

FACULTE DES SCIENCES ET TECHNIQUES

MEMOIRE DE PROJET DE FIN D'ETUDES

Pour l'obtention du Diplôme De Master Sciences Et Techniques

Génie Mécanique Et Productique

Amélioration de la disponibilité de la nouvelle station de chargement UBH

Présenté par :

ZOUINE Sabah

Encadré par :

- BOURIHANE Oussama, Professeur département Génie Mécanique, FST Fès
- MABDOUI Mohammed, Encadrant de l'office chérifien de phosphate, OCPK

Effectué à : Office chérifien de phosphate Khouribga, unité de BENI IDIR Soutenu le 13/06/2018

Devant le jury:

• Pr. J. ABOUCHITA	Faculté des Sciences et Techniques de Fès
• Pr. A. El BIYAALI	Faculté des Sciences et Techniques de Fès
• Pr.O.BOURIHANE	Faculté des Sciences et Techniques de Fès

Année Universitaire : 2017-2018

Dédicaces Louange à Dieu seul,

a Ma chère Mère:

Pour tes sacrifices, ton aide

Pour tes conseils qui m'a guidé tout au long de mes études

Aucun mot ne peut exprimer mon amour envers toi...

a Mon cher frère, a mes chères sœurs,

Je ne sais pas comment vous remercier pour votre amour et tout ce que vous avez fait

a Mon Oncle adorable,

A Mes professeurs,

Pour leur efforts et aide afin de nous assurer une formation convenable et cohérente

A Tous Mes chers amis,

Pour tout le soutien que vous m'avez offert, je vous dis Merci

A Tous Mes chers,

Je dédie ce travail...

Remerciement

Avant d'entamer le présent rapport de stage de fin d'études effectué au sein de l'Office Chérifienne du Phosphate, je tiens à remercier vivement Monsieur l'encadrant **MABDOUI Mohammed** ingénieur à l'atelier mécanique de l'usine BENI IDIR pour l'encadrement et pour le soutien qu'il m'a apporté durant la période du stage.

Je remercie aussi mon parrain de stage Monsieur **OUSSOU Youssef** pour le soutien qu'il m'a apporté durant la période du stage ainsi que tous le personnel de l'atelier mécanique et de la station de chargement UBH pour leurs explications et pour la documentation qu'ils ont mis à ma disposition.

Je tiens à remercier infiniment Monsieur **BOURIHANE** Oussama pour son encadrement, ses recommandations et conseils précieux durant toute la durée de mon projet.

Mes remerciements les plus sincères s'adressent à Monsieur le doyen de la FST et à tous le corps administratif de la faculté, ainsi qu'à tous mes professeurs qui m'ont bien préparé théoriquement et pratiquement durant toutes les années de formation.

Je tiens aussi à présenter ma profonde reconnaissance et mes sincères remerciements à ma mère pour son soutien moral et matériel et pour ses conseils, ainsi que tous ceux qui ont participé de prés ou de loin à la réussite de mon stage.

Liste des tableaux

<u>Tableau 1</u> : Statistique des arrêts imprévus en 2016	26
<u>Tableau 2</u> :Statistique des arrêts de l'année 2017.	27
<u>Tableau 3</u> :Statistique des arrêts des deux premiers mois de l'année 2018	28
<u>Tableau 4</u> : Grille de l'échelle de gravité	31
<u>Tableau 5</u> : Grille de l'échelle la probabilité d'occurrence	31
<u>Tableau 6</u> : Grille de l'échelle de la probabilité de non détection	32
<u>Tableau 7</u> : AMDEC des bras.	33
<u>Tableau 8</u> : AMDEC des vérins.	34
<u>Tableau 9</u> : AMDEC distributeur.	35
<u>Tableau 10</u> : AMDEC Electrovanne.	36
<u>Tableau 11</u> : AMDEC élement compresseur et moteur asynchronne	36
<u>Tableau 12</u> : Classement des éléments selon leurs criticités	37
<u>Tableau 13</u> : Catalogue des couples en fonction du diamétre de l'engrenage	39
<u>Tableau 14</u> : AMDEC Moteur asynchrone.	41
<u>Tableau 15</u> : Classement des éléments selon leurs criticités.	42
<u>Tableau 16</u> : Catalogue des couples en fonction du diamétre de l'engrenage	49
<u>Tableau 17</u> : Propriétés du matériau utilisé.	51
<u>Tableau 18</u> : Les propriétés d'axe de rotation.	55
<u>Tableau 19</u> : Pondération des critéres exigées.	59
<u>Tableau 20</u> :Matrice de l'aide à la décision.	60
<u>Tableau 14</u> : Des recommandations correctives et amélioratives pour les défaillances de moyenne de moyenne de la commandation d	criticité63

Liste des figures

Figure 1: Carte géographique des mines de phosphate au Maroc et pourcentage de production te groupe.	
Figure 2: Le premier LOGO de l'OCP.	5
Figure 3: LOGO actuel de l'OCP.	6
Figure 4 : L'organigamme de l'OCP.	6
Figure 5: Diagramme des chemains suivi par le produit	8
Figure 6: Synoptique d'usine de séchage	8
Figure 7: Synoptique de l'unité chargement.	9
Figure 8: Schéma synoptique de la station de chargement de BENI IDIR	11
Figure 9: Schéma global de la structure mécanique entrainée par le circuit pneumatique	12
Figure 10: Schéma explicatif des équipements du circuit pneumatique	13
Figure 11: Décomposition du compresseur.	14
Figure 12: Image de l'ensemble électrovanne et régulateur.	15
Figure 13: Distributeur utilisé.	15
Figure 14: Décomposition du vérin utilisé	16
Figure 15: Le système du casque	16
Figure 16: Décomposition du tripper.	17
Figure 17: Vue isométrique des deux compartiments du vollert	18
Figure 18: Vue de coupe du locotracteur vollert.	19
Figure 19: Planning des taches à réaliser.	20
Figure 20: Visualisation du planning sur Gantt Project	21
Figure 21: Synthèse de l'analyse fonctionnelle et liaison avec la maintenance	23
Figure 22: Diagramme bête à corne	24
Figure 23: Diagramme pieuvre.	24
Figure 24: Progression des heures d'arrêt durant 2 ans et 3 mois	30
Figure 25: Démarche de fonctionnement d'une AMDEC.	31
Figure 26: Décomposition relationnelle du casque	32
Figure 27: Décomposition realationnelle du compresseur	38
Figure 28: Les efforts appliqués sur les dentures.	48
Figure 29: Graphe des couples en fonction des diamétres differents d'engrenage	49

Figure 30: Modélisation du bras denté droit.	50
Figure 31: Maillage du bras denté.	51
Figure 32: Visualisation de la contrainte maximale de VON MISES	52
Figure 33: Visualisation de la concentration du moment de torsion	53
Figure 34: la contrainte de VON MISES obtenue	54
Figure 35: Maquette numérique de l'axe de rotation des trappes du casque	54
Figure 36: Application du maillage adapté.	55
Figure 37: La visualisation du comportement et de la contrainte de VON MISES	56
Figure 38: Maquette numérique de la partie mobile du concept 1	56
Figure 39: Maquette numérique du deuxième concept	58
Figure 40: Les dentures de l'une des bras sont annulées.	59
Figure 41: Le nouveau positionnement des vérins.	60
Figure 42: Schéma des déférents matériaux à choisir	62
Figure 43: Les propriétés du matériau choisi : Acier faiblement allié	62
Figure 44: Les opérations de maintenance préventive	66

Introduction générale

L'industrie occupe une place prépondérante et joue un rôle crucial dans l'économie des nations, grâce aux offres d'emplois qu'elle procure, à sa valeur ajoutée ainsi que sa participation dans le produit intérieur brut. C'est pour cela que les pays accordent plus d'importance à ce secteur vital par le truchement d'efforts logistiques et humains.

Le Maroc n'échappe pas à cette règle même s'il a une industrie émergente dont le groupe Office Chérifien des Phosphates tire la locomotive, vu la valeur du phosphate dans les marchés internationaux. De ce fait, notre Projet de stage de Fin d'étude s'est déroulé au sein de l'unité de BENI-IDIR du groupe OCP.

Cette unité s'occupe de sécher le phosphate grâce aux fours sécheurs ; le séchage de phosphate est basé sur un processus thermodynamique qui consiste à évaporer la quasi-totalité de l'eau contenue dans le phosphate par un apport énergétique obtenue à l'intérieur d'un four par la combustion du fuel, ainsi que son occupation de charger et transférer le phosphate sec.

Dans ce présent rapport, on étudie le chargement du phosphate au sein de la nouvelle station UBH en mettant en lumière sa disponibilité par celle de ses équipements névralgiques et on cherche des solutions amélioratives aux anomalies récurrentes en se basant sur la démarche suivante :

- Le premier chapitre est réservé pour l'historique du groupe OCP et plus précisément une description de l'usine de BENI-IDIR qui a abrité notre stage.
- **↓ Le deuxième chapitre** consiste à présenter la station UBH, identifier ses équipements et éclaircir son principe de fonctionnement.
- ♣ On montre à travers **Le troisième chapitre** les modes de défaillances ainsi que la disponibilité des équipements à l'aide d'une analyse critique de l'historique des arrêts imprévus de la station.
- ♣ Le quatrième chapitre a pour objectif de chercher des résolutions adaptées aux problèmes ayant une criticité très élevée ainsi qu'une moyenne criticité par des outils de méthodologie de conception; et grâce à des études avancées de la RDM ainsi que celles par éléments finis.
- Le cinquième chapitre est pour intérêt d'élaborer un plan des plans de maintenance des équipements névralgiques.

Sommaire

Dédicace	I
	II
Introduction generale	V1
1. Présentation du groupe OCP. 2 a. Introduction. 2 b. Carte géographique des mines de phosphate au Maroc. 3 c. Historique	
1. Présentation du groupe OCP.	2
a. Introduction	2
b. Carte géographique des mines de phosphate au Maroc	3
•	
1 · · · · · · · · · · · · · · · · · · ·	
2. Usine BENI IDIR	7
Chapitre 2 : Etude de l'existant et détermination de la problématique Introduction	11
I. La station de chargement UBH	11
1. Présentation du circuit pneumatique	11
2. Identification des différents équipements critiques et circuits pneumatiques de la stati	ion13
a. Compresseur	13
b. Régulateur et électrovanne.	15
c. Distributeur	15
-	
g. Locotracteur VOLLERT III. Cadre du projet	
- ·	
2. Cahier des charges	

3. Les objectifs.	20
4. Les tâches à réaliser	20
5. Gestion de projet	20
Conclusion	21
Chapitre3 : Etude critique de l'historique des arrêts imprévus de la station	ı UBH
Introduction	23
I. Analyse fonctionnelle	23
1. Synthèse de l'analyse fonctionnelle et liaison avec la maintenance	23
2. Diagramme bête à corne	24
3. Diagramme pieuvre	24
II. Analyse Pareto des arrêts et calcul de la disponibilité de la station UBH	25
Analyse critique des arrêts imprévus	25
1.1 Analyse Pareto	25
a. Pour l'année 2016	
b. Pour l'année 2017	
c. Pour les deux premiers mois de l'année 2018	28
1.2 Calcul de la disponibilité	
a. La disponibilité de la station en 2016.	
b. La disponibilité de la station en 2017c. La disponibilité de la station en 2018	
c. La disponibilité de la station en 2018.	29
2. Application de la méthode AMDEC	30
a. AMDEC Casque	32
b. AMDEC compresseur.	38
3. Analyse critique grâce à l'arbre de défaillance du locotracteur Vollert	43
Conclusion	46
Chapitre 4 : Identification des solutions amélioratives Introduction.	48
I. Etude mécanique du comportement des éléments critiques	
1. Etude du bras denté	
a. Calcul des efforts exercés sur les dentures du bras droit	
b. Modélisation sur CATIA V5 et calcul par éléments finis	
2. Etude des poutres de transmission de mouvement	52
3. Etude de l'axe de rotation	
II. Génération et sélection des concepts	57

1. Introduction	57
2. Concept pour résoudre les problèmes des casques	57
2.1. Résolution des problèmes du bras denté	58
a. Concept N° 1	58
b. Concept N°2	59
2.2. Choix du nouveau matériau pour l'axe de rotation	61
III. Liste des recommandations pour les éléments ayant une criticité moyenne	63
Conclusion.	64
Chapitre 5 : Elaboration des plans de maintenance	
Chapitre 5 : Elaboration des plans de maintenance Introduction	66
Introduction	66
Introduction	66
Introduction I. Définition des plans d'actions ou plans de maintenance préventive II. Plan de maintenance préventive du compresseur GA 30+	66 67 éalisées68
Introduction I. Définition des plans d'actions ou plans de maintenance préventive II. Plan de maintenance préventive du compresseur GA 30+ III. Plan de maintenance pour le casque on tenant compte les actions amélioratives re	66 67 éalisées68 69

Chapitre 1 : Présentation de l'organisme d'accueil

Introduction:

Avant d'entamer la description du projet et la méthodologie suivie pour sa réalisation, la présentation de son cadre est indispensable. Il est donc primordial de bien connaître l'organisme d'accueil. Ainsi, cette partie présente l'office chérifien du phosphate.

I. Présentation de l'organisme d'accueil :

1. Présentation du groupe OCP

a. Introduction

Le Groupe OCP est une société anonyme fondée en 1920 et domiciliée au Maroc. OCP S.A est le leader mondial des exportations de phosphates et produits dérivés, avec des activités couvrant l'ensemble de la chaine de valeur, allant de l'extraction de la roche de phosphate à la transformation chimique en acide phosphorique et différents engrais. Les produits OCP représentent une composante majeure de la sécurité alimentaire mondiale tant ils sont importants pour la productivité agricole et contribuent activement à la régénération qualitative des sols.

Avec les réserves les plus importantes au monde, principalement localisées dans le bassin de Khouribga au centre du Maroc, OCP S.A offre une large sélection de roche de phosphates de différentes qualités, destinée à divers usages. OCP est le premier exportateur de roche de phosphates et acide phosphorique dans le monde, et un des principaux exportateurs d'engrais phosphatés, avec un portefeuille composé de 130 clients et une présence sur les cinq continents.

En tant que première entreprise du Maroc, OCP S.A est l'un des moteurs clé de l'économie du pays. Les phosphates et ses dérivés représentent en 2010, en valeur, près d'un quart des exportations du Maroc et approximativement 3,5% du PIB. Les exportations d'OCP S.A sont de près de 4,5 milliards de dollars US en 2010. OCP S.A emploie directement plus de 18 000 salariés.

OCP S.A prévoit d'augmenter sa capacité de production de 30 à 50 millions de tonnes, ainsi que d'augmenter sa production d'engrais en aval à travers des partenariats stratégiques, spécialement à Jorf Phosphate Hub (JPH) où des infrastructures sont en train d'être développées pour accueillir 10 unités supplémentaires. Cette plateforme offrira des infrastructures communes à bas coût, et sera connectée par un slurry pipeline au plus grand gisement de phosphates au monde situé à Khouribga, ce qui assurera un approvisionnement sécurisé.

b. Carte géographique des mines de phosphate au Maroc

Disposant des plus grandes installations industrielles conçues selon les meilleurs standards internationaux en matière de processus, de technologie et d'outil industriel, OCP produit prés de 27 millions de tonnes de roche de phosphate, 5 millions de tonnes P2O5 d'acide phosphorique et 5 millions de tonnes d'engrais (MAP, DAP...).

