m.

La date d'acquisition de l'image est très importante dans l'étude des changements du paysage à partir de données satellitaires. Pour cela, nos données ont été sélectionnées pendant la grande saison sèche, période pendant laquelle le taux de nébulosité et de couverture nuageuse est les plus faibles.

La temporalité du capteur entraîne des manques de données et la présence de défauts (couverture nuageuse, ombrage dense, etc.) rend inutilisables certaines images. Ces déficits peuvent être résolus par la combinaison des années d'acquisition en « période », variant de un à quatre ans maximum (Jobin et al., 2007). La période choisie est la médiane des dates.

Nom donnée à l'mage	Date d'acquisition
Géoref 13-07-2003	13-7-2003
Géoref 30-03-2007	30-3-2007
Géoref 16-08-2009	16-08-2009
Géoref 14-07-2011	14-07-2011
Géoref 23-09-2012	23-9-2012
Géoref 07-11-2013	07-11-2013
Géoref 12-02-2016	12-2-2016

Tableau 3 : Caractéristiques et date d'acquisition des images Landsat

2.2 Traitements effectués

A. Calibration et géo-référencement

Nous avons pu extraire et géo-référencier 7 images (Figure 16).

Le calibrage radiométrique consiste à mettre l'image produite (intensité) à sa représentation réelle (terrain).

Le géo-référencement permet d'avoir les images produites dans un même système de projection cartographique (WGS84). Cette étape a été déroulée automatiquement en attribuant les caractéristiques géographiques de chaque image.

Les dunes sont parfaitement identifiables (Figure 16). Elles apparaissent comme des secteurs arrondies et allongées de couleurs rougeâtre contenant des dépressions, alors que les espaces vides sont plates de couleur sombre (grise).

Figure 16 : Image QuickBird géo référenciée (date d'acquisition 2016).

a) Géoref 13-07-2003

b) Géoref 30-03-2007

c) Géoref 16-08-2009

d) Géoref 14-07-2011

e) Géoref 23-09-2012

g) Géoref 12-02-2016

f) Géoref 07-11-2013

Figure 17 : (a, b, c, d, e, f, et g). Echantillon de chaque image traitée (différentes dates) montrant quelques dunes.

B. Repérage et délimitation des dunes de sable

Le repérage des dunes est obtenu par filtrage puis segmentation d'image et le contour de leur morphologie –en 2D– est acquis par contourage.

Cette dernière étape a été soigneusement et manuellement effectuée, par digitalisation des dunes une après l'autre sur l'extension ArcMap du logiciel ArcGIS

Figure 18 : Couche de dunes digitalisée à partir de l'image raster 2007, la couleur jaune indique les dunes de sable, les traits marrons indiquent les tètes des dunes et .la couleur grise indique les espaces vides.

Après avoir délimité les contours des dunes sableux, on a pu avoir une vision claire sur les

espaces occupés par les sables, et leur évolution spatiotemporelle durant les différentes dates.

Ensuite on a pu calculer le pourcentage des espaces occupés par les sables afin d'arriver à quantifier cette variation durant son évolution temporelle, les résultats sont présentés dans la figure 18 et seront discuter dans le chapitre 2.

La figure19 montre les autres couches des dunes digitalisées à partir de chaque image raster

5

a) 13-07-2003

Û

##dam-isong ##d

16-08-2009 c)

07-11-2013 f)

Figure 19 : (a, b, c, d, e, f, et g). structures dunaires digitalisées

12-02-2016 g)

Chapitre II : Résultats et discussions

Ce travail, nous a permis de répertorier plus de 400 dunes dans la région. Nous avons aussi suivi leur évolution sur une période de 14 ans (13-07-2003/12-02-2016). Nous avons mis en évidence le déplacement des dunes sous l'effet des vents du SE-NW. Les premiers résultats obtenus se résument ci-dessous.

