جامعة سيدي محمد بن عبد الله بغاس +،٥٨،٤٤ ٥٤٨٤ ٢٥،٤٢٥٨ ٩١ ٢٩٥،٤٤ ٤٠٥ UNIVERSITÉ SIDI MOHAMED BEN ABDELLAH DE FES

كليــة العلـوم والتقنـيات فـاس +،٤٤٤ - ٤١ - ٤١ ماه،٥٥٥ الم +اهـ٤٤ FACULTÉ DES SCIENCES ET TECHNIQUES DE FÈS

Année Universitaire : 2020-2021

Master Sciences et Techniques CAC Agiq

Chimiométrie et Analyse Chimique : Application à la gestion industrielle de la qualité

MEMOIRE DE FIN D'ETUDES Pour l'Obtention du Diplôme de Master Sciences et Techniques

Validation analytique par profil d'exactitude de la méthode d'analyse des métaux dans trois matériaux de références par l'ICP-OES

Présenté par:

EL KHATTAB Kaoutar

Encadré par:

- Mr. MARRI Mohamed (CETEMCO)
- Pr. IDRISSI KANDRI Noureddine (FST Fès)

Soutenu Le 12 Juillet 2021 devant le jury composé de:

- Pr. IDRISSI KANDRI Noureddine
- Pr. BOUAYAD Abdessalam
- Pr. EL GHADRAOUI El Houssine

Stage effectué au : Centre des techniques et matériaux de construction « CETEMCO »

Je dédie ce mémoire

Le dieu, le tout puissant de m'avoir donné la force pour survivre Ma mère, source puissante de tendresse et d'amour, pour son soutien tout le long

de mavie

Qui m'a toujours soutenu avec amour et volonté, et qui a fait le tout possible

pour m'aider

Mes sœurs et mes frères qui m'ont encouragé durant toute ma vie scolaire.

Mes enseignants pour leurs efforts déployés pour qu'on puisse avoir une bonne formation.

Mes cher(e)s ami(e)s, avec qui nous avons passé des bons moments

Tous ceux qui ont collaboré de près ou de loin à l'élaboration de ce

travail.

Que Dieu leur accorde santé et prospérité.

REMERCIEMENTS

Au terme de ce travail, je tiens à remercier amplement toute personne ayant contribué, de près ou de loin, à l'élaboration de ce présent travail.

Ce travail n'aurait été possible sans l'accord de Monsieur le Directeur du Cetemco, **Mr BOUANANI Saïd**, qui fait partie aussi de ceux qui ont été à l'origine de ce travail et qui a bien voulu m'accepter dans son honorable centre. Qu'il trouve ici mes sincères remerciements et ma haute gratitude. J'adresse également mes remerciements les plus sincères, à tous ceux qui m'ont accueilli au sein du laboratoire « produits en céramique et revêtement » du centre des techniques et matériaux de construction de Casablanca.

Mes vifs remerciements s'adressent surtout à **Mr MARRI Mohamed**, mon encadrant de stage qui n'a épargné aucun effort pour faciliter la mise au point de ce travail, en me consacrant une part de son précieux temps.

Mes chaleureux remerciements vont aussi à mon cher encadrant pédagogique à la FST de Fès **Pr. IDRISSI KANDRI Noureddine**, je voudrais non seulement le remercier pour ses précieux conseils et sa grande disponibilité tout au long de mes études mais également pour sa gentillesse et son soutien, qu'il trouve ici l'expression de ma plus profonde reconnaissance.

Par la même occasion je remercie les membres de jury à savoir, Pr. **BOUAYAD Abdessalam** et Pr. **EL GHADRAOUI El Houssine** qui ont bien voulu dont le soutien a été essentiel tout au long de mes études. Je remercie ma famille, en particulier ma mère, pour leur soutien, leur confiance et leurs sacrifices afin que je puisse continuer à apprendre et à atteindre mes objectifs.

Je suis très heureuse de pouvoir réaliser ce stage en compagnie de toutes ces personnes capables qui m'ont aidé durant cette période.