La direction générale du groupe OCP est située à Casablanca, route d'El Jadida depuis 1979.

Le phosphate extrait des quatre zones minières soit exporté brut à l'étranger soit transformé localement dans des industries chimiques de Safi et de Jorf Lasfar.

Les zones minières sont :

- Zone de Khouribga (Oulad –Abdoun)
- Zone de Youssoufia (Gantour).
- Zone de Benguerir.
- Zone de Bouqraâ.

En outre, l'OCP dispose de quatre ports d'embarquement à : Casablanca, Jorf Lasfar, Laâyoune et Safi :

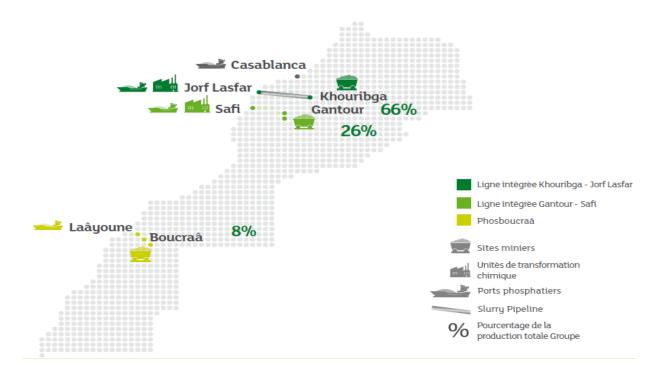


Figure 1: Carte géographique des mines de phosphate au Maroc et pourcentage de production totale groupe

c. Historique:

Depuis sa création, le groupe OCP a connu une large évolution.

Les étapes les plus importantes dans son évolution sont :

1920 : Création du groupe OCP le 7 Aout.

1921 : Début des exploitations en souterrain dans la région d'Oued-Zem sur le gisement des Oulad Abdoun le 3 Mars.

1931 : Début des exploitations en souterrain.

1954 : Démarrage des premières installations de séchage Youssoufia.

1961 : Mise en service de la première laverie à Khouribga.

1962 : Introduction de la mécanisation de souterrain à Youssoufia le 19 septembre.

1965 : Création de MAROC CHIMIE et Extension de l'extraction à ciel ouvert à la mine de MERAH- EL AHRACH (Khouribga).

1965 : Démarrage du complexe de séchage de BENI-IDIR.

1967 : Introduction de la mécanisation du souterrain à Khouribga.

1969 : Entrée en exploitation de la première recette de phosphate noir à Youssoufia.

1974 : Lancement des travaux pour la réalisation du centre minier de Benguérir.

1975 : Création du groupe OCP.

1981 : L'OCP entre dans le capital de la société PRAYON (Belgique).

1982 : Démarrage du complexe de séchage d'Oued-Zem.

1994 : Démarrage du projet minier de Sidi Chennane.

1997 : Accord « OCP-Grande Paroisse » pour l'utilisation de l'usine de Rouen.

1998 : Le groupe OCP obtient le Prix National de la Qualité.

1999 : Démarrage de la production d'acide phosphorique de l'usine d'Imacid à Jorf Lasfar, le 1er novembre.

2004 : Création de la société "Pakistan Maroc Phosphore" S.A en Joint-venture entre l'OCP et Fauji Fertilizer Bin Qasim Limited (Pakistan).

2005 : Démarrage de l'usine de Lavage/Flottation à Youssoufia.

2006 : Projet nouvelle ligne DAP 850000 t/an à JorfLasfar.

2007 : Démarrage de Pakiston, Maroc Phosphore (JorfLasfar).

2008 : La société anonyme OCPSA est née le 22 janvier.

2009 : Démarrage de Bunge Maroc Phosphore à Jorf Lasfar (BMP).

2010 : Mise en service d'une nouvelle station d'épuration des eaux usées de la ville de Khouribga (STEP) en avril.

2010 : Option d'une technologie des filtres à manches à Youssoufia, en décembre.

2010 : Mise en service de la cinquième laverie du groupe OCPSA, celle de Merah Lahrach en octobre.

2011 : Démarrage des travaux d'excavation du pipeline entamés par Tekfen, qui sera opérationnel en juin 2012.

2013 : Démarrage programmé du projet Slurry Pipeline sur l'axe Khouribga-Jorf Lasfar de 235Km.

2015 : démarrage Programmé du slurry pipeline de l'axe Ben guérir-Youssoufia-Safi

d. Mission d'OCP:

La mission du Groupe OCP est d'extraire le phosphate, de le traiter, de le valoriser et de le commercialiser sous forme naturelle ou produits dérivés, tel que l'acide phosphorique ou engrais. Le Groupe OCP comprend deux centres de transformation chimique et de valorisation, Safi et Jorf Las far et quatre ports d'embarquement, Casablanca, Safi, Jorf Las far et Laayoune. Par conséquent, garantir un accès mondial et durable au phosphate en s'engageant pour un leadership économique, social et environnemental au Maroc et à travers le monde.

e. LOGO de l'OCP:

Le logo de l'O.C.P se base sur un graphisme symbolisant une dent de requin, fossile courante des phosphates marocains.

Figure 2: Le premier LOGO de l'OCP

Cette figure est reproduite cinq fois à l'identique de façon à ce que le tout constitue l'étoile à 5 branches du drapeau national et rappelle également les destinations des produits de l'O.C.P (les 5 continents).

L'ensemble est inscrit dans un cercle autour duquel sont disposés 2 épis croisés en arc.

Figure 3:LOGO actuel de l'OCP

2. Organigramme de l'OCP:

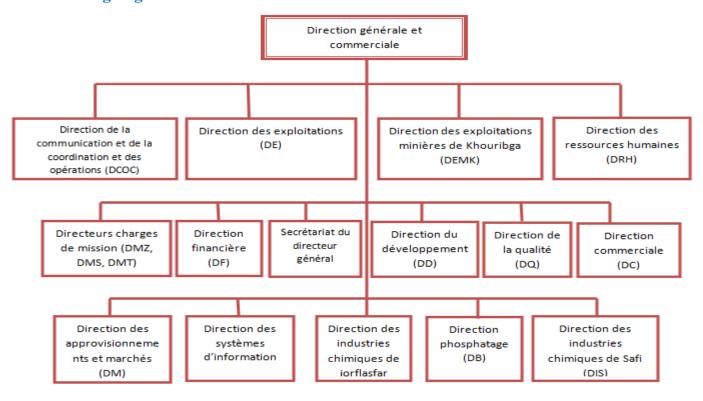


Figure 4: L'organigamme de l'OCP

II. L'unité de traitement et d'embarquement de Béni Idir:

Cette partie contiendra un aperçu général sur la division OCP de Khouribga, une description de l'unité de traitement et d'embarquement de Béni-Idir, puis une description détaillée des fours sécheurs et leurs fonctionnement.

1. Aperçu général sur la division OCP de Khouribga:

L'O.C.P à Khouribga est représenté par la direction d'extraction des Exploitations Minières de Khouribga (DEK) à laquelle sont rattachées cinq divisions : quatre à Khouribga et une à Casablanca.

Pôle Mine Khouribga PMK:

C'est la plus importante division d'extraction à L'O.C.P, par son effectif en personnel et en matériel. Son siège se situe au point « B » qui se trouve à 26Km du Nord-est de la ville de Khouribga et environ 10Km au Sud-ouest d'Oued-Zem.

Elle se présente comme suit :

PMK/PP: Service Méthodes et Planning.

PMK/PG: Service Contrôle de Gestion

PMK/PC/P : Service Exploitation Secteur DAOUI.

PMK/PE: Service Exploitation Secteur MRAH EL AHRACHE.

PMK/PC: Secteur SIDI CHENNANE.

PMK/PA: Service du Personnel.

Division Traitement (PMK/TK):

C'est une Division qui s'occupe essentiellement du traitement du phosphate extrait et de son cheminement vers les ports de Casablanca et Jorf Lasfar à El Jadida.

Division Administrative (PMK/AK):

C'est une Division qui se trouve à Khouribga et qui s'occupe des relations humaines et officielles avec les autorisé locales et provinciales, elle gère les services sociaux tels que les logements, les centres sportifs, hébergement des agents extra de la zone, animation des foyers des jeunes et d'autres activités.

Division Maintenance Centralisée (PMK/MK):

Elle s'occupe de la révision et Entretien partiel ou général du matériel et sous-ensembles de la zone Khouribga.

Division Embarquement (PMK/PC):

Elle se trouve au port de casa, a pour rôle le stockage et l'embarquement des phosphatés de Khouribga.

2. Usine BENI IDIR:

L'usine de BENI_IDIR se situe à 17Km à l'Est de Khouribga, il a démarré en 1965 avec quatre fours sécheurs puis, et dans le cadre d'une extension de l'usine, quatre fours sécheurs ont été mis en service en 1970, cette usine est destinée au séchage du phosphate fourni par les unités d'extraction (Sidi Daoui, Parc El Wafi, Zone Centrale...), sa capacité de production annuelle est d'environ 10.7 Millions de tonnes, elle est constituée de trois unités principales :

- Unité de séchage
- > Unité d'enrichissement à sec
- Unité de chargement

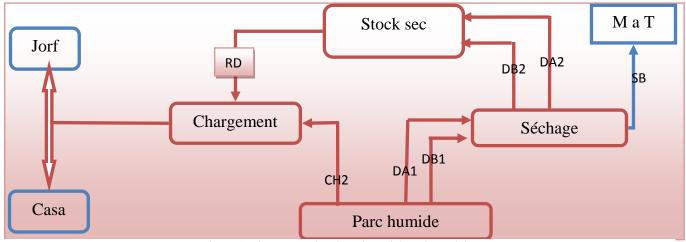


Figure 5: Diagramme des chemains suivi par le produit

L'usine est équipée aussi des autres unités auxiliaires

- ➤ Deux chaudières pour produire la vapeur qui sert à chauffer le fuel afin de faciliter son déplacement et de préparer son injection dans les fours.
- ➤ Un parc humide où se font le stockage et le déstockage des qualités de phosphate brut provenant des unités d'extraction, il comporte quatre stocks ayant une capacité globale de 0.5 millions de tonnes.
- Des hangars de stockage du produit sec.

Unité de séchage:

Elle comprend huit fours sécheurs d'une capacité qui peut atteindre 400 tonnes par heure chacun, Le but de cette unité est de diminuer le taux d'humidité qui varie de 14% à 18% par le fait de lavage à moins de 2.5% et ceci pour les raisons économiques suivantes:

- Réduire le coût du transport du phosphate car le phosphate séché n'est pas lourd comme celui humide
- La valorisation du produit: Par l'augmentation du teneur à une valeur voulue qui peut atteindre jusqu'à 1% d'humidité selon le besoin du client, ce qui donne un produit à caractère sec et marchand.

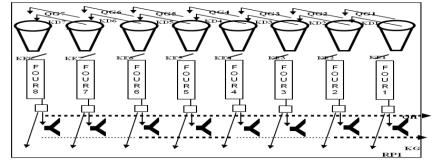


Figure 6: Synoptique d'usine de séchage

Unité de chargement:

Après avoir passé des trois unités citées ci-dessus le phosphate se met dans trois stocks de qualités différentes, il se renvois par des convoyeurs à la station de chargement qui prend en charge le chargement du phosphate dans des trains qui vont le transporter aux différentes destinations. Cette station permet de charger 8 à 9 trains par jour.

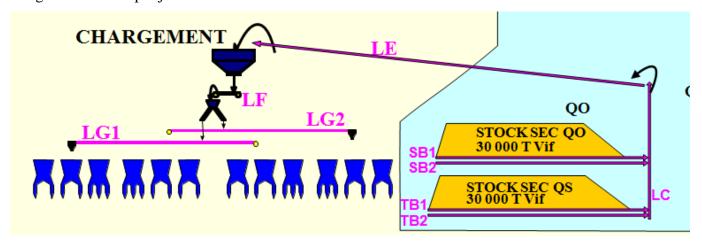


Figure 7: Synoptique de l'unité chargement

Chapitre 2 : Étude de l'existant et détermination de la problématique

Introduction

Dans cette partie, nous allons présenter la problématique, dans un premier temps nous identifierions les différents équipements critiques et circuits pneumatiques de la station de chargement UBH puis nous mettrions l'accent sur la situation de production actuelle afin de définir la problématique.

I. La station de chargement UBH :

L'office cherrifien du phosphate khouribgua ne cesse de controler la technique de production ainsi que l'améliorer par des actions afin de garantir l'existance de concurance mondiale et satisfaire les clients c'est pour ces raisons l'OCPK et plus précisement l'unité Beni-Idir a installée une nouvelle station de chargement des trains du phosphate.

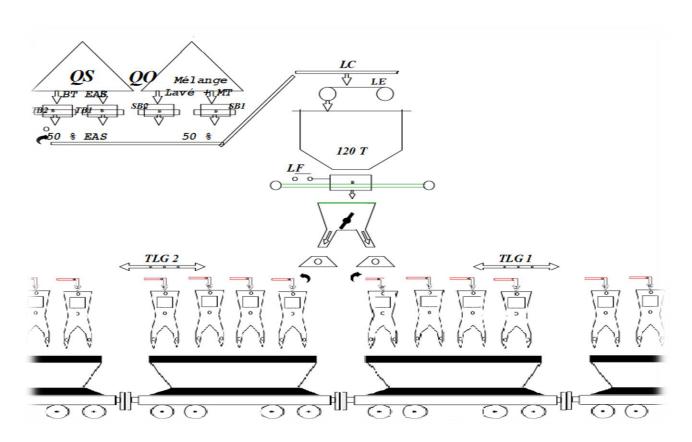


Figure 8: Schéma synoptique de la station de chargement de BENI IDIR UBH

II. Etude de l'existant:

1. Présentation du circuit pneumatique :

Les systèmes d'air comprimé se composent de plusieurs sous-systèmes et composants principaux. Les systèmes d'air comprimé peuvent également être subdivisés en deux parties : le côté **production** et le côté **consommation**.

Le côté **production** comprend les compresseurs, le traitement de l'air et les installations de stockage primaire. Un système bien géré va produire de l'air propre, sec et stable, délivré à la pression voulue de façon fiable et économique. Les principaux sous-systèmes de production d'air comprimé incluent normalement la **prise d'air**, le **compresseur** d'air (à vitesse fixe et/ou à vitesse variable), le refroidisseur de sortie, le moteur, les dispositifs de régulation, les équipements de traitement de l'air et les accessoires.

Les dispositifs de régulation servent à régler la quantité d'air comprimé à produire pour maintenir une pression constante dans le système et gérer les interactions entre les divers composants du système. Les **filtres** à air et les **sécheurs d'air** éliminent l'humidité, l'huile et les impuretés de l'air comprimé. Le stockage de l'air comprimé (**réservoirs humides** et **réservoirs secs**) sert également à améliorer le rendement et la stabilité du système. L'eau accumulée est évacuée par des purgeurs de type manuel ou automatique. Les **régulateurs de pression** permettent de maintenir une pression constante dans un dispositif final d'utilisation.