1. Evolution des surfaces occupées par le sable dans le temps

Les résultats du calcul des surfaces totales, surfaces occupées par le sable ainsi que leur pourcentage pour chaque image sont représentés comme suite (voir annexes 1 pour plus de détail) :

Image	Surface totale en m ²	Surface occupée par le sable en m ²	pourcentage de surface occupée par le sable %
2003	334717,23	126710,64	37,85
2007	318485,63	156533,44	49,14
2009	270654,39	151000,38	55,79
2011	255426,73	151578,64	59,34
2012	260279,49	139367,10	53,54
2013	256640,25	115458,87	44,98
2016	253967,03	128011,63	50,40

Tableau 4 : Résultats des calculs de surface pour chaque image

Les résultats montrent que les surfaces occupées par les dunes de sables différent d'une image à autre. En 2003 les dunes de sable représentent à peu près un tiers de la surface totale étudies, alors qu'en 2016 la moitié de la zone est devenue occupée pas le sable.

Figure 20 : Variation des surfaces occupées par les dunes (2003-2016)

Figure 21 : Pourcentage de surface occupée par le sable

D'après le diagramme (figure 19), on constate que la zone d'étude a connu une évolution importante au niveau des espaces occupées par les dunes sableuses pour la période d'études.

La courbe (figure 20) illustre la variation du pourcentage des dunes sableuses par rapport à la surface totale. On remarque qu'en 2003, les dunes ne représentent que 33% de la surface totale. Ce pourcentage a évolué au cours des années, pour atteindre presque 60% en 2011, puis une diminution jusqu'à 45% en 2013, et après cet date le niveau des surfaces occupées par les dunes augmente d'une manière continue et atteind 50% en 2016.

2. Le taux de déplacement des dunes

Afin d'avoir une idée sur le sens des mouvements et de calculer les vitesses de déplacement des dunes de sables annuellement, on a objet à déterminer les distances de déplacement des dunes entre deux temps (t₁ et t₂), c'est à dire entre deux images successives.

Les résultats sont les suivants :

Figure 22 : Sens et distances de déplacement des dunes de sables entre 13-07-2003 et 30-03-2007

Le figure 21 montre la situation des dunes de sables en 13-07-2003 (couleur bleu), est leur nouvelle situation en 30-03-2007. La couleur verte présente les zones qui ont restée ensablées entre les deux dates d'étude.

Le sens et la distance du déplacement sont illustrés par des flèches rouges.

Figure 23 : Sens et distances de déplacement des dunes de sables entre 16-08-2009 et 30-03-2007

Figure 24 : Sens et distances de déplacement des dunes de sables entre 14-07-2011 et 16-08-2009

Figure 25 : Sens et distances de déplacement des dunes de sables entre 23-09-2012 et 14-07-2011

Figure 26 : Sens et distances de déplacement des dunes de sables entre 07-11-2013 et 23-09-2012

Figure 27 : Sens et distances de déplacement des dunes de sables entre 12-02-2016 et 07-11-2013

Les figures montrent que les sens de déplacement des dunes, avec un déplacement dominant de direction SE-NW. Cela est logique si on compare le sens de mouvement avec les directions des vents qui règnent dans la région.

Ces résultats traduisent l'avancement remarquables des dunes de sables dans la partie Est de la zone dans les différentes images. Cela explique aussi la différence de pourcentage des surfaces occupées pas les dunes sableuses déjà signalé au début de ce chapitre.

On note aussi qu'entre 2003 et 2011, le taux de déplacement est important. Ceci est dû au climat de la zone en cette période qui est un climat très sec et en absence de précipitations. Entre 2011 et 2016, une diminution de déplacement a eu lieu à cause de la pluviométrie en cette période, qui rend les grains de sable difficile à arracher et les transporter par le vent.

<u>Résultats de calcules des vitesses des déplacements par an des dunes de sables à</u> Marzouga.

Pour calculer les vitesses de déplacements des dunes sableuse annuellement on a fait référence à la distance de mouvement des dunes entre les images étudies et les dates qui les séparent.

Les déplacements sont nombreux, alors on a choisi les plus importantes mouvements (déplacement maximale) entre deux images qui se suivent.

Les résultats sont les suivants (voir annexes 2 pour plus de détail) :

Figure 28 : Distances de déplacement des dunes de sables entre 13-07-2003 et 30-03-2007

Comme montre le Graphe, en une durée de 4 ans, les mouvements des dunes de sables diffèrent d'un côté à l'autre. La distance maximale enregistrée entre les deux images et de 56 m.

Par utilisation du logiciel ArcGis, on a pu déterminer annuellement, la vitesse avec laquelle les dunes se déplacent.