Merci

SOMMAIRE

LISTE DES TABLEAUX7
LISTE DES FIGURES 1
INTRODUCTION1
PRESENTATION D'ORGANISME D'ACCUEIL2
I Création2
II Missions
III Domaine de compétence 2
Chapitre 1 Etude Bibliographique
A. Validation des méthodes analytiques
Introduction
I Généralités sur les méthodes analytiques
I.1 Définition de la méthode analytique
I.2 Cycle de vie d'une méthode analytique
I.3 Définition de la validation d'une méthode d'analyse
I.4 Objectif de la validation analytique
I.5 Vocabulaire et définitions des critères de validation analytique
I.6 Domaine d'application de la validation analytique8
II Validation analytique par profil d'exactitude (ou approche d'erreur totale)
II.1 Le profil d'exactitude
II.2 Principes à la base du profil d'exactitude9
II.2.1 Définir la quantité mesurée :9
II.2.2 Préciser les objectifs de validation :9
II.2.3 Sélectionner les échantillons de validation :10
II.2.4 Planifier les essais de validation :10
II.2.5 Planifier les essais d'étalonnage (pour les méthodes indirectes) : 11
II.2.6 Réaliser les essais : 11
II.2.7 Calculer les concentrations prédites inverses :
II.2.8 Calculer les critères de validation :12
II.2.9 Calculer les intervalles de tolérance :
II.2.10 Construire le profil d'exactitude :14

EL KHATTAB Kaoutar	-	Master	CAC agiq	20-21
--------------------	---	--------	----------	-------

Sommaire

II.2.11 Interpréter le profil d'exactitude pour la validation15
II.2.12 Maîtriser les résultats en routine :
II.2.13 Calcul de l'incertitude :
B. Les méthodes d'analyse des minerais18
Introduction18
I La Spectrométrie de Fluorescence X 18
II La Spectrométrie d'Absorption Atomique19
II.1 Principe
II.2 Les avantages :
II.3 Les inconvénients : 19
III La Spectrométrie à Plasma à Couplage Inductif
III.1 La Spectrométrie de Masse à Plasma à Couplage Inductif
III.2 Spectrométrie d'Emission Optique à Plasma à Couplage Inductif
III.2.1 À quoi sert un analyseur ICP-OES
III.2.2 Principe de l'ICP-OES
III.2.3 Les limites de la méthode ICP-OES
C. Les métaux lourds ou éléments traces métalliques
I De « Métaux lourd » au « Traces métalliques » 26
II Utilisations
III Impacts
Chapitre 2 Partie Expérimentale 29
I Méthode de minéralisation des minerais
I.1 Objet et domaine d'application
I.2 Principe d'essai
I.3 Matériels et réactifs
I.4 Echantillons
I.5 Solution d'étalonnage
I.6 Mode Opératoire 30
I.7 Mise en pratique d'une analyse en ICP-AES
II Validation analytique par profil d'exactitude de la méthode de dosage du (V, Cr, Co, Ni,
Cu, Zn, As)

Sommaire

II.1	Domaine d'application de la méthode 3	52
II.2	Plan d'étalonnage	62
П.3	Plan de validation	\$2
II.4	Validation du Vanadium	13
II.5	Validation du Chrome 4	1
II.6	Validation du Cobalt 4	13
II.7	Validation du Nickel 4	15
II.8	Validation du Cuivre4	17
II.9	Validation du Zinc 4	9
П.10	Validation d'Arsenic	51
Conclu	sion Générale5	;4