Le côté **consommation** inclut les tuyauteries de distribution, les stockages secondaires et les appareils d'utilisation. Un système de consommation bien géré minimise les différences de pression, diminue les pertes d'air dues aux fuites et aux dispositifs de purge, et procure l'air comprimé aux appareils et applications appropriés. Les tuyauteries de distribution acheminent l'air comprimé, du compresseur aux **points d'utilisation** finale. On utilise également à des réservoirs d'air comprimé côté consommation afin d'améliorer la stabilité de la pression du système.

Au niveau de la station ; nous trouvons 10 trémies chacune d'elles constitue de 4 casques, et chacun de ces derniers lié a des accumulateurs de gaz comprimé généré par deux compresseurs industriels.

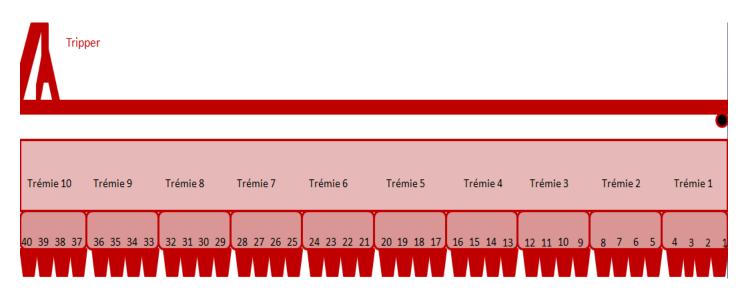


Figure 9: Schéma global de la structure mécanique entrainée par le circuit pneumatique

Les casques sont manipulés grâce au système pneumatique représenté si dessus :

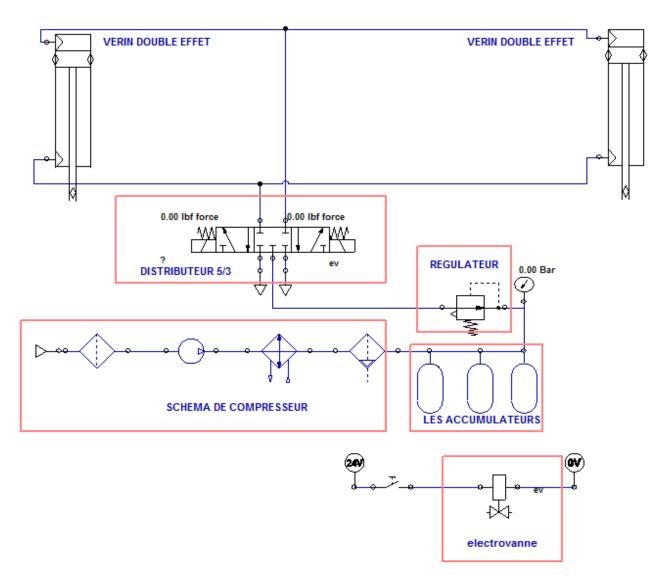


Figure 10: Schéma explicatif des équipements du circuit pneumatique

2. Identification des différents équipements critiques et circuits pneumatiques de la station :

a. Compresseur:

Principe de fonctionnement : La partie tournante est composée de deux vis engrenant l'une dans l'autre. Ces deux vis tournent en sens contraire. Le passage de l'air s'effectue parallèlement aux axes des deux vis. La vis femelle comporte toujours un pas de plus que la vis mâle avec un profil différent. Le fonctionnement s'effectue suivant les étapes :

- ♣ phase d'aspiration : l'air entre par l'orifice d'aspiration dans les spires de rotor ouvert du coté d'aspiration.
- ♣ phase de compression : la rotation progressive des rotors provoque la fermeture de l'orifice d'admission d'air, le volume est réduit et la pression monte en traversant des capacités de plus en

plus petites jusqu'à la tubulure de refoulement (les chambres sont formées par les parois du corps et les filets des deux vis).

♣ phase d'évacuation : la compression est terminée, la pression finale est atteinte, le refoulement commence.

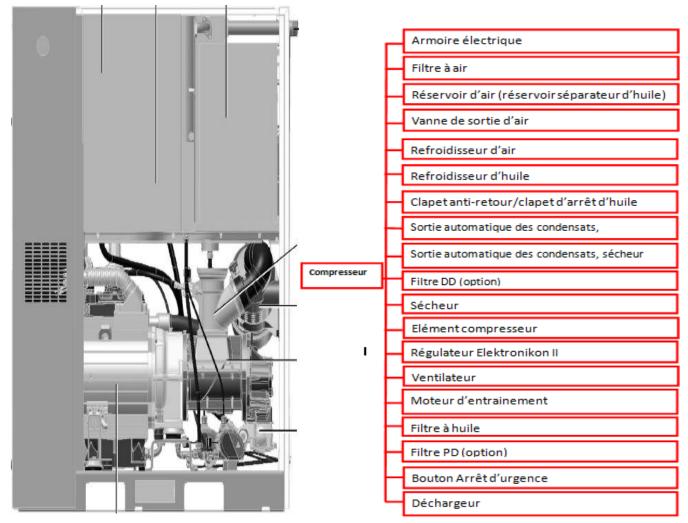


Figure 11: Décomposition du compresseur

Paramétrage du compresseur :

P _{max}	• 7.3 bar
Qv	• 95.9l/s
P _{moteur}	• 30 Kw
n moteur	• 2955t/min
m	• 1050kg

b. Régulateur et électrovanne:

Figure 12: Image de l'ensemble électrovanne et régulateur

- Le régulateur de pression a pour fonction de maintenir une pression constante à sa sortie, même si la pression à l'entrée varie. Une molette de réglage permet à l'utilisateur de modifier la pression à la sortie du régulateur. Certains modèles comportent une soupape de sécurité intégrée permettant à l'air en aval du régulateur de s'échapper lorsqu'on diminue le réglage de la pression. Ce réglage peut être effectué lors de l'édition et lors de la simulation seulement pour les régulateurs de la rangée 1.
- L'électrovanne est un moyen simple et économique pour piloter les réseaux de fluide à distance grâce à un signal électrique. Les fonctions courantes pour lesquelles une électrovanne peut être utilisée sont : l'alimentation à distance, le sectionnement de tuyauterie, la fonction de by-pass, la distribution par dérivation, la mise à l'air, la purge des réservoirs et des tuyauteries.

c. Distributeur:

Fonction : -Il est pour fonction essentielle de distribuer le gaz comprimé dans des canalisations qui aboutissent aux chambres des vérins.

Puisque les vérins sont à double effet et comportent chacun des eux donc deux orifices sur lesquels il faut alterner les états de pression et d'échappement, on utilise un distributeur comportant trois orifices de sortie.

Les distributeurs sont à pilotage pneumatique ou, avec l'addition d'électrovannes à pilotage électrique.

Figure 13: Distributeur utilisé

d. Vérin:

Les vérins à double effet sont utilisés lorsque la puissance hydraulique est requise dans les deux sens de mouvement de la tige du vérin.

À cause de la présence de la tige sur un côté du piston, les surfaces sur lesquelles la pression est appliquée ne sont pas les mêmes de chaque côté. Cela implique, à pressions égales, une différence de poussées selon que le vérin effectue sa course de sortie ou sa course de rentrée. De plus, si la même pression est appliquée de chaque côté du piston, la tige du vérin sortira.

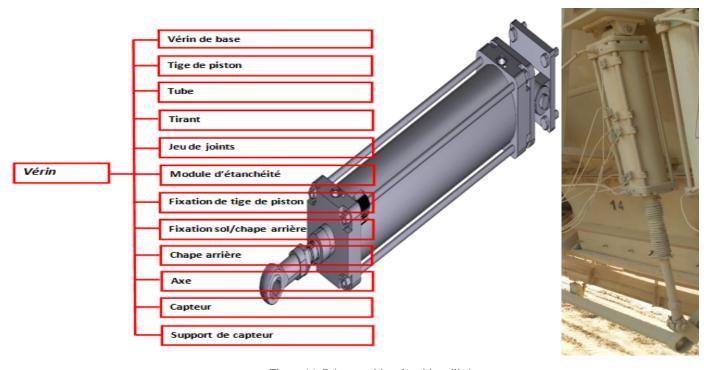


Figure 14: Décomposition du vérin utilisé

Paramétrage du vérin :

Tige de piston	• ITS-160-0615-SINGLE ROD
Tube	• ITS-160-0615-TUBE
Tirant	• ITS-160-0615-000-TIEROD
Jeu de joints	• ITS-160-NBR-SEALING_KIT
Module d'étanchéité	• MSS-ITS-160/200-000-NBR

e. Casque:

Le casque suivant a pour but de remplir les wagons des trains par le phosphate.

Se constitue de 4 bras et Jeu de Bras d'ouverture des casques de vérins d'ouverture et de fermeture ainsi que des portes.

Figure 15:Le système du casque

f. Transporteur RH6 bande 1400, Chariot verseur:

Le convoyeur à bande est une machine conçue pour manutentionner le produit, ce dernier est manutentionné de manière linéaire, sur de longues distances.

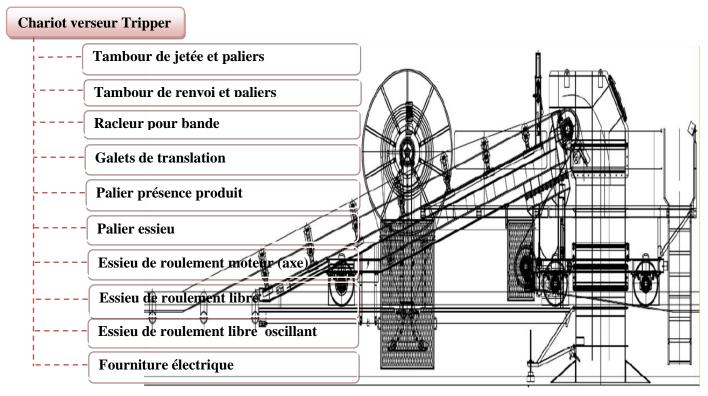


Figure 19: Décomposition du tripper

g. Locotracteur VOLLERT:

Les **locotracteurs** sont des engins ferroviaires de faible puissance utilisés principalement pour la manœuvre des <u>wagons</u> et la formation des convois. Ils sont aussi utilisés pour les transports internes de nombreuses industries lourdes et parfois sur de courtes distances pour la desserte de lignes secondaires ou d'embranchements particuliers (on parle alors de « *locomotive manœuvres-ligne* »). Ils sont le plus souvent propulsés au <u>diesel</u>, et parfois <u>électriques</u>

La station UBH utilise un locotracteur électrique suivant :

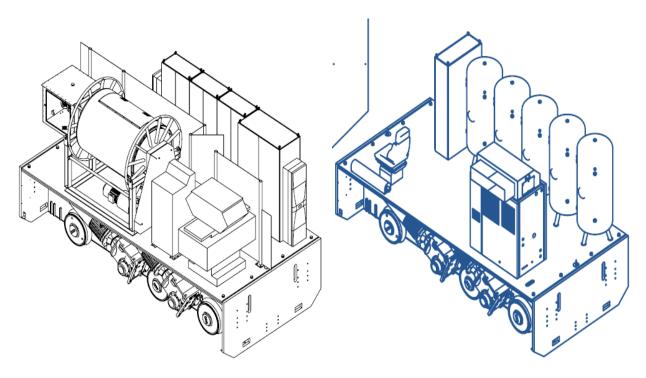


Figure 17: Vue isométrique des deux compartiments du vollert

Le robot de manœuvre est composé essentiellement:

- ♣ De deux bâtis d'ensemble d'acier robustes, intégrant les essieux montés et l'engrenage principal et les logements contenant le lest.
- ♣ D'un entraîneur de translation à réglage électronique avec 4 engrenages coniques et 4 moteurs à courant alternatif triphasé. Deux motoréducteurs chacun est bridé à un bâti d'ensemble à l'engrenage principal et agissent sur trois essieux à roues motrices.
- ♣ D'une armoire de commande y compris indicateurs et auxiliaires de commande et d'une interface à la télécommande par radio.
- ♣ D'une télécommande par radio stationnaire pour le contrôle du robot d'un poste de commande. Le système de radio dispose d'une installation rétro signal.
- Du tambour de câble avec câble énergétique pour l'alimentation de la puissance du robot.
- ♣ d'un transformateur de moyenne tension pour la transformation de la tension d'alimentation de 5500 V à 500 V.
- ♣ D'une installation pneumatique pour l'alimentation du frein de chariot et actionnement du klaxon à air comprimé ainsi que de la mise à disposition de l'air de travail pour les chariots.
- Le l'installation de manœuvre composée de tampons et crochets de traction UIC (des deux côtés).

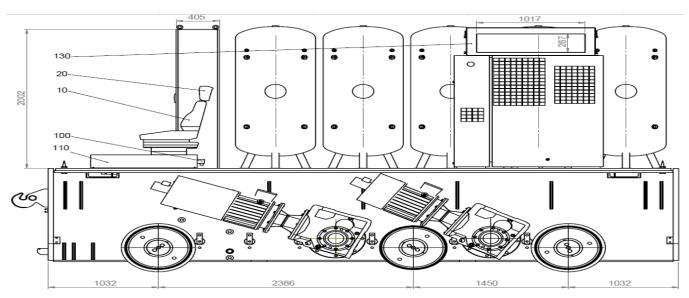


Figure 18: Vue de coupe du locotracteur vollert

III. Cadre du projet :

1. Présentation du projet:

Notre projet s'inscrit dans la politique d'amélioration suivie par l'usine Béni Idir dans les différentes unités.

Le but est d'améliorer la disponibilité des équipements critiques de la station de chargement UBH ce qui va permettre d'éliminer les temps de chargement des trains et les temps de pertes d'engagement.

Aujourd'hui, toutes les entreprises peu importe leur taille cherchent à maximiser ses bénéfices et comme toute, OCP Khouribga cherche à améliorer la productivité et le rendement, cette amélioration consiste principalement à réduire le temps d'arrêt des toutes ses unités et garantir leur disponibilité.

La station de chargement des trains du phosphate humide de Béni Idir est une installation névralgique, un arrêt imprévu de la station impacte directement le nombre des trains à expédier.

2. Cahier des charges:

L'atelier mécanique en coordination directe avec la nouvelle station de chargement UBH de l'unité Béni Idir se sont engagés à atteindre les niveaux exigés « Qualité-Coût-Délais ».

Dans ce sens, ma mission principale lors de ce projet est :

« Amélioration de la disponibilité de la station de chargement UBH par celle de ses équipements »

3. Les objectifs:

Les objectifs visés par ce projet sont :

- * Réduire le temps des arrêts imprévus,
- ❖ Garantir la disponibilité de la station,
- ❖ Augmenter la productivité de la station,
- * Réduire la cadence des pénalités,
- Minimiser les déplacements des opérateurs 'pour maintenir l'équipement en panne'.

4. Les tâches à réaliser:

Pour cela le travail demandé est de :

- ❖ Identifier et classer des différents équipements critiques et circuits pneumatiques de la station UBH.
- ❖ Faire une étude des arrêts de la station UBH (année2016, 2017 et 2018),
- ❖ Identifier et analyser les causes racines des arrêts,
- Choisir des solutions réalisables.
- Llaborer un plan d'action de la mise en œuvre des solutions choisies.