Figure 29 : Vitesse de déplacement des dunes de sables entre 13-07-2003 et 30-03-2007

D'après le diagramme (figure 28), on remarque que la vitesse de déplacements annuel des dunes de sables varie d'un côté à l'autre, et peut arriver jusqu'à a 14 m/an.

Les figures 29 à 38 montrent es autres résultats des distances et vitesses annules obtenues entre les différentes images.

Figure 30 : Distance de déplacement des dunes de sables entre 30-03-2007 et 16-08-2009

Figure 31 : Vitesse de déplacement des dunes de sables entre 30-03-2007 et 16-08-2009

Figure 32 : Distances de déplacement des dunes de sables entre 16-08-2009 et 14-07-2011

Figure 33 : Vitesse de déplacement des dunes de sables entre 16-08-2009 et 14-07-2011

Figure 35 : Vitesse de déplacement des dunes de sables entre 14-07-2011 et 23-09-2012

Figure 36 : Distances de déplacement des dunes de sables entre 23-09-2012 et 07-11-2013

Les résultats obtenus montrent que la vitesse de déplacement des dunes de sables varie annuellement.

Figure 37 : Distances de déplacement des dunes de sables entre 23-09-2012 et 07-11-2013

Figure 39 : Vitesse de déplacement des dunes de sables entre 07-11-2013 et 12-02-2016

Les vitesses maximales enregistrées entre les différentes images sont :

Année	2003-2007	2007-2009	2009-2011	2011-2012	2012-2013	2013-2016
vitesse maximale enregistrée en mètre par an	14,07811	16,43988	26,69464	33,76361	29,64552	11,4745

Tableau 5 : Résultats de calcul des vitesses annuelles entre chaque deux images.

Dans la région de Marzouga, entre 2003 et 2016, la dominance des vents au printemps et en été a été indiscutable, ces vents efficaces provoquent la migration des dunes sableuses (Erg Chebbi) dans des sens multidirectionnelles, avec une dominance des vents SE-NW.

À Marzouga, le résultat indique un déplacement de dunes vers le NW observable pendant les années d'étude. Les vitesses calculées, valeur considérée comme moyenne à faible, pourrait expliquer la présence des dunes pyramidales dans ce secteur. Mais celle-ci peut aussi être justifiée par la grande disponibilité du matériel sableux dans ce secteur qui a pu donner naissance à des dunes pyramidales, étant donnée la forte variabilité directionnelle.

Conclusion générale

Sur ce travail nous avons essayé, en exploitant des données de télédétection et l'outil SIG, de comprendre les mécanismes de l'ensablement et de quantifier les mouvements des dunes de sables dans la région de Marzouga appelés aussi Erg Chebbi.

Notre étude a commencé par la présentation du contexte géographique de la zone d'étude. Marzouga fait partie de la plaine de Tafilalt au Sud-Est du Maroc. La morpho-géologie de la région de Marzouga est dans son ensemble, favorable à une dynamique éolienne. Les formations lithologiques fournissent un stock de sable mobilisable, ce qui facilite l'action de l'ensablement sous l'effet des vents dominants.

L'analyse de l'évolution des conditions climatiques entre les périodes 2003 et 2016 de la région montre qu'ils ne sont guère favorables à une stabilité du phénomène, c'est un climat désertique caractérisé par une faible pluviométrie moyenne, et irrégulière (<200 mm). Cette pluviométrie est accompagnée par une température élevée et par des vents multidirectionnels fréquents (SE-NW, W-E, SSE-NNW), dont la vitesse mensuelle dépasse les 29Km/h. Ces vents sont responsables de la mobilisation des sables accumulés en forme pyramidale.

Le sens de migration potentielle de sable se fait dans de multiple directions, principalement du SE vers le NW en relation avec la force éolienne qui domine dans la région. Le suivi de ce déplacement durant la période d'étude montre que les surfaces occupées par le sable sont de plus en plus importante d'une année à autre (de 33% en 2003 à 60% en 2011 de la surface totale de la zone étudiée). De plus, les vitesses de migration annuelles montrent l'existence d'un déplacement de sable qui se fait sur de longues distances, 33,98 m entre 2011 et 2012.