LISTE DES TABLEAUX

Tableau 1:Principales fonctions de réponse utilisables pour un étalonnage	. 12
Tableau 2:Tableau de calcul de la justesse	. 13
Tableau 3:Récapitulatif de calcul des intervalles de tolérances	. 14
Tableau 4:Avantages et inconvénients du positionnement de la torche à plasma en fente radiale	e ou
axiale	. 25
Tableau 5:Concentration des ETM dans différents compartiments.	. 26
Tableau 6:Effet des ETM	. 27
Tableau 7:Les conditions de fonctionnement de ICP-OES 5100 SVDV	. 31
Tableau 8:Les domaines de validation de la méthode de dosage du V, Cr, Co, Ni, Cu, Zn, As	. 32
Tableau 9:Les données de standards d'étalonnage du Vanadium	. 33
Tableau 10:Les données de standards de validation du Vanadium	. 33
Tableau 11: Résultats de calcul de justesse, de fidélité et de intervalles de tolérance de la méthod	e de
dosage du V- Modèle Linéaire Simple	. 34
Tableau 12: Calcul de l'incertitude de la méthode de dosage du V – Modèle Linéaire Simple	. 35
Tableau 13: Résultats de calcul de justesse, de fidélité et des intervalles de tolérance de la méthode	e de
dosage du V- Modèle Racine Carrée	. 36
Tableau 14: Calcul de l'incertitude de la méthode de dosage du V – Modèle Racine Carrée	. 37
Tableau 15: Résultats de calcul de justesse, de fidélité et des intervalles de tolérance de la méthode	e de
dosage du V- Modèle Logarithmique (Népérien)	. <i>3</i> 8
Tableau 16: Calcul de l'incertitude de la méthode du V- Modèle Logarithmique (Népérien)	. <i>3</i> 8
Tableau 17: Résultats de calcul de la justesse, la fidélité et les intervalles de tolérance de la méthod	e de
dosage du V- Modèle Quadratique	. 39
Tableau 18: Calcul de l'incertitude de la méthode du V- Modèle Quadratique	. 40
Tableau 19: Récapitulatif des résultats de la validation du Cr	. 41
Tableau 20: Récapitulatif des résultats de la validation du Co	. 43
Tableau 21 : Récapitulatif des résultats de la validation du Ni	. 45
Tableau 22: Récapitulatif des résultats de la validation du Cu	. 47
Tableau 23: Récapitulatif des résultats de la validation du Zn	. 49
Tableau 24 : Récapitulatif des résultats de la validation du d'As	. 51

LISTE DES FIGURES

Figure 1: Cycle de vie d'une méthode analytique	5
Figure 2: Profil d'exactitude établi avec 3 niveaux de concentration	15
Figure 3: Exemple de profil d'exactitude illustrant les règles de décision	16
Figure 4: Les éléments analysés par ICP-OES	22
Figure 5: Photographie d'un appareil ICP-OES 5100 SVDV Agilent Technologies de la société	
<i>CETEMCO</i>	22
Figure 6: Schéma de l'appareillage d'un spectromètre ICP-OES (ici en visée radiale)	23
Figure 7: Schéma représentant les différents processus lors de l'atomisation et l'excitation	24
Figure 8: Profil d'exactitude de la méthode de dosage du V – Modèle Linéaire Simple	35
Figure 9: Profil d'exactitude de la méthode de dosage du V – Modèle Racine Carrée	36
Figure 10: Profil d'exactitude de la méthode de dosage du V – Modèle Logarithmique (Népérien)	38
Figure 11: Profil d'exactitude de la méthode de dosage du $V-Mod$ èle Quadratique	40
Figure 12: Profil d'exactitude de la méthode de dosage du Cr – Modèle Linéaire Simple	41
Figure 13: Profil d'exactitude de la méthode de dosage du Cr – Modèle Racine Carrée	42
Figure 14: Profil d'exactitude de la méthode de dosage du Cr – Modèle Logarithmique (Népérien).	42
Figure 15 : Profil d'exactitude de la méthode de dosage du Co –Modèle Linéaire Simple	43
Figure 16: Profil d'exactitude de la méthode de dosage du Co – Modèle Racine Carrée	43
Figure 17: Profil d'exactitude de la méthode de dosage du Co – Modèle Logarithmique (Népérien).	44
Figure 18: Profil d'exactitude de la méthode de dosage du Co – Modèle Quadratique	44
Figure 19 : Profil d'exactitude de la méthode de dosage du Ni –modèle Linéaire Simple	45
Figure 20: Profil d'exactitude de la méthode de dosage du Ni – Modèle Racine Carrée	46
Figure 21: Profil d'exactitude de la méthode de dosage du Ni – Modèle Logarithmique (Népérien)	46
Figure 22: profil d'exactitude de la méthode de dosage du Ni – Modèle Quadratique	47
Figure 23: Profil d'exactitude de la méthode de dosage du Cu –Modèle Linéaire Simple	48
Figure 24: Profil d'exactitude de la méthode de dosage du Cu – Modèle Racine Carrée	48
Figure 25: Profil d'exactitude de la méthode de dosage du Cu – Modèle Logarithmique (Népérien).	48
Figure 26: Profil d'exactitude de la méthode de dosage du Cu – Modèle Quadratique	49
Figure 27: Profil d'exactitude de la méthode de dosage du Zn –Modèle Linéaire Simple	50
Figure 28: Profil d'exactitude de la méthode de dosage du Zn – Modèle Racine Carrée	50
Figure 29: Profil d'exactitude de la méthode de dosage du Zn – Modèle Logarithmique (Népérien).	50
Figure 30: Profil d'exactitude de la méthode de dosage d'As –Modèle Linéaire Simple	51
Figure 31: Profil d'exactitude de la méthode de dosage d'As – Modèle Racine Carrée	52
Figure 32: Profil d'exactitude de la méthode de dosage d'As – Modèle Logarithmique (Népérien)	52
Figure 33: Profil d'exactitude de la méthode de dosage d'As – Modèle Quadratique	53