5. Gestion de projet :

Ce diagramme présenté ci-dessous, m'a servi de fil conducteur tout au long du projet. Il m'a permis d'ajuster les dérives et de maîtriser la gestion du temps alloué pour sa réalisation

GANTT. project		
Nom	Date de début	Date de fin
debut de stage	21/02/18	21/02/18
formation d'acceuil	21/02/18	28/02/18
visite et observation de l'atelier mecanique	01/03/18	02/03/18
rédaction du cahier de charges	05/03/18	05/03/18
observation d'etat actuel	06/03/18	09/03/18
identification des differents equipements	12/03/18	21/03/18
identification des circuits pneumatiques	19/03/18	27/03/18
étude critique de l'historique des arrets imprévus de UBH	28/03/18	10/04/18
Analyse et choix des solutions réalisables	11/04/18	25/04/18
élaboration d'un plan d'action de concrétisation des solutions retenues	26/04/18	18/05/18
rédaction du rapport de stage et préparation de la soutenance	09/03/18	25/05/18

Figure 19: Planning des taches à réaliser

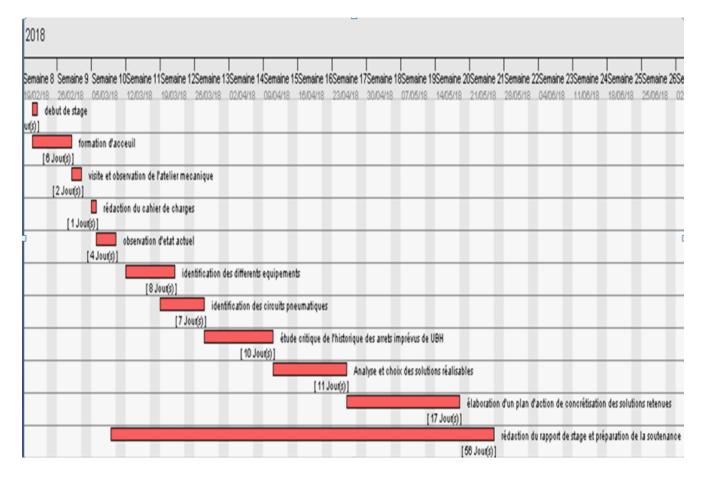


Figure 20: Visualisation du planning sur Gantt Project

Conclusion:

Dans ce chapitre nous avons fais une présentation de la station UBH, une identification des équipements les plus importants de cette unité, précision d'un cahier de charge ainsi qu'un planning de projet pour assurer le déroulement fluide de notre stage et réaliser les taches durant des périodes bien précises.

Chapitre3 : Etude critique de l'historique des arrêts imprévus de la station UBH

Introduction

Le but de ce chapitre est d'analyser d'une manière critique l'historique des arrêts imprévus de la station de chargement UBH, afin d'identifier les causes racines de chaque défaillance qui provoque l'arrêt de la station.

I. Analyse fonctionnelle:

L'élaboration de l'analyse fonctionnelle est une étape primordiale pour un projet. Elle permet de recenser les grandes fonctionnalités d'un système tout en exprimant les besoins de l'utilisateur. Dans ce qui suit, nous présenterons cette analyse, et nous décrirons les fonctionnalités jugées les plus importantes.

1. Synthèse de l'analyse fonctionnelle et liaison avec la maintenance :

Afin de structurer la méthode d'analyse critique de la station UBH ainsi que tous les équipements névralgiques, nous pouvons traduire la synthèse par le schéma suivant :

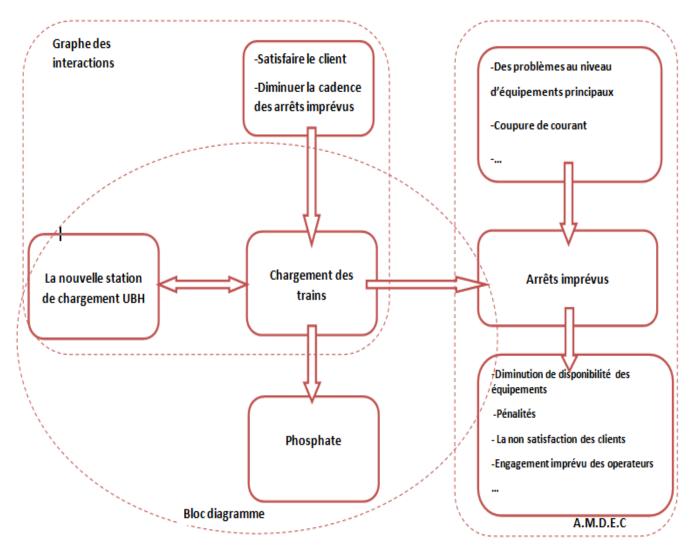


Figure 21: Synthèse de l'analyse fonctionnelle et liaison avec la maintenance

2. Diagramme bête à corne:

Pour bien mettre en évidence le but de mon projet, je vais représenter ses différents acteurs à l'aide de l'outil « bête à corne » :

Figure 22: Diagramme bête à corne

3. Diagramme pieuvre:

Ce diagramme permet de définir les liens (c'est-à-dire les fonctions de service) entre le système et son environnement. Il permet de recenser la plupart des fonctions du système.

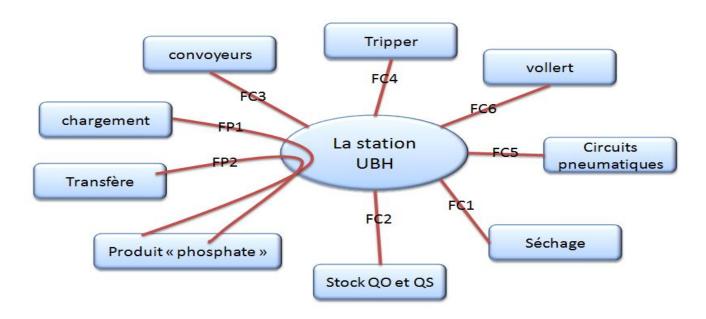
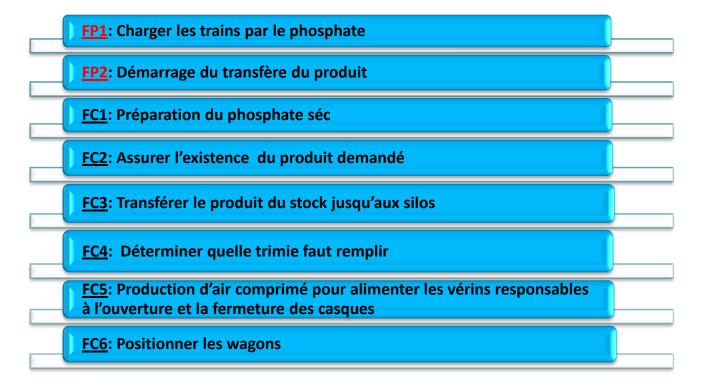



Figure 23: Diagramme pieuvre

Descriptif des fonctions:

II. Analyse critique des arrêts imprévus :

Le but principal pour l'homme de maintenance est de savoir quelles défaillances traiter en priorité car certaines n'ayant que peu d'importance en termes d'effets et de coûts. L'exploitation et l'analyse de l'historique des arrêts imprévus vont permettre d'effectuer le choix convenable. Le refus d'exploiter les historiques montre une totale méconnaissance des méthodes de gestion de la maintenance, et donc une totale désorganisation du service Maintenance.

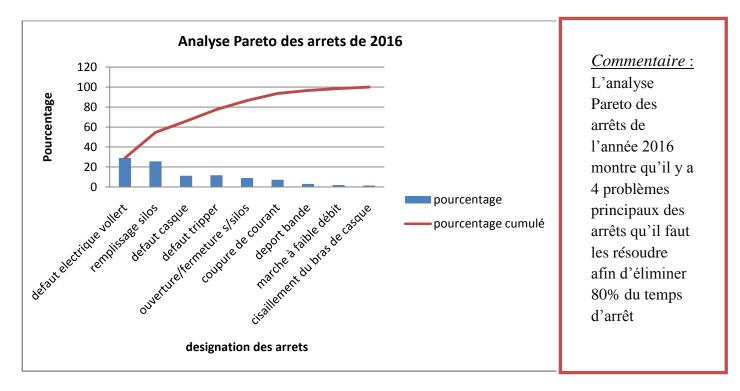
Dans ce qui suit, l'analyse quantitative de l'historique sera traitée. Pour cela, on utilise un outil très important : l'analyse de Pareto.

1. Analyse Pareto des arrêts et calcul de la disponibilité de la station UBH:

1.1 Analyse Pareto

Pour sélectionner les équipements qui présentent le plus d'avaries, nous devrons les classer par ordre d'importance du point de vue du temps d'arrêt et du temps moyen de la panne.

Le but de cette approche est l'amélioration de la performance des équipements par diminution du nombre de pannes, du temps moyen de réparation et donc du temps total d'arrêt. Ceci améliore la disponibilité des équipements et augmente la quantité produite.

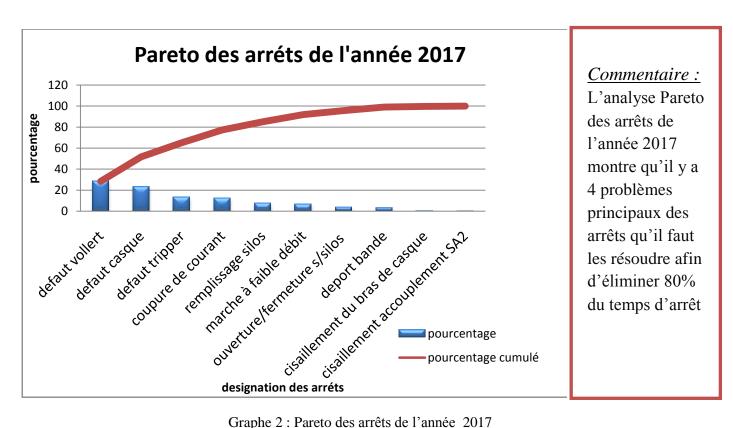

Dans ce contexte, l'analyse de Pareto nous a été un outil très utile et efficace.

A l'aide de l'historique des pannes disponible dans le secrétariat technique et des commentaires des opérateurs de maintenance, nous avons pu dresser les tableaux qui présentent le nombre de pannes par équipement ainsi que les durées des pannes durant la période comprise entre le 01/01/2016 et le 15/03/2018 :

a. Pour l'année 2016 :

<u>Tableau 1:statistique des arrêts imprévus en 2016</u>

Arrêt	Nombre d'arrêt	Nombre des heures d'arrêt	Nombre des heures d'arrêt cumulé	Pourcentage	Pourcentage cumulé
Défaut vollert	31	38,5	38,5	29	29
Remplissage silos	50	34	72,50	25,57	54,57
Défaut Tripper	7	15,5	88	11,65	66,22
Défaut casque	27	15	103,00	11,27	77,49
Ouverture/fermeture s/silos	26	12	115	9,02	86,51
Coupure de courant	7	9,5	124,50	7,13	93,64
Déport bande	8	4	128,5	3	96,64
Marche à faible débit	2	2,5	131,00	1,86	98,5
Cisaillement du bras de casque	2	2	133	1,5	100

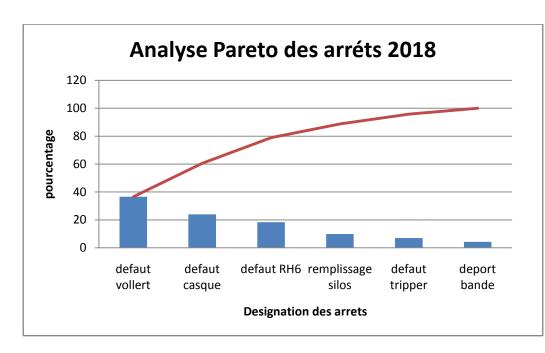


Graphe 1 : Pareto des arrêts en 2016

a. Pour l'année 2017 :

Tableau 2: Statistique des arrêts de l'année 2017

Arrêts 2017	Nombre d'arrêt	Nombre des heures d'arrêt	Nombre des heures d'arrêt cumulé	Pourcentage	Pourcentage cumulé
Défaut vollert	55	44	44	28,47	28,47
Défaut casque	66	36	80	23,33	51,8
Défaut Tripper	10	20,5	100,5	13,27	65,07
Coupure de courant	7	19	119,5	12,3	77,37
Remplissage silos	22	12	131,5	7,76	85,13
Marche à faible débit	9	10,5	142	6,79	91,92
Ouverture/fermetur e s/silos	14	6	148	3,88	95,8
Déport bande	3	5	153	3,23	99,03
Cisaillement du bras de casque	1	1	154	0,64	99,67
Cisaillement accouplement SA2	1	0,5	154,5	0,32	99,99



Graphe 2 : Pareto des arrêts de l'année 2017

b. Pour les deux premiers mois de l'année 2018 :

Tableau 3: Statistique des arrêts des deux premiers mois de l'année 2018

Arrêts 2018	Nombre d'arrêt	Nombre des heures d'arrêt	Nombre des heures d'arrêt cumulé	Pourcentage	Pourcentage cumulé
Défaut vollert	9	13	13	36,62	36,62
Défaut casque	12	8,5	21,5	23,94	60,56
Défaut RH6	3	6,5	28	18,3	78,86
Remplissage silos	5	3,5	31,5	9,87	88,73
Défaut Tripper	5	2,5	34	7,05	95,78
Déport bande	3	1,5	35,5	4,22	100

Commentaire:

L'analyse Pareto des arrêts des deux premiers mois de l'année 2018 montre qu'il y a 3 problèmes principaux des arrêts qu'il faut les résoudre afin d'éliminer 80% du temps d'arrêt

Graphe 3 : Pareto des arrêts des deux premiers mois de l'année 2018

1.2 Calcul de la disponibilité :

Il existe toute une kyrielle d'indicateur de maintenance, pour la plupart le sigle commençant par MT (Mean Time). Au même titre que le terme TPM est d'origine anglo-saxonne, toute la néologie de la TPM est anglo-saxonne. Dans cette panoplie de termes nous retrouvons les exemples suivants :

♣ MTBF est l'abréviation pour Temps Moyen de Bon Fonctionnement (Mean Time Between Failures). Le MTBF est un indicateur de la fiabilité d'un produit ou d'un système réparable. Il mesure le taux de défaillances aléatoires à l'exclusion des pannes systématiques dues par exemple aux erreurs de conception (par exemple erreurs logiciel) ou défauts de fabrication (produits en début de vie) et à l'exclusion de l'usure due à l'usage (fin de vie d'un produit).

Le MTBF s'exprime habituellement en nombre d'heures. Plus que le MTBF est élevé, plus que le produit ou le système est fiable.