A l'issue de cette étude, il apparaît que les méthodes numériques de traitement supervisé des données satellitales apportent une contribution tout à fait performante au suivi de l'évolution du phénomène de l'ensablement. Il est donc recommandé d'utiliser conjointement l'analyse des données anémométriques et des observations de terrain avec les outils d'étude modernes (images spatiales haute résolution et multi temporelles) pour déterminer le comportement des flux sableux et définir ainsi une stratégie pour combattre l'ensablement dans une région où les mouvements des sables sont très complexes.

Annexes 1

Shape *	Description	Surface-polygone en
		m²
Polygon 1	dune	3133,741195
Polygon 2	dune	4388,989932
Polygon 3	dune	5699,960176
Polygon 4	dune	2640,233751
Polygon 5	dune	3192,1166
Polygon 6	dune	77980,6743
Polygon 7	dune	1827,604666
Polygon 8	dune	17334,94337
Polygon 9	dune	8501,89232
Polygon 10	dune	2010,490084
Polygon 11	vide	99810,62295
Polygon 12	vide	716,709296
Polygon 13	vide	89307,88087
Polygon 14	vide	1010,165044
Polygon 15	vide	2135,487145
Polygon 16	vide	134,785867
Polygon 17	vide	220,359473
Polygon 18	vide	13752,99946
Polygon 19	vide	917,575223

Tableau 6 : Résultats des calculs de surface pour l'image 13-07-2003

Shape *	Description	Surface-polygone
-		en m ²
Polygon 1	dune	4405,32666
Polygon 2	dune	3318,80519
Polygon 3	dune	5780,14832
Polygon 4	dune	3269,17758
Polygon 5	dune	15863,6207
Polygon 6	dune	2452,7835
Polygon 7	dune	109363,399
Polygon 8	dune	5897,12442
Polygon 9	dune	5505,65134
Polygon 10	dune	677,404538
Polygon 11	vide	2587,99459
Polygon 12	vide	1630,46306
Polygon 13	vide	1787,47069
Polygon 14	vide	1646,69084
Polygon 15	vide	18150,3901
Polygon 16	vide	101999,074
Polygon 17	vide	18150,3901
Polygon 18	vide	1787,47069
Polygon 19	vide	448,003093
Polygon 20	vide	1036,68361
Polygon 21	vide	2587,99459
Polygon 22	vide	1646,69084
Polygon 23	vide	6451,58433
Polygon 24	vide	2041,29102

Tableau 7 : Résultats des calculs de surface pour l'image 30-03-2007

Shape *	Description	Surface-polygone en m2
Polygon 1	dune	2186,406793
Polygon 2	dune	18679,80046
Polygon 3	dune	4659,22032
Polygon 4	dune	967,730769
Polygon 5	dune	22350,5323
Polygon 6	dune	98504,93976
Polygon 7	dune	3651,758295
Polygon 8	vide	1665,107912
Polygon 9	vide	27875,60962
Polygon 10	vide	50554,35803
Polygon 11	vide	275,488972
Polygon 12	vide	12175,10776
Polygon 13	vide	31,362246
Polygon 14	vide	6079,448003
Polygon 15	vide	6471,097364
Polygon 16	vide	2966,849806
Polygon 17	vide	804,246877
Polygon 18	vide	2471,758986
Polygon 19	vide	1582,255425
Polygon 20	vide	2233,313028
Polygon 21	vide	1715,436156
Polygon 22	vide	373,266704
Polygon 23	vide	1000,579662
Polygon 24	vide	519,856293
Polygon 25	vide	584,280292
Polygon 26	vide	48,08604
Polygon 27	vide	39,813725
Polygon 28	vide	137,091701
Polygon 29	vide	49,596289

Tableau 8 : Résultats des calculs de surface pour l'image 16-08-2009

Shape *	Description	Surface-polygone en
		m ²
Polygon 1	dune	4549,857718
Polygon 2	dune	4338,902029
Polygon 3	dune	35935,74043
Polygon 4	dune	2337,443193
Polygon 5	dune	83209,41549
Polygon 6	dune	7739,530592
Polygon 7	dune	13467,75633
Polygon 8	vide	56472,80232
Polygon 9	vide	24892,26976
Polygon 10	vide	9396,578799
Polygon 11	vide	4300,076728
Polygon 12	vide	753,932215
Polygon 13	vide	206,38369
Polygon 14	vide	1829,570111
Polygon 15	vide	974,195214
Polygon 16	vide	1136,640303
Polygon 17	vide	71,810922
Polygon 18	vide	105,042011
Polygon 19	vide	308,436366
Polygon 20	vide	413,479019
Polygon 21	vide	368,826234
Polygon 22	vide	410,079203
Polygon 23	vide	174,733654
Polygon 24	vide	45,952054
Polygon 25	vide	48,507049
Polygon 26	vide	272,306206
Polygon 27	vide	735,879166
Polygon 28	vide	930,585942