INTRODUCTION

Dans les industries chimiques, pharmaceutiques, agroalimentaires et autres secteurs industriels où la chimie analytique est omniprésente, les méthodes analytiques sont les garanties pour tout produit manufacturé, leurs résultats sont les indicateurs visibles permettant de garantir la sécurité du client.

C'est pourquoi, Aujourd'hui, l'effort se porte plutôt vers la qualité métrologique des mesures ce qui se traduit par des exigences de validation des méthodes d'analyse et d'estimation de l'incertitude accrues, qui permet de répondre aux besoins d'une clientèle de plus en plus exigeante et soucieuse de la conformité aux critères prescris.

L'objectif d'une méthode analytique quantitative est de quantifier la valeur de l'échantillon avec une exactitude connue et acceptable. Traditionnellement, selon la démarche classique, ceci est accompli en examinant deux critères statistiques inhérents à la performance de la méthode analytique qui sont habituellement mesurés séparément: la justesse et la fidélité. Cette approche suppose que si la méthode est bonne, alors les mesures qu'elle fournit seront aussi bonnes; cependant ce n'est pas toujours le cas. En fait, au lieu de mesurer ces critères statistiques séparément, il est possible d'évaluer l'exactitude d'une manière globale selon la définition de la norme ISO 5727. Cependant, ce nouveau concept est basé sur l'erreur totale (erreur systématique + erreur aléatoire), il consiste à construire un outil de décision, appelé **profil d'exactitude**. Les résultats collectés sous les conditions de la fidélité intermédiaire permettent de calculer l'intervalle de tolérance où une proportion élevée des résultats futurs ils seront comprises dans les limites d'acceptabilité. Quand ce nouvel intervalle est compris dans les limites d'acceptation $\pm \lambda$, la méthode est déclarée valide et fiable pour quantifier les échantillons d'une manière exacte et fidèle que le laboratoire aura à analyser.

Dans ce contexte, notre travail vise à valider par profil d'exactitude une méthode analytique pour le dosage de sept métaux (V, Cr, Co, Ni, Cu, Zn, As) présents dans trois minerais de références certifiés par l'ICP-OES.

Pour ce faire, nous avons réparti ce travail en deux parties:

La première partie théorique sera consacrée à des notions sur la validation des méthodes analytiques, les méthodes d'analyse des minerais, ainsi qu'une généralité sur les métaux lourds. Concernant la deuxième partie pratique, elle sera consacrée à la validation de la méthode analytique étudiée et le calcul de son incertitude de mesure.

PRESENTATION D'ORGANISME D'ACCUEIL

I Création

Le CETEMCO : Centre des Techniques et Matériaux de Construction, est une Association Interprofessionnelle créée en décembre 1996 à l'initiative des fabricants des produits et d'entreprises de construction, avec l'appui de l'Etat Marocain à travers le Ministère du Commerce et de l'Industrie. L'Etat a favorisé la création de plusieurs autres centres techniques, tous implantés dans un complexe situé à Sidi Maârouf, à Casablanca. Ces centres techniques réunis par le Réseau des Centres Techniques Industriels Marocain <u>RECTIM</u>, constituent aujourd'hui le moteur du développement industriel du pays

II Missions

Le CETEMCO a une double mission :

- Une mission auprès des industriels qui est celle de contribuer au progrès technique, à l'amélioration de la productivité et au développement de la qualité dans l'industrie des matériaux de construction.
- La deuxième mission qui s'impose au centre, en tant que membre de la grande famille de la construction et qui est celle de contribuer au rehaussement du niveau de qualité d'hygiène et de sécurité du cadre bâti.