♣ MTTR (Mean Time To Repair): Moyenne des temps de réparation, est un indicateur de performance des services de maintenance. Il permet de définir avec une bonne probabilité un temps de réparation dans des conditions définies. Le MTTR ne prend pas en compte les microarrêts.

a. La disponibilité de la station en 2016

$$MTBF = \frac{\sum \text{TBFi}}{\text{n}} = => MTBF = \frac{5 * 312}{160} = 9.75\text{h}$$
 $MTTR = \frac{\sum \text{TTRi}}{\text{n}} = => MTTR = \frac{1 * 312}{160} = 1.95\text{h}$
 $D = \frac{\text{MTBF}}{\text{MTBF} + \text{MTTR}} = => D = 83.3\%$

b. La disponibilité de la station en 2017

$$MTBF = \frac{\sum \text{TBFi}}{\text{n}} = => MTBF = \frac{5 * 312}{188} = 8.29\text{h}$$

$$MTTR = \frac{\sum \text{TTRi}}{\text{n}} = => MTTR = \frac{1.2 * 312}{188} = 1.99\text{h}$$

$$D = \frac{\text{MTBF}}{\text{MTBF} + \text{MTTR}} = => D = 80.9\%$$

c. La disponibilité de la station en 2018

$$MTBF = \frac{\sum \text{TBFi}}{\text{n}} = => MTBF = \frac{5*67}{37} = 9.05\text{h}$$
 $MTTR = \frac{\sum \text{TTRi}}{\text{n}} = => MTTR = \frac{1.6*67}{37} = 2.89\text{h}$
 $D = \frac{\text{MTBF}}{\text{MTBF} + \text{MTTR}} = => D = 75.79\%$

Résumé:

Les périodes étudiées montrent que les problèmes principaux se répètent durant 2016, 2017 et 3 mois et 13 jours de l'année 2018 et se balancent entre les :

- Défauts casque ;
- Défauts vollert ;
- Coupures de courant.
- Défauts Tripper (purement électriques).
- Le nombre ainsi que les heures des arrêts imprévus se progressent chaque année par conséquent la disponibilité de la station se démunie d'une façon grave

Figure 24: Progression des heures d'arrêt durant 2 ans et 3 mois

La progression des heures d'arrêts imprévus est un grand défi devant l'usine Béni Idir et particulièrement pour la station de chargement.

2. Application de la méthode AMDEC :

L'analyse des modes de défaillance de leurs effets et leur criticité (AMDEC) est une approche qualitative pour les études de sûreté dans différents domaines. En effet cette technique apporte une connaissance approfondie du fonctionnement et des interactions d'un système, par l'analyse systématique des relations causes-effets. Les informations obtenues sont utilisées dans le cadre de la maîtrise des risques, avec préoccupation principale l'obtention d'un bon niveau de sûreté de fonctionnement du système opérationnel. Elle permet de :

- ✓ connaître les éléments (fonctions et constituants) les plus importants ;
- ✓ découvrir, évaluer et classer les faiblesses, les anomalies et les dysfonctionnements de système ;
- ✓ gérer les points critiques et remettre en cause même la conception de système ;
- ✓ préconiser les mesures correctives ;
- ✓ évaluer les effets de ces mesures pour s'assurer de leur efficacité, et pour les comparer et décider.

L'analyse AMDEC a été faite pour chaque élément. L'évaluation de la criticité a été réalisée à partir des grilles de cotation de F, G et N. La valeur de C est obtenue par le produit des 3 notes.

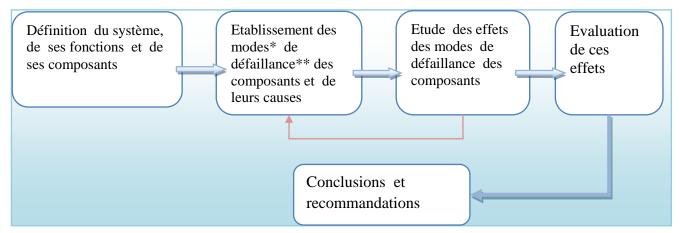


Figure 25:Démarche de fonctionnement d'une AMDEC

Echelle de cotation :

Pour rendre l'étude homogène, la criticité des défaillances de tous les équipements sera évaluée suivant une même échelle de cotation, à partir de trois critères indépendants : la gravité (G), la probabilité d'occurrence ou la fréquence d'apparition (F) et la probabilité de non détection (N). A chaque critère on associe une échelle de cotation définie selon quatre niveaux en s'appuyant sur : l'historique des arrêts et l'expérience du personnel.

En effet, l'échelle de cotation est basée principalement sur le temps d'indisponibilité ainsi que le nombre de défaillances des équipements. Elle est aussi le fruit de nombreuses discutions menées avec le personnel du service maintenance.

Tableau 4: Grille de l'échelle de gravité

Niveau	Description
1	Arrêt à courte durée : arrêt < 10 min
2	Arrêt à moyenne durée : 20 min ≤ arrêt < 30 min
3	Arrêt à longue durée : 30 min ≤ arrêt < 50min
4	Arrêt à très longue durée : arrêt ≥50 min

Tableau 5: Grille de l'échelle la probabilité d'occurrence

Niveau	Description
1	≤1 fois par mois
2	2 à 6 fois par mois
3	7 à 10 fois par mois
4	> 10 fois par mois

Tableau 6: Grille de l'échelle de la probabilité de non détection

Niveau	Description
1	Détection totale
2	Détection exploitable
3	Détection faible
4	Sans détection.

a. AMDEC Casque:

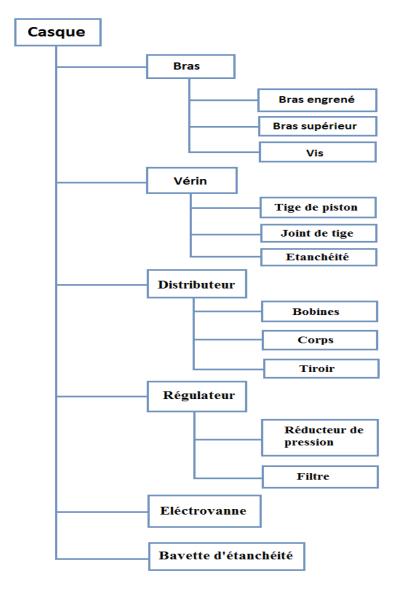


Figure 26:Décomposition relationnelle du casque

Tableau 7: AMDEC des bras

Date de l'analyse: 03/05/2018		AMDEC MACHINE-ANALYSE DES MODES DE Défaillance DE LEURS EFFETS ET DE LEUR Criticité								Page: 1/6 Nom:
	Système	: Casque	Sous-ensemble : Bras			criticité				Action corrective
Elément	fonction	Mode de défaillance	Cause de la défaillance	Effet de la défaillance	détection	F	G	N	С	
Bras denté	Manipuler les portes du casque	-Encombrement et usure des dents -Cisaillement	La poussière Surcharge	Coincement du casque	visuel	4	2	3	24	-réglage du jeu d'engrènement -changement du bras denté
Axe de rotation	Assembler le bras supérieur avec celui denté	-Cisaillement	Décalage des bras	Surcharge sur les bras et coincement	visuel	1	4	4	16	-changement
Bras supérieur	Assurer la transmission du mouvement du vérin au bras	-Torsion -Flexion -Déformation	surcharge	Coincement du casque	visuel	2	4	3	24	-remise en état initial -changement

Tableau 8: AMDEC des vérins

Date de l'analyse: 03/05/2018	AMDEC MACHINE-ANALYSE DES MODES DE Défaillance DE LEURS EFFETS ET DE LEUR Criticité							e de nemen nale	t:	Page: 2/6
	Système :	casque	Sous-ensemble : Vérin				criti	cité		Action corrective
Elément	Fonction	Mode de défaillance	Cause de la défaillance	Effet de la défaillance	détection	F	G	N	С	
Tige du piston	Séparer le volume du cylindre en deux chambres isolées l'une de l'autre	-Torsion	Coincement du bras	Coincement du casque	Rien ne permet de détecter cette défaillance avant Que l'effet ne se produit	1	2	4	8	-Changement du vérin
Joints de vérin	Contenir le gaz comprimé et maintenir la pression	-Dégradation	Décalage des bras	Fuite d'air comprimé	Rien ne permet de détecter cette défaillance avant Que l'effet ne se produit	1	2	3	6	-Changement des joints
Etanchéité	Empêcher le passage d'éléments liquides, solides ou gazeux entre deux milieux	-Dégradation	Durée de vie Poussière	Passage des impuretés	visuel	4	1	4	16	-Changement d'étanchéité

Tableau 9: AMDEC distributeur

Date de l'analyse:			NALYSE DES E LEUR Critic	MODES DE Défi ité	aillance DE	Phase of	de foncti Norm		ment :	Page: 3/6 Nom:
03/05/2018	Système	: Casque	Sous-ensemble : Distributeur				critic	ité		Action corrective
Elément	Fonction	Mode de défaillance	Cause de la défaillance	Effet de la défaillance	détection	F	G	N	C	
Corps	Assembler les organes	usure	Mouvement du tiroir	Circuit ouvert ou fermé d'air	Apres la panne	1	3	3	9	-Changement du distributeur
Tiroir	Contenir le gaz comprimé et maintenir la pression	usure	La fatigue	Coincement du tiroir	Rien ne permet de détecter cette défaillance avant Que l'effet ne se produit	1	2	4	8	-Changement du tiroir
Bobine	Assurer le fonctionne ment du tiroir	Bouchage des orifices	Poussière	Disfonctionneme nt du distributeur	Rien ne permet de détecter cette défaillance avant Que l'effet ne se produit	1	3	3	9	-Débauchage des orifices

Tableau 10: AMDEC Electrovanne

Date de l'analyse: 03/05/2018	AMDEC MACHINE-ANALYSE DES MODES DE Défaillance DE LEURS EFFETS ET DE LEUR Criticité						nction	se de nemei male		Page: 4/6 Nom:
03/03/2010	Système :	Casque	Sous-ensem	Sous-ensemble : Electrovanne						Action corrective
é lément	Fonction	Mode	Cause de						C	corrective
		de	la	défaillance						
		défaillance	défaillance							
électrovanne	Piloter les	-Coincement	-Durée de vie	Chute de	Rien ne permet de	1	4	3	12	-Changement
	réseaux du gaz à	-Fuite	-Poussière	pression	détecter cette					d'électrovanne
	distance grâce à	-Défaut		Casque hors	défaillance avant					
	un signal	électrique								
	électrique				produit					

Tableau 11: AMDEC Régulateur

Date de l'analyse:		AMDEC MACHINE-ANALYSE DES MODES DE Défaillance DE LEURS EFFETS ET DE LEUR Criticité								Page: 5/6
03/05/2018	Systèr	me : Casque	Sous-ensemble:				Criti	Action		
				régulateur						corrective
é lément	Fonction	Mode	Cause de la	Effet de la	détection	F	G	N	C	
		de défaillance	défaillance	défaillance						
Manomètre	Détecter et	disfonctionnemen	-Durée de		visuel	1	1	2	2	-Changement
	Indiquer la	t	vie							
	valeur de la									
	pression									

Elément	Régler la	disfonctionnemen	-durée de	-les vérins ne	visuel	1	2	3	6	-Entretien ou
Régulateur	de pression a	t	vie	démarrent						changement
pression	une valeur		-poussière	plus						d'élément
	donnée									
Filtre	Séparer	usure	-durée de	-fuite	visuel	1	1	2	2	-changement
	l'air		vie							
	comprimé									
	de l'eau									

Tableau 12: AMDEC bavette d'étanchéité

Date de l'analyse: 03/05/2018	AMDEC MACHINE-ANALYSE DES MODES DE Défaillance DE LEURS EFFETS ET DE LEUR Criticité							ise de nnemen male	Page: 6/6 Nom:	
05/05/2010	Système	Système : Casque Sous-ensemble :						ticité	Action	
		Bavette d'étanchéité							corrective	
Elément	Fonction	Mode de défaillance	Cause de la défaillance	Effet de la défaillance	détection	F	G	N	C	
Bavette d'étanchéité	Eliminer les fuites du produit	-Déchirure -mauvais positionnement	-Durée de vie -Surcharge	Fuite du produit	visuel	2	4	2	16	-changement -la mise en place

Commentaire:

Les tableaux d'analyse des modes de défaillance du système « casque », nous ont classé les éléments selon leurs criticités, pour déclencher l'alarme de la mise à jour de la maintenance du casque, ainsi que pour chercher des améliorations des éléments les plus critiques.

b. AMDEC compresseur:

Les compresseurs GA 30+ sont des compresseurs mono-étagés de type à vis à injection d'huile, entraînés par un moteur électrique. Ces compresseurs sont disponibles dans une version refroidie par eau ou par air.

Le sécheur est intégré au capot insonorisant. Le sécheur élimine l'eau de l'air comprimé en le refroidissant près du point de congélation.

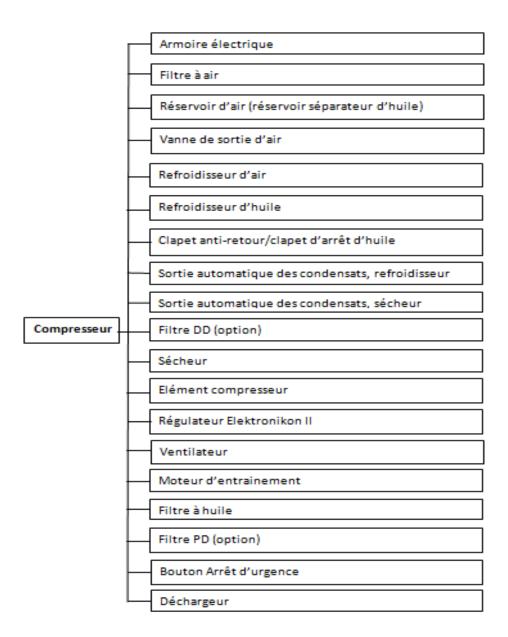


Figure 27: Décomposition realationnelle du compresseur

Tableau 13: AMDEC élement compresseur

date de l'analyse: 03/05/2018	AMDEC MACHINE-ANALYSE DES MODES DE Défaillance DE LEURS EFFETS ET DE LEUR Criticité					Phase de fonctionnement : Normale				Page: 1/2 Nom:
00/00/2010	Système : co	mpresseur	Sous-ensemble : Élément compresseur			Criticité				Action corrective
Elément	Fonction	Mode de défaillance	Cause de la défaillance	Effet de la défaillance	Détection	F	G	N	С	
Filtre à air	Filtrer l'air aspiré	-Fuite -Bouchage	-Colmatage -L'air d'admission est poussiéreux entretien préventif du filtre n'est pas respecté	-Débit d'air insuffisant -Bouchage et endommagement du séparateur -Existence des impuretés au niveau de l'huile de refroidissement -Endommage ment du bloc compresseur	Rien ne permet de détecter cette défaillance avant Que l'effet ne se produit	1	4	3	12	-changement de l'emplacement du compresseurnettoyage du filtre - Remplacer le filtre

Radiateur	Permet l'échange de chaleur entre deux milieux.	-Obstruction	-Huile non filtrée - canalisation de l'air de refroidissement obstrué	Température de l'huile élevée	Visuel (pupitre)	1	3	1	3	-Nettoyage du radiateur -Vérifier que le passage de l'air de refroidissement n'est pas obstrué
		-Apparition de nappe de poussière isolant la conduite de l'huile	-Mauvais entretien	Température de l'huile élevée	Lors de l'entretien préventif	1	4	2	8	-Rinçage du radiateur
Séparateur d'humidité	Eliminer l'humidité	-Bouchage	-durée de vie -usure	Présence de l'eau dans l'air refoulé.	visuel	2	2	2	8	-Entretien - remplacer le séparateur
Les flexibles d'huile	-Transmettre l'huile	-fuite -bouchage	-durée de vie - filtre à huile défectueux.	-lubrification insuffisantes -augmentation de température -Consommation excessive de l'huile -Chute de pression - Chute de débit	visuel	1	2	2	4	-Débouchage - Changement si nécessaire

Tableau 14: AMDEC Moteur asynchrone

Date de l'analyse: 03/05/2018		AMDEC MACHINE-ANALYSE DES MODES DE Défaillance DE LEURS EFFETS ET DE LEUR Criticité					Phas nction Nor			Page: 2/2
	Système	Système : compresseur		Sous-ensemble : Moteur asynchrone			Crit	icité		Action corrective
Elément	Fonction	Mode de défaillance	Cause de la défaillance	Effet de la défaillance	détection	F	G	N	С	
Paliers roulements	Guider et supporter le rotor	-usure -cassure -écaillage	-Durée de vie -Vibration	-Coincement du rotor - Echauffement	-bruit échauffement	3	1	3	9	-changement de roulement - graissage
Relais thermique	Protéger le moteur contre les surcharges	-Déclenchement de la protection thermique du moteur électrique	-Surcharge du moteur -Mauvais Réglage de la protection thermique	-Arrêt du compresseur	-visuel	2	3	1	6	-changement des relais

Commentaire:

Les tableaux construits sont largement suffisants pour prendre la décision de réagir par la maintenance préventive, afin d'éviter les dangers menaçant le système compresseur, et qui nous oblige d'appliquer une maintenance corrective d'un cout très élevé.