Tableau 9 : Résultats des calculs de surface pour l'image 14-07-2011

Shape *	Description	Surface-polygone en m ²
Polygon 1	dune	78859,61481
Polygon 2	dune	2060,369226
Polygon 3	dune	30571,25011
Polygon 4	dune	7113,876748
Polygon 5	dune	4344,017059
Polygon 6	dune	3913,468855
Polygon 7	dune	12504,50444
Polygon 8	vide	710,809618
Polygon 9	vide	1833,427975
Polygon 10	vide	1525,356669
Polygon 11	vide	2043,209773
Polygon 12	vide	288,41241
Polygon 13	vide	766,392249
Polygon 14	vide	1066,926388
Polygon 15	vide	28298,99693
Polygon 16	vide	14468,67179
Polygon 17	vide	188,798237
Polygon 18	vide	117,152869
Polygon 19	vide	63,183388
Polygon 20	vide	55,753016
Polygon 21	vide	457,448072
Polygon 22	vide	63535,57439
Polygon 23	vide	1014,802552
Polygon 24	vide	112,949343
Polygon 25	vide	3951,151672
Polygon 26	vide	305,126017
Polygon 27	vide	40,943135
Polygon 28	vide	67,302621

Shape *	Description	Surface-polygone en
		m ²
Polygon 1	dune	4617,359723
Polygon 2	dune	12929,18494
Polygon 3	dune	5253,011548
Polygon 4	dune	1041,620515
Polygon 5	dune	1481,707369
Polygon 6	dune	634,213114
Polygon 7	dune	344,212701
Polygon 8	dune	29637,75704
Polygon 9	dune	1861,392782
Polygon 10	dune	67812,73932
Polygon 11	dune	2398,44006
Polygon 12	vide	61927,61533
Polygon 13	vide	3499,293421
Polygon 14	vide	31605,16441
Polygon 15	vide	16344,45407
Polygon 16	vide	1947,271721
Polygon 17	vide	1115,074216
Polygon 18	vide	1850,336652
Polygon 19	vide	401,133063
Polygon 20	vide	704,913148
Polygon 21	vide	629,932582
Polygon 22	vide	5930,209565

Tableau 12 : Résultats des calculs de surface pour l'image 12-02-2016

Tableau 10 : Résultats des calculs de surface pour l'image 23-09-2012

Shape *	Description	Surface-polygone en
		m ²
Polygon 1	dune	7899,886817
Polygon 2	dune	12341,49562
Polygon 3	dune	13895,12264
Polygon 4	dune	1986,429917
Polygon 5	dune	59036,45381
Polygon 6	dune	3808,556672
Polygon 7	dune	2142,072636
Polygon 8	dune	6090,959963
Polygon 9	dune	4331,404214
Polygon 10	dune	1258,258211
Polygon 11	dune	1361,232546
Polygon 12	dune	1014,124594
Polygon 13	dune	292,874964
Polygon 14	vide	114933,4375
Polygon 15	vide	8876,755935
Polygon 16	vide	859,061781
Polygon 17	vide	2407,363435
Polygon 18	vide	1711,974302
Polygon 19	vide	249,404213
Polygon 20	vide	397,180897
Polygon 21	vide	2174,888618
Polygon 22	vide	8849,499279
Polygon 23	vide	721,815456