III Domaine de compétence

Le CETEMCO est un organisme d'appui technique aux entreprises du secteur de la construction depuis plus de 25 ans.

IL intervient plus particulièrement dans les essais de laboratoire sur le ciment, les granulats, le béton, la préfabrication en béton, le marbre, les produits en céramiques et les produits d'étanchéité, en vue de tester leur aptitude à l'emploi et de vérifier leur conformité aux différentes normes en vigueur. Il effectue également des activités de recherche et développement touchant ces produits.

Le CETEMCO est aussi une plateforme de conseil et de formation qui accompagne quotidiennement les professionnels du secteur au développement de leurs performances.

Chapitre 1 Etude Bibliographique

A. Validation des méthodes analytiques

Introduction

Valider c'est avant tout maîtriser.

Pour assurer la conformité avec les réglementations nationales et internationales, il faut réaliser des méthodes d'analyses fiables. Tous les laboratoires doivent prendre les dispositions appropriées pour s'assurer qu'ils sont en mesure de fournir des données de qualité. De telles dispositions comprennent :

- ✓ L'utilisation des méthodes d'analyse validées.
- ✓ L'utilisation de procédures de contrôle interne de qualité.
- ✓ La participation à des programmes d'essais d'aptitude.
- ✓ L'obtention d'une accréditation selon une norme internationale. ISO/CEI 17025.

« La validation d'une méthode analytique est ainsi une composante essentielle de mesure qu'un laboratoire devrait mettre en œuvre pour lui permettre de produire des données analytiques fiable. Elle consiste à démontrer, avec un degré de confiance élevé et sous une forme documentée, que la méthode permet d'obtenir un résultat analytique qui atteint les spécifications définis à l'avance».

I Généralités sur les méthodes analytiques

I.1 Définition de la méthode analytique

La méthode d'analyse consiste à décrire chacune de ses étapes, indissociables les unes des autres, en précisant pour chacune d'elles les opérations élémentaires qu'il faut réaliser.

La description de méthode soumise doit comprendre les points suivants :

- **La définition de l'analyte**
- ↓ L'appareillage
- Les réactifs
- 4 La procédure analytique y compris le traitement des échantillons, la purification...
- 4 La procédure pour le calcul des résultats à partir des données brutes.

I.2 Cycle de vie d'une méthode analytique

Une méthode analytique est un moyen visant à exprimer concrètement un besoin bien exprimé, ou encore c'est la réponse matérialisée à un problème donné, Dans le domaine analytique, deux types de méthodes sont mentionnées, les méthodes qualitatives et les méthodes quantitatives.

Par rapport à cette dernière, l'objectif d'une méthode analytique peut se résumer en sa capacité à quantifier chacune des quantités inconnues présentes dans un échantillon.

La mise en œuvre d'une méthode de dosage peut se décomposer en quatre grandes phases généralement successives telles qu'illustrées dans la figure 1:

- Une phase de Sélection où des objectifs et des conditions opératoires initiales sont définis.
- Une phase de Développement, avec ou sans optimisation au moyen des plans d'expériences.
- Une phase de Validation (Validation Interne/Externe) précédée, selon les cas, d'une phase de prévalidation.
- Une phase d'application en routine (Usage en routine), incluant le plus souvent une validation en routine et parfois une validation partielle ou une revalidation.

Figure 1: Cycle de vie d'une méthode analytique

5

Etude Bibliographique

I.3 Définition de la validation d'une méthode d'analyse

Selon la norme NF EN ISO / CEI 17025, il s'agit de la « confirmation par examen et fourniture de preuves réelles du fait que les exigences particulières en vue d'une utilisation prévue déterminée sont remplies ».

La validation alors est un ensemble des opérations nécessaires pour prouver que le protocole est suffisamment exacte et fiable pour avoir confiance dans les résultats fournis et ceci pour un usage déterminé.