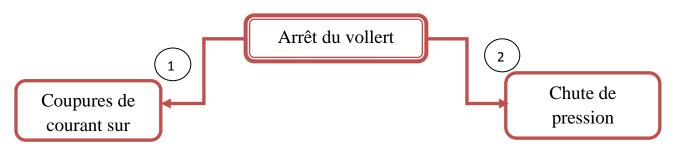
Conclusion:

On fixe le seuil de criticité à 24, d'une part les pannes dont la criticité supérieure ou égale au seuil vont faire l'objet d'une amélioration conceptuelle ou de performance dans l'objectif d'éliminer définitivement les pannes qui causent les plus graves des arrêts. D'autre part les pannes ayant des criticités comprises entre 16 et 24, vont être traitées par une liste de recommandations. Finalement les défaillances dont la criticité est inférieures au seuil vont faire part d'un plan de maintenance préventive de tous les équipements névralgiques de la station ce qui va augmenter leurs disponibilités ainsi que leurs fiabilités.

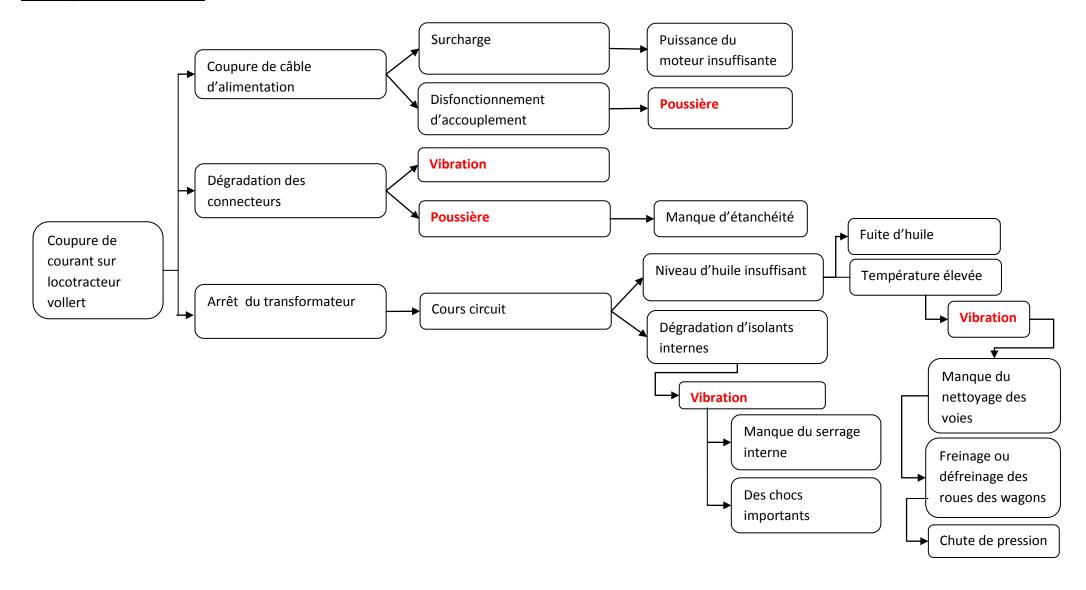
Tableau 15 : Classement des éléments selon leurs criticités

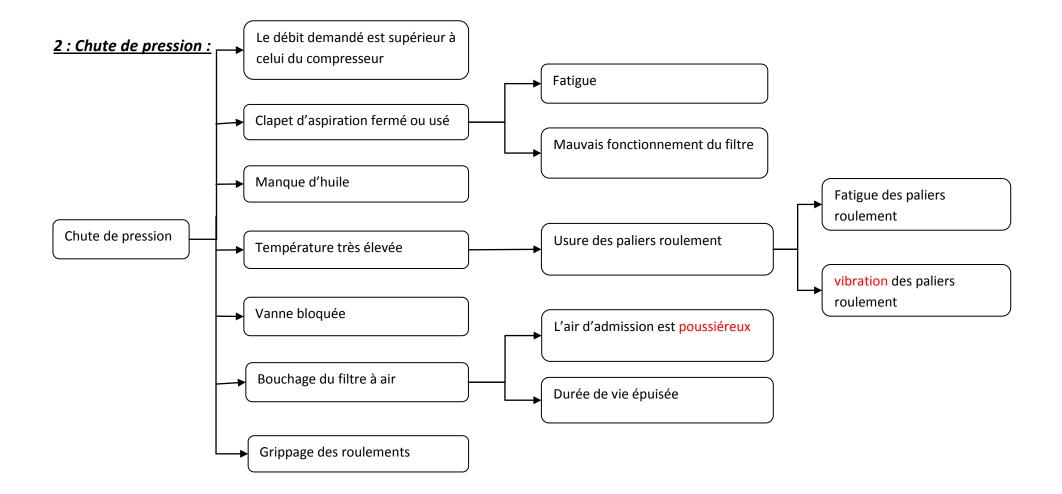
Elément	Criticité	Type d'action
Bras denté	24	Amélioratives
Axe de rotation	24	Amélioratives
Bras supérieur	24	Amélioratives
Etanchéité	16	Recommandation
Bavette d'étanchéité	16	Recommandation
Les autres éléments	<16	Préventive

3. Analyse critique grâce à l'arbre de défaillance du locotracteur Vollert :


L'arbre de panne constitue une représentation graphique organisée des conditions ou des facteurs produisant ou contribuant à produire un événement indésirable appelé événement de tête ou événement redouté (ER). Cette représentation est établie sous une forme compréhensible, analysable et, si nécessaire, modifiable pour faciliter l'identification :

- des facteurs influant sur la fiabilité et sur les caractéristiques fonctionnelles du système, par exemple modes de panne des composantes, erreurs humaines, conditions ambiantes, erreurs dans le logiciel, etc.;
- des impératifs ou des spécifications incompatibles qui peuvent nuire au fonctionnement du système;
- des événements communs influant sur plus d'une composante fonctionnelle et qui pourraient annuler le bénéfice apporté par les redondances spécifiques.


L'analyse par arbre de panne est essentiellement une méthode d'analyse déductive qui a pour but de faire apparaître les causes ou les combinaisons de causes qui peuvent produire l'événement de tête défini. Cette analyse est surtout qualitative bien qu'elle puisse être quantitative dans certains cas.


L'arbre de panne est particulièrement adapté à l'analyse de systèmes complexes constitués de plusieurs sous-systèmes dépendants ou entre lesquels existent des relations fonctionnelles et dont les performances satisfont des objectifs divers c'est pour cette raison nous avons choisi l'utilisation de cette méthode pour le système VOLLERT.

Sachant que nous n'avons pas un historique des pannes détaillé, nous avons cherché les défauts majeurs menaçant l'équipement locotracteur à l'aide de la méthode de recherche intuitive

1: Coupures de courant:

Conclusion:

L'étude critique faite tout au long de ce chapitre nous a donnée une vision bien détaillée sur les problèmes de chaque composant fonctionnaire des équipements traités ce qui nous ramène à chercher des actions préventives ainsi que celle amélioratives grâce aux résultats du calcul de la criticité et aux arbres des défaillances.

Chapitre 4 : Identification des solutions amélioratives

Introduction:

Dans ce présent chapitre nous allons traiter explicitement les modes de défaillance ayant une criticité supérieure ou égale à 16 pour conclure la manière la plus convenable au chaque anomalie traitée.

Pour ce qui concerne les pannes dont la criticité et supérieure ou égale à 24 nous générons des concepts mélioratifs soit conceptuelle ou choix du matériau selon les exigences posées.

Etude mécanique du comportement des éléments critiques : I.

1. Etude du bras denté:

a. Calcul des efforts sur les dentures du bras droit :

Le bras denté gauche est menant (motrice) et celui droite est mené (réceptrice)

Les caractéristiques de l'engrenage pour les deux bras :

Module	•10
Nombre de dents	•Z=20
Rayon primétif	•Rp=100mm
Rayon extérieur	•Re=110mm
Rayon de pied	•Rb=87.5mm
L'enraxes des deux roues	•a=200mm

Action de contact F:

Elle schématise l'action exercée par le bras gauche sur le bras droit. Elle est toujours portée par la ligne de pression (inclinée de l'angle de pressiono, point de contact entre cercles primitifs).

arbres.

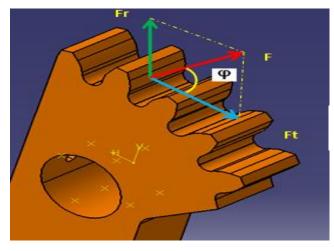


Figure 28: Les efforts appliqués sur les dentures

Effort tangentiel F_T : II est obtenu en projetant F sur la tangente en I aux cercles primitifs. F_T est à l'origine du couple transmis.

$$F_T = F.\cos\varphi$$

Effort radial F_R: Perpendiculaire à F_T et Parfois appelé effort de séparation, il ne participe pas à la transmission du couple son action a tendance à séparer les deux roues et se traduit par un fléchissement des $F_R = F. \sin \varphi$

$$C = F. Rp. cos \varphi$$

Vu l'indisponibilité des données, nous avons se basés sur le tableau ci-dessous qui permet de prédéterminer rapidement le couple à transmettre en fonction du diamètre de l'arbre de la matière (42CD4):

Diamètre de l'arbre (mm) Matière Ø6 Ø10 Ø12 Ø15 Ø17 Ø20 Ø25 Ø30 Ø40 Ø50 Ø75 Ø100 Acier doux XC18 1,50 6,60 11,50 23 34 55 105 180 440 840 2800 6600 XC65 35000 kN/m² 550 3600 8500 60 C40 1,90 135 230 1000 8,50 15 28 43 70 Z10CNF18.09 45000 kN/m² 42CD4 2,50 12,00 20 39 56 95 180 310 750 1500 4800 12000 20NCD2 60000 kN/m²

Tableau 16 : Catalogue des couples en fonction du diamétre de l'engrenage

Pour déterminer la valeur du couple en fonction du diamètre nous cherchons d'abord la ponte :

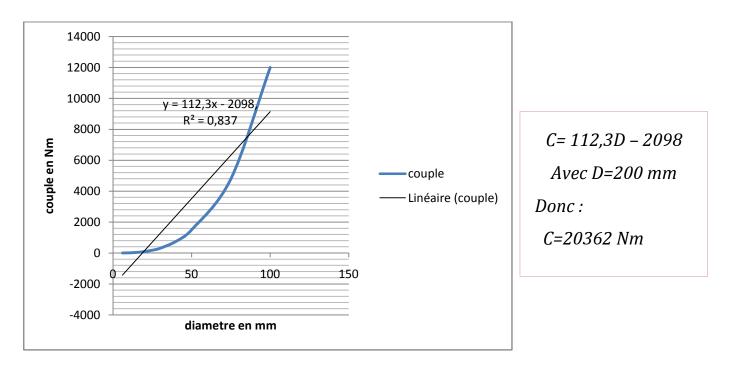


Figure 29 : Graphe des couples en fonction des diamétres differents d'engrenage

Cherchons l'action de contact F:

Sachant que:

$$C = F.Rp.cos\phi \rightarrow F = \frac{C}{Rp.cos\phi}$$

Nous avons trouvé : C=20362 Nm

<u>Cherchons cosφ:</u>

Nous avons $P_P = \frac{2.\text{pi.Rp}}{Z}$ et $P_b = \frac{2.\text{pi.Rb}}{Z}$ telle que : P_b est le pas de base et P_P est le pas prémitif

$$Cos\phi = \frac{P_b}{P_P} \rightarrow Cos\phi = \frac{R_b}{R_P}$$

A.N:

$$\cos\varphi = \frac{87.5}{100} = \frac{7}{8} \implies F = \frac{20362}{100.10^{-3}.\cos\varphi} = 232.7KN$$

Donc:

- \blacksquare Effort tangentiel est $F_T = 203.62 \, KN$
- \blacksquare Effort radial est $\mathbf{F_R} = 112.66\mathbf{KN}$

Remarque:

Les valeurs trouvées sont tellement logiques vu la force exercé par le produit (15 tonnes), celle exercé par le vérin (6.3 bar) ainsi la masse des arbres (Masse volumique : Kg/dm³ : 7.85) utilisés au système casque.

b. Modélisation sur CATIA V5 et calcul par éléments finis :

Afin d'illustrer les zones critiques du bras denté, nous avons modélisé ce dernier sur le logiciel de conception assisté par ordinateur (CAO) CATIA V5 R21 on tenant compte les propriétés du matériau utilisé (42CD4) :

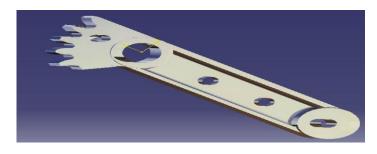


Figure 30: Modélisation du bras denté droit

Le tableau suivant illustre les caractéristiques du matériau appliqué pour étudier ce bras :

Tableau 17: Propriétés du matériau utilisé

Matériau :	42 Cd 4
Module d'Young	200000N/mm2
Coefficient de Poisson	0,266
Densité	7860kg/m3
Coefficient d'expansion thermique	$1,17*10^{-5} K deg^{-1}$
Limite élastique	500N/mm2

Vu l'asymétrie du bras, nous n'avons pas le droit de réduire le champ d'étude, alors que le maillage doit être appliqué sur tout le composant.

Apres avoir réalisé un maillage bien compatible à notre cas ainsi qu'appliquer les efforts que nous avons déjà calculé sur la surface de contact entre les dents des deux bras, nous obtenons la forme suivante:

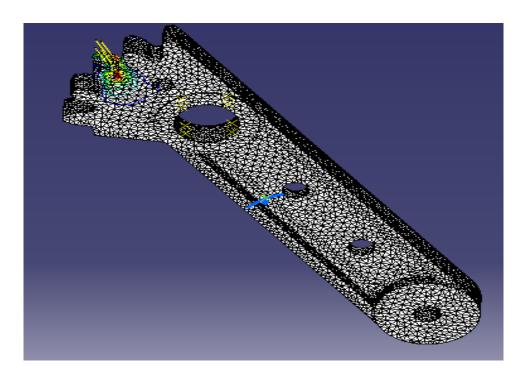


Figure 31 : Maillage du bras denté

Apres une visualisation nous arrivons au résultat numérique de la contrainte de Von mises :

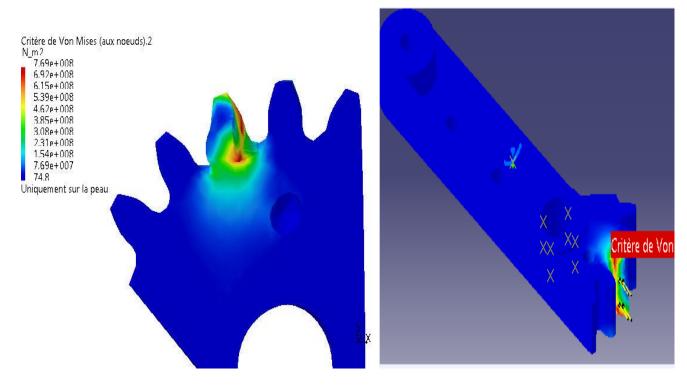


Figure 32 : Visualisation de la contrainte maximale de VON MISES

Calculons le facteur de sécurité :

$$F_S = \frac{Re}{\sigma_{VM}}$$

AN:

$$F_S = \frac{500}{769} = 0.65$$

Commentaire:

Le facteur de sécurité est trop faible (Fs<1) donc il vaut mieux changer la conception de ces bras ou bien éliminer l'engrènement entre les deux engrenages.