Tableau 11 : Résultats des calculs de surface pour l'image 07-11-2013

Annexes 2

Shape *	Distance de	Vitesse de déplacement
	déplacement en m	en m/an
Polyline 1	56,31245	14,07811
Polyline 2	48,56054	12,14013
Polyline 3	45,65268	11,41317
Polyline 4	42,90598	10,7265
Polyline 5	37,14859	9,287148
Polyline 6	36,62549	9,156373
Polyline 7	33,50986	8,377466
Polyline 8	33,44182	8,360456
Polyline 9	33,24949	8,312372
Polyline 10	33,05886	8,264714
Polyline 11	32,23109	8,057772
Polyline 12	29,95591	7,488977
Polyline 13	28,82485	7,206213
Polyline 14	28,75653	7,189132
Polyline 15	28,7039	7,175974
Polyline 16	28,37475	7,093688
Polyline 17	28,12619	7,031547
Polyline 18	27,9232	6,980801
Polyline 19	27,86201	6,965503
Polyline 20	27,84852	6,96213
Polyline 21	27,63877	6,909691
Polyline 22	27,51015	6,877538
Polyline 23	27,45983	6,864957
Polyline 24	27,3617	6,840425
Polyline 25	27,32348	6,83087
Polyline 26	27,25731	6,814327
Polyline 27	27,1722	6,79305
Polyline 28	27,1381	6,784524
Polyline 29	27,02301	6,755754
Polyline 30	26,56495	6,641238
Polvline 31	26.1249	6.531224

Tableau 13 : Distance et vitesse de déplacement des dunes de sables entre 13-07-2003 et 30-03-2007

Shape *	Distance de	Vitesse de déplacement
	déplacement en m	en m/an
Polyline 1	32,879755	16,43988
Polyline 2	32,519242	16,25962
Polyline 3	28,37754	14,18877
Polyline 4	27,755683	13,87784
Polyline 5	26,336442	13,16822
Polyline 6	25,663668	12,83183
Polyline 7	25,37726	12,68863
Polyline 8	25,216599	12,6083
Polyline 9	25,21607	12,60804
Polyline 10	24,905256	12,45263
Polyline 11	23,885475	11,94274
Polyline 12	23,80601	11,90301
Polyline 13	23,099123	11,54956
Polyline 14	22,537893	11,26895
Polyline 15	22,393347	11,19667
Polyline 16	22,218729	11,10936
Polyline 17	21,675034	10,83752
Polyline 18	21,264458	10,63223
Polyline 19	21,161381	10,58069
Polyline 20	21,155211	10,57761
Polyline 21	21,095091	10,54755
Polyline 22	21,09223	10,54611
Polyline 23	21,053305	10,52665
Polyline 24	21,011792	10,5059
Polyline 25	21,005823	10,50291
Polyline 26	20,578855	10,28943
Polyline 27	20,301259	10,15063
Polyline 28	19,544122	9,772061
Polyline 29	19,287391	9,643696
Polyline 30	19,259594	9,629797
Polyline 31	18,784763	9,392382

Tableau 14 : Distance et vitesse de déplacement des dunes de sables entre 30-03-2007 et 16-08-2009

Shape *	Distance de	Vitesse de déplacement
	déplacement en m	en m/an
Polyline 1	53,389282	26,69464
Polyline 2	50,113854	25,05693
Polyline 3	45,482247	22,74112
Polyline 4	45,370049	22,68502
Polyline 5	39,590726	19,79536
Polyline 6	33,096916	16,54846
Polyline 7	32,350497	16,17525
Polyline 8	32,340748	16,17037
Polyline 9	30,179476	15,08974
Polyline 10	27,733186	13,86659
Polyline 11	26,87523	13,43762
Polyline 12	26,242096	13,12105
Polyline 13	25,856368	12,92818
Polyline 14	25,389232	12,69462
Polyline 15	25,128649	12,56432
Polyline 16	24,841518	12,42076
Polyline 17	23,789149	11,89457
Polyline 18	23,132284	11,56614
Polyline 19	23,076571	11,53829
Polyline 20	22,90272	11,45136
Polyline 21	22,877748	11,43887
Polyline 22	22,189637	11,09482
Polyline 23	21,966518	10,98326
Polyline 24	21,79544	10,89772
Polyline 25	21,5639	10,78195
Polyline 26	21,417915	10,70896
Polyline 27	21,378378	10,68919
Polyline 28	21,264462	10,63223
Polyline 29	20,968423	10,48421
Polyline 30	20,840434	10,42022
Polyline 31	20,764143	10,38207

Tableau 15 : Distance et vitesse de déplacement des dunes de sables entre 16-08-2009 et 14-07-2011