Pour valider une méthode analytique, il existe plusieurs protocole (approche ou guide) à suivre tel que : le protocole NF 90-210 ; protocole V03-110 ; ICHQ2(RI) ; SHGTA04 ; SFSTP ; profil d'exactitude (basé sur l'application directe des principes décrit dans la norme ISO 5725)... L'organisation pratique des essais et du calcul des critères (la justesse, la fidélité, linéarité, limite de quantification...) de validation, dépendent du guide de validation choisi.

L'objectif du guide est donc de proposer une démarche harmonisée de validation applicable aux différentes procédures analytiques quantitatives, et ceci indépendamment du secteur d'activité.

I.4 Objectif de la validation analytique

L'objectif de la validation est de donner des garanties suffisantes que chacune de ces mesures qui seront réalisées en routine avec cette méthode seront suffisamment proches de la « vérité».

I.5 Vocabulaire et définitions des critères de validation analytique

Le vocabulaire relatif à la validation est très abondant, souvent foisonnant et souvent confus. C'est pourquoi, dans un souci d'harmonisation mais aussi de cohérence, On a retenu la norme ISO 5727 comme principale référentielle pour la définition des critères de validation.

4 Spécificité :

La spécificité d'une procédure analytique est sa capacité à établir de manière univoque l'existence de la substance à analyser en présence d'autres composants potentiellement présents. La spécificité est conditionnée par :

- La capacité de faire une discrimination analyte/substances interférentes.
- La garantie que les résultats de l'analyse correspondent à l'analyte.
- L'absence d'interférences.

Linéarité :

La linéarité d'une procédure analytique est sa capacité à l'intérieur de l'intervalle de dosage à fournir des résultats directement proportionnels à la concentration en substance présente dans l'échantillon.

Justesse :

La justesse exprime l'étroitesse de l'accord entre la valeur moyenne obtenue à partir d'une série de résultats d'essais et une valeur qui est acceptée soit comme une valeur conventionnellement vraie, soit comme une valeur de référence acceptée.

Fidélité :

La fidélité exprime l'étroitesse de l'accord (coefficient de variation) entre une série de mesures provenant de multiples prises d'un même échantillon homogène (résultats d'essais indépendants) dans des conditions prescrites.

Elle comporte 3 aspects : la répétabilité, fidélité intermédiaire et la reproductibilité.

• *Répétabilité* : *INTRA-LABORATOIRE*

Conditions ou les résultats d'essai indépendant sont obtenues par la même méthode sur des individus d'essai identiques dans le même laboratoire, par le même operateur, utilisant le même équipement et pendant un court intervalle du temps.

• Fidélité intermédiaire : INTRA-LABORATOIRE

Conditions ou les résultats d'essai indépendants sont obtenus par la même méthode sur des individus d'essai identiques dans le même laboratoire, avec différents opérateurs et utilisant des équipements différents et pendant un intervalle de temps donné.

• Reproductibilité : INTER-LABORATOIRE

Conditions ou les résultats d'essai indépendant sont obtenues par la même méthode sur des individus d'essai identiques dans différentes laboratoires avec différentes operateurs, utilisant des équipements différents.

Exactitude :

L'exactitude correspond à l'erreur totale d'un système donnée. Ce paramètre est défini par la fidélité et la justesse qui correspondent aux erreurs aléatoire et systématique respectivement.

Or *Exactitude= Fidélité +Justesse*

Limite de détection :

La limite de détection d'une procédure d'analyse est la plus petite quantité à examiner dans un échantillon pouvant être détectée, mais non quantifiée comme une valeur exacte dans les conditions expérimentales décrites de la procédure.

Limite de quantification :

La limite de quantification est la plus petite quantité de l'analyte dans un échantillon pouvant être dosée dans les conditions expérimentales décrites avec une exactitude définie.

Intervalle de mesure :

L'intervalle de dosage est l'intervalle compris entre les limites inférieure et supérieure de quantification où la procédure analytique atteint l'exactitude souhaitée.

7

Robustesse :

La robustesse d'une procédure analytique est une mesure de sa capacité à ne pas être affectée par des **modifications faibles**, **délibérées**, de facteurs associes à la procédure.