2. Etude des poutres de transmission de mouvement :

Les vérins du système casque présentent une contrainte parmi celles les plus critiques qui influencent sur le fonctionnement du système et plus précisément au cas où l'existence d'une fuite de pression au niveau de l'un des vérins.

A titre d'exemple d'un cas semblable une chute de pression au niveau du vérin droit :

- ❖ Vérin gauche reçoit une pression de 6.3 bar (normale).
- Vérin droit reçoit une pression de 5bar (anomalie : fuite).

Nous allons étudier ce cas sur le logiciel de calcul de résistance des matériaux RDM 7.04 pour schématiser les poutres entrainées par les deux vérins ainsi que les efforts exercées.

Calcul des efforts exercés :

Le vérin droit applique une force de :

$$F1=P1*S$$
 avec $S=PI*R^2$

Telle que : \underline{S} est la section d'application de pression et \underline{R} est le rayon du vérin.

AN:
$$F1=6.3* 10^5 * (80*10^{-3})^2 *3.14=12.66048KN$$

Le vérin gauche applique une force de :

$$F2=P2*S$$
 AN: $F2=5*10^5*(80*10^{-3})^2*3.14=10.048KN$

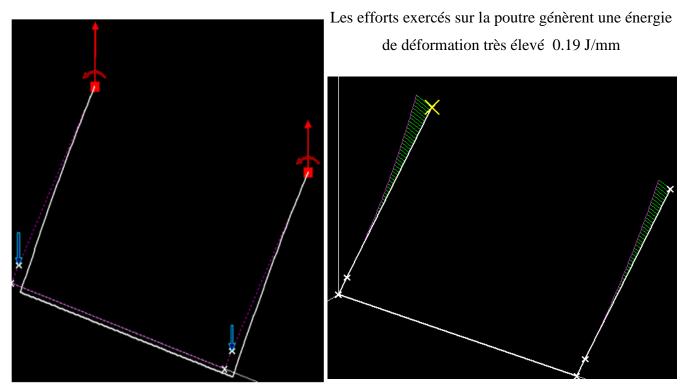


Figure 33: La structure déformée des poutres de transmission de mouvement

Cette modélisation nous a éclairci l'anomalie de torsion qui arrive aux poutres de transmission de mouvement et qui impose un coincement des casques.

Le moment de torsion :

Mt=154625N.mm

Figure 33: Visualisation de la concentration du moment de torsion

Apres la visualisation de la contrainte de Von Mises nous avons trouvé les résultats suivants :

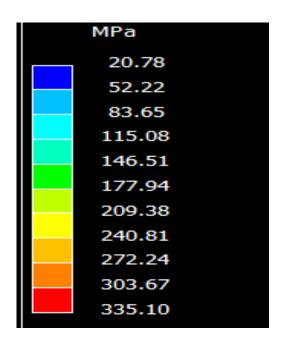


Figure 34 : La contrainte de VON MISES obtenue

Calculons le coefficient de sécurité :

$$F_S = \frac{Re}{\sigma_{VM}}$$

AN:

$$F_S = \frac{700}{335.1} = 2.08$$

Commentaire:

Le facteur de sécurité est très élevé (>1) alors il ne faut pas réagir sur le matériau utilisé mais sur le problème source.

3. Etude de l'axe de rotation :

Parmi les éléments les plus critiques du système casque sont les boulons faute de leurs faibles structures, pour cela nous avons choisi d'étudier l'axe de rotation principale qui rassemble le bras denté ainsi que celui supérieur.

Cette étude a pour but d'examiner le comportement d'axe de rotation devant les efforts exercés sur lui.

Le tableau suivant illustre les caractéristiques de l'axe de rotation :

Tableau 18 : Les propriétés d'axe de rotation

Matériau :	Alliage d'Acier
Module d'Young	2. 10 ¹¹ N/m2
Coefficient de Poisson	0,266
Densité	7860kg/m3
Coefficient d'expansion thermique	$1,17.\ 10^{-5}$ Kdeg-1
Limite élastique	5. 10^8N/m^2

Nous avons choisi le logiciel CATIA V5 pour modéliser l'axe et vu la symétrie du composant, on peut réduire de champs d'étude :

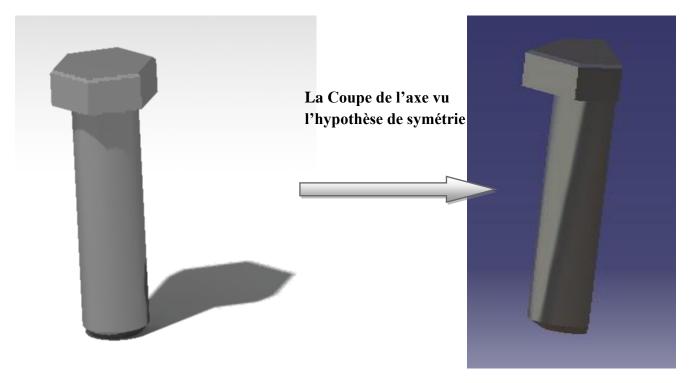


Figure 35 : Maquette numérique de l'axe de rotation des trappes du casque

❖ Grace à la forme cylindrique du composant et sa tête hexagonale nous avons choisi l'élément fini de type parabolique avec les caractéristiques suivantes :

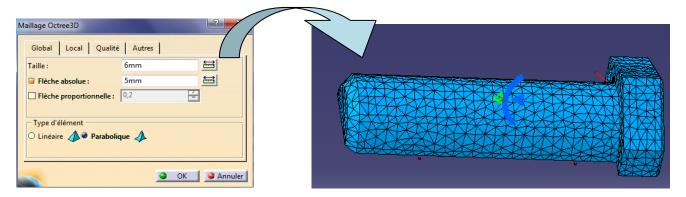


Figure 36: Application du maillage adapté

❖ Apres une visualisation nous arrivons au résultat numérique de la contrainte de Von mises :

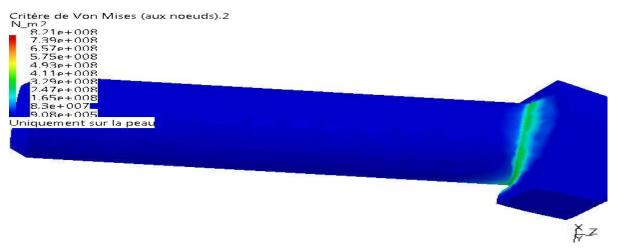


Figure 37: La visualisation du comportement et de la contrainte de VON MISES

La maquette numérique au dessus présente le cisaillement de l'axe de rotation et une contrainte de Von Mises très élevé, alors il faut calculer le facteur de sécurité afin de chercher une solution convenable pour résoudre ce problème.

Calculons le facteur de sécurité :
$$F_S = \frac{Re}{\sigma_{VM}}$$

AN:

$$F_S = \frac{500}{821} = 0.6$$

Commentaire:

Apres le calcul du coefficient de sécurité, il est clair que ce dernier est insuffisant pour garantir la sécurité de l'organe (<1).

II. Génération et sélection des concepts :

1. Introduction:

Les défaillances récurrents sont sévères, par conséquence les solutions sont pareils et différent de l'une a l'autre selon le point de vue de chaque spécialiste. Alors pour garantir la faisabilité, la fiabilité, la maintenabilité et le cout minimum de réalisation nous avons appliqué trois méthodes de génération et sélection des concepts :

- ▶ Brainstorming: Il s'agit certainement de la technique de créativité et génération des concepts la plus célèbre. Elle consiste à réunir un groupe de personnes qui vont chacune faire part de leurs idées sur un sujet, sans recevoir aucune critique ou aucun jugement de la part des autres. Pour qu'un brainstorming soit un succès, il est important que les participants se "libèrent" complètement et rebondissent sur les idées des autres pour en proposer d'encore meilleures.
- **Sketchstorm**: En anglais, "sketch" signifie littéralement "croquis".

Vous l'aurez deviné, cette méthode créative repose sur le dessin. Mais rassurez-vous, il n'y a pas besoin d'être un artiste pour l'utiliser : les croquis doivent au contraire être aussi simples et basiques que possible.

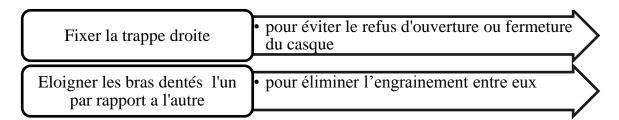
L'intérêt, c'est que les représentations visuelles ont le pouvoir de stimuler l'imagination encore un peu plus que les paroles (parlées ou écrites).

Qui plus est, un dessin peut vous permettre d'exprimer un concept sur lequel vous n'arrivez pas à mettre de mots.

La matrice d'aide à la décision: Est un outil qui permet de classer entre elles des options selon des critères prédéfinis. Elles sont utilisées pour aider à départager plusieurs solutions à un problème ou un objectif donné.

2. Concept pour résoudre les problèmes des casques :

Le but de cette partie est de proposer ainsi que de sélectionner des solutions simples à réaliser, chacune de ces dernières doit répondre aux exigences et respecter l'interdiction des actions sans valeurs ajoutées.


Pour éviter la non-valeur ajoutée au système casque, nous devons résoudre les problèmes déjà traités dans la partie I.

2.1. Résolution des problèmes du bras denté

Comme nous avons déjà cité, les phénomènes d'usure et du cisaillement des dents ainsi que la non validité des jeux d'engrainement entre les dents d'engrenages des bras, ont besoin des solutions conceptuelles, pour cela, en se basant sur les résultats des études faites, en collaboration avec l'équipe de l'atelier mécanique et a l'aide des techniques de brainstorming et de Sketchstorm nous avons proposé les concepts qui respectent les recommandations suivantes:

- ♣ Eliminer l'engrainement entre les bras.
- Eviter la torsion et la flexion des poutres de transmission de mouvement.
- Garantir la fluidité d'ouverture et de fermeture des casques.
- Eliminer la liaison entre les deux trappes du casque.
- a. Concept N° 1:

« Brainstorming »

« Sketchstorm»

Afin d'éviter la redondance des solutions dessinées, éclaircir mieux les sketchs et proposer un prototype simplifié nous avons choisi de modéliser en 3D sur le logiciel de conception CATIA V5 la partie mobile de la solution la plus proche à répondre aux besoins :

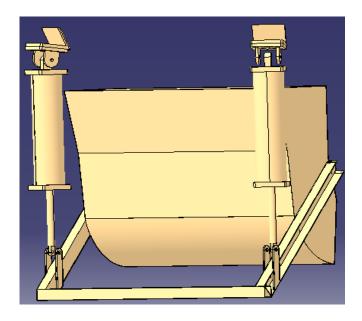
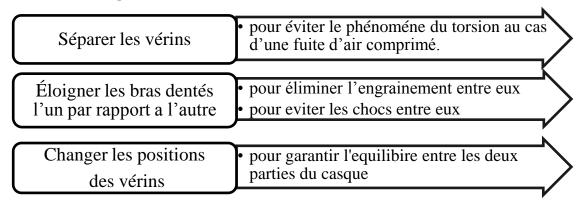



Figure 38 : Maquette numérique de la partie mobile du concept 1

b. Concept N°2:

« Brainstorming »

« Sketchstorm»

Pour que les dessins proposés serrant plus clairs et pour avoir un prototype simplifié nous avons les modélisé sur CATIA V5 :

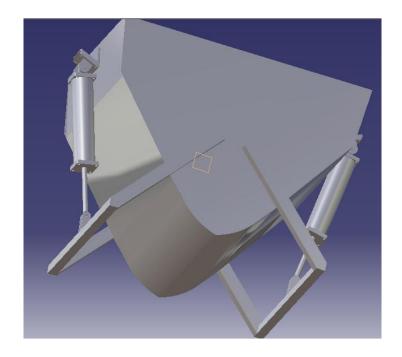


Figure 39: Maquette numérique du deuxième concept

« La matrice d'aide à la décision » :

Ce type de matrices permet de classer des solutions selon des critères pondérés.

Tableau 19: Pondération des critéres exigées

	Faisabilité	Performance	Maintenabilité	Temps de réalisation	Fiabilité
Moyenne	1	1	1	3	1
Importante	2	2	2	2	2
Très importante	3	3	3	1	3

Tableau 20 : Matrice de l'aide à la décision

	Faisabilité	Performance	Maintenabilité	Temps de	Fiabilité	Poids	Gagnant
				réalisation			
Concept							77
N°1	2	2	2	1	2	9	X
Concept							
N°2	2	3	3	2	3	13	
	N°1 Concept	Concept N°1 2 Concept	Concept N°1 2 2 Concept	Concept N°1 2 2 2 Concept	Concept N°1 2 2 2 1 Concept	Concept N°1 2 2 2 1 2 Concept	Concept N°1 2 2 2 1 2 9 Concept

→ Le deuxième concept est celui le gagnant car il répond plus aux besoins.

« Réalisation du projet » :

Figure 40 : Les dentures de l'une des bras sont annulées

Figure 41 : Le nouveau positionnement des vérins

Indication:

Annulation des dentures n'est pas faite par l'achat des autres bras mais éventuellement par le recyclage des mêmes bras déjà installé de l'une des méthodes suivantes :

- 1) Eloignement des bras autrement dit augmenter la valeur de l'entraxe.
- 2) L'élimination des dentures de l'un des bras.

Indication:

Le nouveau positionnement des vérins va nous permettre de garantir l'équilibre

2.2. Choix du nouveau matériau pour l'axe de rotation :

L'étude par éléments finis que nous avons faits dans la partie précédente (I-3) nous a assuré que le changement du matériau utilisé est une solution souhaitable pour annuler le temps d'arrêt qui résulte des anomalies de cet organe, pour cela nous avons choisi le logiciel du choix de matériau CES EUDUPACK.