Shape *	Distance de	Vitesse de déplacement
	déplacement en m	en m/an
Polyline 1	33,763606	33,76361
Polyline 2	27,445217	27,44522
Polyline 3	26,888396	26,8884
Polyline 4	26,177009	26,17701
Polyline 5	24,288975	24,28897
Polyline 6	24,255861	24,25586
Polyline 7	24,179046	24,17905
Polyline 8	22,78677	22,78677
Polyline 9	22,219891	22,21989
Polyline 10	21,707344	21,70734
Polyline 11	21,639752	21,63975
Polyline 12	21,424771	21,42477
Polyline 13	21,266367	21,26637
Polyline 14	20,703185	20,70318
Polyline 15	20,280017	20,28002
Polyline 16	20,090165	20,09017
Polyline 17	20,077731	20,07773
Polyline 18	20,07389	20,07389
Polyline 19	19,81601	19,81601
Polyline 20	19,416614	19,41661
Polyline 21	19,274112	19,27411
Polyline 22	18,879162	18,87916
Polyline 23	18,698242	18,69824
Polyline 24	17,80935	17,80935
Polyline 25	17,236295	17,2363
Polyline 26	17,21678	17,21678
Polyline 27	17,152335	17,15233
Polyline 28	16,998673	16,99867
Polyline 29	16,966002	16,966
Polyline 30	16,871123	16,87112
Polyline 31	16,646491	16,64649

Tableau 16 : Distance et vitesse de déplacement des dunes de sables entre 14-07-2011 et 23-09-2012

Shape *	Distance de	Vitesse de déplacement
-	déplacement en m	en m/an
Polyline 1	29,645525	29,64552
Polyline 2	29,337549	29,33755
Polyline 3	28,94367	28,94367
Polyline 4	27,984137	27,98414
Polyline 5	27,8373	27,8373
Polyline 6	27,793446	27,79345
Polyline 7	26,369183	26,36918
Polyline 8	23,60205	23,60205
Polyline 9	23,292052	23,29205
Polyline 10	23,243212	23,24321
Polyline 11	22,102308	22,10231
Polyline 12	20,876271	20,87627
Polyline 13	20,679714	20,67971
Polyline 14	20,279512	20,27951
Polyline 15	19,702833	19,70283
Polyline 16	19,56247	19,56247
Polyline 17	19,315279	19,31528
Polyline 18	18,640259	18,64026
Polyline 19	18,254133	18,25413
Polyline 20	18,08914	18,08914
Polyline 21	18,007199	18,0072
Polyline 22	17,70926	17,70926
Polyline 23	17,652592	17,65259
Polyline 24	17,123914	17,12391
Polyline 25	16,853555	16,85356
Polyline 26	16,548568	16,54857
Polyline 27	16,472664	16,47266
Polyline 28	16,448332	16,44833
Polyline 29	16,340693	16,34069
Polyline 30	16,300605	16,3006
Polyline 31	16,215637	16,21564

Shape *	Distance de	Vitesse de déplacement
	déplacement en m	en m/an
Polyline 1	34,42351	11,4745
Polyline 2	32,241832	10,74728
Polyline 3	31,563721	10,52124
Polyline 4	31,362343	10,45411
Polyline 5	30,33958	10,11319
Polyline 6	30,177777	10,05926
Polyline 7	26,120129	8,70671
Polyline 8	25,649211	8,549737
Polyline 9	24,785977	8,261992
Polyline 10	24,700111	8,233371
Polyline 11	23,162578	7,72086
Polyline 12	22,756425	7,585475
Polyline 13	22,317766	7,439255
Polyline 14	22,296934	7,432312
Polyline 15	21,79001	7,263337
Polyline 16	21,569956	7,189985
Polyline 17	20,095562	6,698521
Polyline 18	20,065606	6,688535
Polyline 19	19,883658	6,627886
Polyline 20	19,725267	6,575089
Polyline 21	19,650586	6,550195
Polyline 22	19,221914	6,407304
Polyline 23	19,194277	6,398092
Polyline 24	19,171085	6,390362
Polyline 25	19,044886	6,348295
Polyline 26	18,937764	6,312588
Polyline 27	18,890916	6,296972
Polyline 28	18,627709	6,209236
Polyline 29	18,612713	6,204237
Polyline 30	17,964692	5,988231
Polyline 31	17,244103	5,748034

Tableau 17 : Distance et vitesse de déplacement des dunes de
sables entre 23-09-2012 et 07-11-2013