I.6 Domaine d'application de la validation analytique

Le domaine d'application de la validation analytique s'inspire directement de la norme ISO 17025:2005 qui propose que :

« Le laboratoire doit valider les méthodes non normalisées, les méthodes conçues/développées par le laboratoire, les méthodes normalisées employées en dehors de leur domaine d'application

prévu, ainsi que les amplifications ou les modifications de méthodes normalisées,

afin de confirmer que les méthodes sont aptes à l'emploi prévu.» [18]

La validation est appliquée dans tous les domaines :

- Domaine environnemental (polluants dans les eaux, les sols...);
- Domaine agro-alimentaire (sécurité des aliments...);
- Domaine pharmaceutique (contrôle qualité) ;
- Industrie en général (Qualité des résultats).

II Validation analytique par profil d'exactitude (ou approche d'erreur totale) Introduction

Ce projet de fin d'étude est basé principalement sur la validation par profil d'exactitude, elle est en parfait accord avec l'objectif d'une méthode analytique, à savoir sa capacité de quantifier le plus exactement possible chacune des quantités inconnues qu'un laboratoire aura à déterminer.

A ce stade, il est important de détailler cette approche de validation, la stratégie proposée est déjà standardisée dans la norme AFNOR NF V03-110. C'est une approche globale qui peut être appliquée quel que soit le domaine d'activité et la matrice étudiée ,elle a l'avantage de proposer une méthode d'interprétation graphique très simple et visuelle qui ne s'embarrasse pas de tests statistiques toujours délicats à décrypter, appelée profil d'exactitude. Son objectif est de servir les analystes plutôt que de les transformer en statisticiens. Elle permet non seulement de simplifier l'approche de validation d'une procédure mais aussi l'estimation de l'incertitude de mesure sur la base des données de validation.

II.1 Le profil d'exactitude

A côté de ces approches classiques, nouvelle stratégie de validation permet d'associer les deux éléments fondamentaux de la validation que sont la justesse et la fidélité au résultat final d'une mesure, et par conséquent de tenir compte de l'erreur totale de mesure (erreur systématique + erreur aléatoire). Le principe de cette stratégie de validation peut être traduit par l'équation 1: qui stipule que la différence entre une mesure **x** et sa vraie valeur **µ** doit être inclue dans l'intervalle

 $[-\lambda; + \lambda]$, avec λ est la limite d'acceptation définie a priori.

$$-\lambda < x - \mu < \lambda \Leftrightarrow |x - \mu| < \lambda$$
(Eq:1)

La notion de limite d'acceptation introduit donc un premier critère permettant à l'analyste de prendre des décisions basées sur l'objectif de la méthode analytique. Communément, la limite d'acceptation est de 1% ou 2 % pour le dosage de principes actifs dans une matière première, de 5% pour les formes pharmaceutiques et de 15 % pour les analyses dans les matrices biologiques ou environnementales. Pour la détermination des impuretés, une limite d'acceptation minimale de 10% est communément admise.

Le profil d'exactitude est construit à partir des estimés de l'intervalle de tolérance d'espérance β de mesures attendues à chaque niveau de concentration.

Une autre notion importante définie est celle de « bonne procédure analytique » avec un risque connu qui peut se traduire par la relation suivante :

$$\Pr\left[|x-\mu| > \lambda\right] \le \beta \quad (Eq:2)$$

Avec β la proportion des mesures dans les limites d'acceptation, et λ la grandeur définissant les limites d'acceptation fixées a priori en fonction des contraintes du secteur d'activité.

II.2 Principes à la base du profil d'exactitude

II.2.1 Définir la quantité mesurée :

A partir du mode opératoire de la méthode, définir la quantité mesurée en précisant les formules de calcul du résultat final et la procédure pour établir ce résultat. En particulier, faire la distinction entre l'un ou l'autre type de méthodes :

- Les méthodes « indirectes ou rationnelles » qui exigent un étalonnage préalable pour calculer la concentration des échantillons inconnus.
- Les méthodes « directes ou empiriques » dont l'analyte est défini par la méthode ellemême. On mesure alors la concentration des échantillons inconnus à l'aide d'une autre méthode de mesure, comme une pesée ou une titrimétrie.