Mais avant de chercher le matériau convenable il faut trouver l'indice de performance :

Données de chargement : F

Données géométriques : (R, L)

Variables matériau : (ρ, σ)

Alors:
$$\sigma < \sigma_r$$
 Avec: $\sigma = \frac{F}{S}$

$$\frac{\sigma}{\sigma_r} < 1$$
 \Rightarrow $\frac{F}{S*\sigma_r} < 1$

$$\rightarrow$$
 S> $\frac{F}{\sigma_r}$

Nous savons que : $S = \frac{m}{L * \rho}$

$$\rightarrow$$
 m> F*L* σ_r^{-1}

Par conséquence l'objectif sera : $\Theta(L, \rho) = m = F^*L^*\rho^*\sigma_r^{-1}$

Alors il faut minimiser :
$$IM = \frac{\sigma_r}{\rho}$$

Nous avons précisé une valeur minimale de la limite élastique à 800Mpa pour garantir la sécurité du matériau et atteindre l'indice de performance minimal ce qui a donné comme résultat la figure suivante :

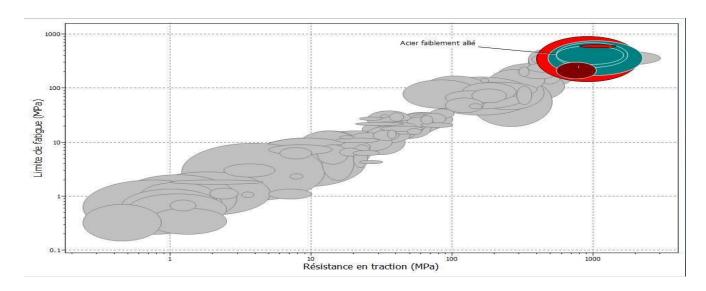


Figure 42 : Schéma des différents matériaux à choisir

→ Le matériau convenable selon le logiciel est l'acier faiblement allié.

L'acier choisi est celui qui contient 1% du carbone et qui se caractérise par les propriétés suivantes :

Propriétés générales				
Masse Volumique	7.8e3	300	7.9e3	kg/m^3
Prix	* 0.655	350	0.72	EUR/kg
Propriétés mécaniques				
Module de Young	205	-	217	GPa
Module de cisaillement	77	-	85	GPa
Module de compressibilité	160		176	GPa
Coefficient de Poisson	0.285	720	0.295	
Limite élastique	400	350	1.5e3	MPa
Résistance en traction	550		1.76e3	MPa
Résistance à la compression	400		1.5e3	MPa
Allongement	3	-	38	% strain
Mesure de dureté Vickers	140	-	693	HV
Limite de fatigue	* 248	-	700	MPa
Ténacité	14		200	MPa.m^0.5
Coefficient d'amortissement (tan delta)	* 1.8e-4	200	0.00116	
Propriétés thermiques				
Température de fusion	1.38e3		1.53e3	°C
Température maximale d'utilisation	* 500	-	550	°C
Température minimale d'utilisation	* -73.2	-	-43.2	°C
Conducteur ou isolant thermique?	Bon con	duct	eur	
Conductivité thermique	34	22	55	W/m.°C
Chaleur spécifique	410	3557	530	J/kg.°C
Coefficient de dilatation	10.5		13.5	ustrain/°C

Figure 43 : Les propriétés du matériau choisi : Acier faiblement allié

La désignation se compose de deux groupes de chiffres et lettre.

- Le premier groupe comprend : le symbole abrégé du métal de base, éventuellement suivi de l'indice de pureté chimique.
- Le deuxième groupe, séparé du premier par un tiret comprend : les symboles représentant un certain nombre d'élément d'addition et éventuellement leur teneur

Alors notre matériau est celui désigné comme suit : 100Cr6Ni4

III. Recommandation pour résoudre les problèmes dont la criticité moyenne :

Vu que le milieu du travail est poussièreux ainsi que les équipements pneumatiques et mécaniques sont fragiles devant la poussière, il est nécessaire d'assurer l'étanchéité afin d'augmenter leurs taux moyen de bon fonctionnement et leurs fiabilités.

Pour cela, la liste des recommandations proposées suivantes va nous aider dans cet état à corriger les problèmes des fuites de pression ainsi que celles du produit et autres anomalies :

Tableau 15 : Des recommandations correctives et amélioratives pour les défaillances de moyenne criticité

La	Equipement	Etanchéité	Recommandation proposée
défaillance	concerné		
Chute de pression	Le vérin	L'Etanchéité du vérin	-Renouveler toutes les étanchéités des vérins
Fuite du produit	La structure casque	La Bavette d'étanchéité du casque	-Repositionner et fixer par des vis écrou les étanchéités encore valables Respecter les dimensions des étanchéités convenables pour l'ouverture des casques -Renouveler les étanchéités dégradées en respectant les dimensions.
Dégradation des connecteurs	Les connecteurs du vollert	Des étanchéités métalliques	-Installer un système d'étanchéité métallique avec une liaison glissière avec le tableau contenant les équipements électriques sur Vollert

Conclusion

Dans ce chapitre nous avons traité chaque défaillance qui affecte gravement sur la disponibilité de la station; et ces traitements analytiques nous ont ramenés à trouver des solutions amélioratives non couteuses et réalisables ainsi que des recommandations riches par ses avantages et grâce auxquelles nous pouvons éviter des anomalies ayant des impactes très graves sur la disponibilité de l'équipement ou l'élément.

Récapitulation:

Problème	Action	Etat actuel
-Coincement des trappes du casque. -Cisaillement des bras dentés.	-Elimination des dents de l'un des bras.	
-Torsion ou flexion des poutres de transmission de mouvement.	-Repositionnement des vérins.	
-La chute de pression au niveau des vérins.	-Ajout des étanchéités des vérins.	
-La fuite du produit.	-La mise en état in initial des étanchéités des casques	10

Chapitre 5 : Elaboration des plans de maintenance

Introduction:

Au niveau du chapitre précédent nous avons trouvé des solutions amélioratives afin d'éliminer la plus grande part du temps d'arrêt, et par conséquence, nous avons pu augmenter la disponibilité de la station indirectement.

Mais ça reste insuffisant pour garantir la durabilité de cette disponibilité. Pour cela, nous avons besoin d'élaborer un plan de maintenance préventive qui va minimiser les arrêts imprévus grâce aux opérations simples à réaliser, et en même temps ; c'est une obligation pour s'éloigner des dangers.

I. Définition des plans d'actions ou plans de maintenance préventive.

Le Plan de Maintenance Préventive « PMP » est la liste de toutes les interventions nécessaires à effectuer sur une machine ou une installation (en termes de nettoyage technique, contrôle, visite, inspection, graissage, intervention de maintenance, …) pour la maintenir à son état de référence. Il permet une vision globale de toutes les actions à apporter à l'équipement.

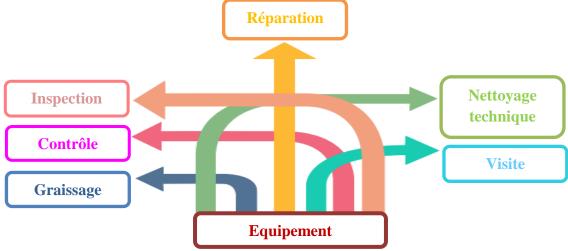


Figure 44 :Les opérations de maintenance préventive

L'élaboration d'un plan de maintenance préventive, que ce soit systématique ou conditionnel, se fait en plusieurs étapes :

• Pour la conditionnelle :

Un inventaire des modes de défaillance est indispensable, en se basant sur le dossier technique (historique et dossier constructeur) et ce pour déterminer après les paramètres de suivi de ces défaillances et leur indicateur (appareillage et montage).

• Pour la systématique :

Une fois qu'on a décidé d'appliquer ce type de maintenance, il s'avère nécessaire de préciser les activités de maintenance préventive systématique à entreprendre.

A la suite de ces actions, on détermine la périodicité de chacune des activités. La périodicité est établie dans un premier temps en fonction des données du constructeur, puis elle est modifiée en fonction des conditions d'utilisation. Une fois la périodicité est établie, on procède à affecter le personnel qualifié pour exécuter l'opération.

II. Plan de maintenance préventive du compresseur GA 30+:

plan de maintenance préventive	Machine : compresseur GA 30+						
Opération exécutable en fonctionnement	Exécutant	fréquence					Observation
opération		J	M	Т	S	A	
Vérifier le niveau d'huile.	Hydraulicien	•					Contrôle
Contrôler les mesures à l'écran.	Hydraulicien	•					Contrôle
Contrôler l'indicateur d'entretien du filtre à air.	Hydraulicien	•					Contrôle
Contrôler les refroidisseurs, les nettoyer	Mécanicien		•				Contrôle à l'arrêt
Contrôler le condenseur du sécheur et nettoyer	Mécanicien		•				Contrôle à l'arrêt
Retirer l'élément filtrant. Nettoyer à l'air comprimé et contrôler la propreté. Remplacer les cartouches filtrantes endommagées ou colmatées.	Equipe de maintenance		*				A l'arrêt
Vérifier la décharge des condensats en	Equipe de			*			A l'arrêt
appuyant sur le bouton de test sur les purges électroniques des condensats.	maintenance						
Changer les cartouches de filtre a huile	mécanicien			•			A l'arrêt
Contrôler les soupapes de sécurité.	Mécanicien		•				Contrôle
Graisser le palier du moteur	Graisseur		•				A l'arrêt
Vérifier l'état des canalisations	Mécanicien				•		A l'arrêt
Contrôler les valeurs de pression et de température.	Hydraulicien	•					En marche
Remplacer l'élément du filtre à air.	Mécanicien					•	A l'arrêt
Contrôler les vibrations	Mécanicien		•				En marche
Entretien du radiateur	E.Maintenance		•				A l'arrêt
Nettoyer le condenseur du sécheur.	Mécanicien		•				A l'arrêt
Remplacer le séparateur d'huile.	Mécanicien					•	A l'arrêt lorsque la chute de pression du séparateur dépasse 1 bar
Date:	J=journalière ; M=mensuelle ; T=trimestrielle ; S=semestrielle ;						
	A=annuelle						

III. Plan de maintenance pour le casque en tenant compte les actions amélioratives réalisées.

Plan de maintenance préventive	Machine : Système Casque ET les équipements manipulant						
Opération exécutable en fonctionnement	Exécutant	fréquence				Observation	
opération		J	M	T	S	A	
Vérifier d'étanchéité des vérins ou changer au cas de déchirure	Hydraulicien		•				Contrôle
Vérifier le positionnement des bavettes d'étanchéité	Mécanicien		•				Contrôle
Contrôler l'indicateur de pression	Hydraulicien	•					En marche
Contrôler les canalisations	Hydraulicien		•				Contrôle à l'arrêt
Contrôler les axes de rotation	Mécanicien		•				Contrôle
Contrôler les distributeurs et les nettoyer	Electronicien			•			Contrôle
Vérifier les régulateurs de pression	Hydraulicien		•				Contrôle
Vérifier les électrovannes	Electronicien		•				Contrôle
Changer les axes de rotation si nécessaire	Mécanicien					•	A l'arrêt
Graisser l'axe de rotation	Graisseur		•				
Date:	J=journalière ; M=mensuelle ; T=trimestrielle ; S=semestrielle ; A=annuelle						

IV. Plan de maintenance du robot manœuvre Vollert :

plan de maintenance préventive	Machine : Vollert							
Opération exécutable en fonctionnement		fréquence				Observation		
opération	Exécutant	J	M	Т	S	A		
Nettoyer l'accouplement	Mécanicien		•				Contrôle	
Vérifier la puissance du moteur	Mécanicien	•					A l'arrêt	
Nettoyer les connecteurs	Electronicien		•				En marche	
Vérifier le niveau d'huile du transformateur	Electronicien		•				Contrôle à l'arrêt	
Changer le transformateur	Electronicien					•	Contrôle	
Contrôler les températures	Electronicien	•					Contrôle	
Contrôler le clapet d'aspiration	Hydraulicien	•					Contrôle	
Changer le clapet d'aspiration	Hydraulicien				•		Contrôle	
Vérifier le niveau d'huile des compresseurs	Hydraulicien		•				A l'arrêt	
Ecouter le bruit de roulement pour détecter	Mécanicien				•		En marche	
d'éventuels défauts sur les paliers								
Changer la graisse des roulements	Graisseur			•			A l'arrêt	
Remplacer la bague d'étanchéité	Mécanicien					•	A l'arrêt	
contrôler l'huile du réducteur	Mécanicien		•				A l'arrêt	
Vérifier les vannes	Hydraulicien		•				Contrôle	
Nettoyage des filtres a air	Hydraulicien		•				A l'arrêt	
Changer les filtres a air	Mécanicien				•		A l'arrêt	
Contrôler les filtres a huile	Mécanicien		•				A l'arrêt	
Contrôler les vibrations	Mécanicien		•				En marche	
Contrôler la chaine d'enrouleur de câble	Mécanicien		•				Contrôle	
Lubrifier les roulements	Mécanicien			•			A l'arrêt	
Contrôler la résistance d'isolement	Mécanicien					•	Contrôle	
Contrôler la bonne assise de toutes les vis	Mécanicien			•			A l'arrêt	
Contrôler l'efficacité du dispositif de freinage	Equipe de			•			Contrôle	
	maintenance							
Date:	J=journalière ; M=mensuelle ; T=trimestrielle ;						rielle ;	
	S=semestrielle; A=annuelle							

Conclusion:

Les plans d'actions déjà cités dans ce chapitre sont capables de minimiser le taux des anomalies, la chose qui affecte positivement sur la fiabilité et la disponibilité des équipements et de la station de chargement UBH.

Implicitement toutes ces actions vont augmenter la productivité de la station et de la rendre présente en toutes instants.

Conclusion générale et perspectives :

Dans le cadre du stage de fin d'étude du Master, la mission été l'analyse de la station de chargement UBH pour minimiser le temps d'arrêts imprévus de la station.

Nous avons procédé dans un premier temps à une identification des équipements fonctionnaires de la station. Ensuite, nous avons appliqué les méthodes d'analyses critiques de l'historique des arrêts :

- La méthode Pareto pour extraire les pannes les plus récurrentes et calculer la disponibilité de la station,
- La méthode AMDEC, afin d'identifier la criticités de chaque élément et les actions correctives appliquée
- L'arbre de défaillance dans le but de chercher les sources de chaque anomalie.

Dans le second, nous avons fait des études des pannes qui sont purement mécaniques par la méthode des éléments finis sur le logiciel CATIA V5 ainsi qu'une étude de la résistance des matériaux en utilisant le logiciel RDM 7.04. Ces études sont faites afin de générer et sélectionner les concepts les plus convenables aux pannes traitées en appliquant les outils de la méthodologie de conception qui sont le Brainstorming, le Sketchstorm et la matrice d'aide à la décision.

Et comme résultats, nous avons réalisé toutes les solutions sélectionnées parmi celles qui sont proposées pour les défauts arrivant aux casques, la chose qui nous a permit d'éliminer 36h d'arrêt. Ainsi que la réalisation de plusieurs recommandations comme citer dans le chapitre 4.

Par la suite nous avons profité du contact avec les techniciens pour élaborer une liste des recommandations dans le but d'éliminer les pannes ayant une criticité moyenne.

Finalement, grâce aux plans de maintenance préventive établis ainsi que toutes les modifications conceptuelles faites dans le cadre de recherche des solutions, nous avons attient les objectifs de notre projet, a titre d'exemple la réduction du temps d'arrêt et le nombre des pannes.

D'un point de vue technique, le stage nous a permis de développer nos compétences en Génie Mécanique. Nous avons profité de nos acquis en maintenance, en Conception Assistée par Ordinateur et en calcul numérique pour bien définir notre projet.

A la fin de ce projet, nous espérons que ce travail servira comme une référence considérable pour les prochaines études d'amélioration industrielle. Qu'il soit pour les étudiants ou les industriels.