Tableau 18 : Distance et vitesse de déplacement des dunes de sables entre 07-11-2013 et 12-02-2016

Références bibliographiques

- ALALI A, BENMOHAMMADI A/ (2013) « L'ensablement dans la plaine de Tafilalet (sud-est du Maroc) ».
- ALALI A., BENMOHAMMADI A., BOUDAD L., AQID N. (2014) « Etude sédimentologique des sables dunaires de la plaine de Tafilalet (Yerdi, Labrouj, Mfis, Marzouga et Lambarkia) ».
- AUF (2013). Agence universitaire de la Francophonie. Transport et formes d'accumulation sableuses.
- BENALLA MANSOUR, EL MEHDI ALEM, PIERRE ROGNON, ROBER T DESJARDINS, ABDERRAHMAN HILALI, ABDESLAM KHARD. (2003) « Les dunes du Tafilalet (Maroc) _ dynamique éolienne et ensablement des palmeraies ».
- BENALLA, M. (2003) (a) « Etude morphodynamique de l'évolution des dunes de Tafilalet : Apports de la Sédimentologie et de l'imagerie aérienne et spatiale, Rabat, 6 p ».
- BEN SALEM ABDELKRIM. (2013) « Vulnérabilité et adaptation aux changements climatiques dans les oasis de la région de Tafilalet- Maroc ».
- GUISHAN CUI, WOO-KYUN LEE, DOO-AHN KWAK, SUNGHO CHOI, TAEJIN PARK & JONGYEOL LEE (2011) «Desertification monitoring by LANDSAT TM satellite imagery».
- HACHEMI KAMEL, YVES-FRANÇOIS THOMAS. (2013) « Analyse de la mobilité d'un champ de Barkhanes (Mauritanie) à partir des images SAR ».
 - MAXIME GOMMEAUX. (2005) « Bactéries du sable de Marzouga ».
- MONTENAT. C, L. BAIDDER, P. BARRIER, A. HILALI, H. LACHKEM, AND J. MENNIG. (1996)
 « Contrôle tectonique de l'édification des monticules biosedimentaires dévoniens du hmar Lakhdad d'Erfoud (Anti-Atlas oriental, Maroc) ».
- SPARAVIGNA, A. (a) (2017) «Dunes changing their shape: The case of the dunes of the Laayoune
 Sakia El Hamra region».
- SPARAVIGNA, A. (b) (2017) « Sand Dunes of Khenifiss National Park of Morocco».

Mémoire de fin d'études pour l'obtention du Diplôme de Master Sciences et Techniques

Nom et prénom : Nabil EL-GUENNOUNI

Année Universitaire : 2017/2018

Titre : Apport de l'imagerie spatiale à la quantification des mouvements des dunes de sable de Marzouga

Résumé

A Marzouga, située dans la plaine de Tafilalt au Sud-Est du Maroc, le paysage est caractérisé par la présence de vastes espaces de sédiments sableux (Erg Chebbi) localement organisés en champs de dunes pyramidales. Les conditions morphologiques et climatiques de la région sont nettement favorables à une dynamique éolienne. Ces dunes réactivées menacent l'existence de terrains agricoles, de villages ainsi que de routes.

Quantifier la dynamique des champs de l'Erg Chebbi fournit une information précieuse pour la gestion des ressources locales.

Par contribution d'une série d'images satellitaires multi-spectrales et multi-dates, sur une durée d'observation de plus de quatorze ans (13-07-2003/ 12-02-2016), nous avons réalisé une analyse quantitative de la mobilité des champs de dunes de l'erg Chebbi. Les évolutions actuelles sont décrites par emploi de l'application du SIG.

Les résultats ont montré que le sens de migration potentielle de sable se fait dans de multiple directions, principalement du SE vers le NW dû principalement à la force éolienne qui domine dans la région. Le suivi de ce déplacement durant la période d'étude montre que les surfaces occupées par le sable sont de plus en plus importante d'une année à autre (de 33% en 2003 à 50% en 2016 de la surface totale de la zone étudie). De plus, les vitesses de migration annuelles sont accentuée ces dernies années, et ont dépassé 33,98 m/an entre 2011 et 2012. D'où la nécessite de continuer à développer des stratégies pour combattre l'ensablement dans une telle région.

Mots clés: Marzouga, Erg Chebbi, imagerie satellitaire, ensablement