II.2.2 Préciser les objectifs de validation :

a. Choisir le domaine de validation :

Définition : le domaine de validation est l'ensemble des types de matrice auquel s'applique la méthode, en tenant compte de la gamme de concentrations sur laquelle doit porter la validation.

Définir le domaine de validation de la méthode, sous la forme d'une gamme de concentrations absolues ou relatives. Le choix du domaine d'application peut correspondre à une obligation légale. Par exemple, dans le domaine pharmaceutique, pour les substances pures ou les spécialités pharmaceutiques, le domaine doit au moins couvrir entre 80 % et 120 % de leurs valeurs nominales.

Le domaine de validité de la méthode est le domaine où on a démontré que la méthode est validée et capable de fournir des résultats exactes, ce dernier peut être plus petit que le domaine d'application défini a priori. Si, lors de l'utilisation en routine de la méthode on rencontre des échantillons dont la concentration n'est pas incluse dans le domaine de validité, il est interdit d'extrapoler. Il faut alors procéder à une étude complémentaire pour étendre ce domaine ou procéder à une dilution dans la mesure où on a démontré qu'elle n'entraîne pas d'effet.

b. Définir les limites d'acceptabilité :

Les limites d'acceptabilité sont notées $\pm \lambda$ et sont en général exprimées sous la forme d'un pourcentage, définir les limites d'acceptabilité se fait en se référant à un document, une pratique de la profession ou une exigence client.

II.2.3 Sélectionner les échantillons de validation :

a. Choisir la ou les matrices :

Les essais qui servent à calculer les éléments du profil d'exactitude doivent être réalisés sur des échantillons clairement identifiés, appelés échantillons de validation. Ce sont des matériaux qui doivent être les plus représentatifs possible du domaine d'application de la méthode. Ils peuvent ainsi inclure différentes matrices pour les méthodes multi-matrices.

Penser à choisir des matériaux stables et homogènes en quantité suffisante pour réaliser l'ensemble des essais définis par le plan d'expériences de validation.

b. Établir les valeurs de références des échantillons de validation :

Pour estimer la justesse de la méthode, il faut disposer d'échantillons de validation dont la concentration est connue le plus exactement possible avec une incertitude connue (NF ISO 11095 :1996). Cette concentration correspond à la valeur de référence assignée à l'échantillon de validation et doit être fixée indépendamment de la méthode à valider, on la note X. Il existe plusieurs approches possibles pour établir la valeur de référence assignée à un échantillon de validation, parmi lesquelles:

- Utiliser des matériaux de référence certifiés (MRC), externes (MRE) ou internes (MRI) ;
- Réaliser des ajouts dosés à partir d'une molécule étalon de pureté connue.

II.2.4 Planifier les essais de validation :

Le plan d'expérience de validation sert à estimer, dans les conditions où le mode opératoire sera appliqué en routine, quelles seront les performances en routine de la méthode.

Pour réaliser ce plan, prévoir :

– I séries de mesures $(1 \le i \le I)$;

– pour chaque série, effectuer J répétitions $(1 \le j \le J)$;

- K niveaux de concentration $(1 \le k \le K)$ couvrant le domaine d'application de la méthode.

Dans ce Contexte, on entend par un niveau une valeur de référence.

A propos du choix du nombre de laboratoire pour une étude inter-laboratoires I doit être supérieur ou égal à 8. Pour l'étude intra-laboratoire les exigences minimales sont :

- Un nombre de série I égal à 5 mais pouvant être ramené à 4 ou 3 sur justification. Une série peut être représentée par un jour.

- Un nombre constant de répétitions par série et par niveau J supérieur ou égal à 2.

- Un nombre de niveaux K supérieur ou égal à 3.

II.2.5 Planifier les essais d'étalonnage (pour les méthodes indirectes) :

Le plan d'étalonnage a pour objectif de permettre l'estimation des coefficients du modèle de la courbe d'étalonnage et pour quantifier les échantillons de validation, pour ce plan, on va choisir les paramètres minimums suivants :

- prévoir I séries ($1 \le i \le I$). Ce nombre doit absolument être le même que pour le plan de validation. - pour chaque niveau, effectuer J' mesurages répétés ($1 \le j \le J$ '). Le nombre de répétitions J' peut être différent du nombre J choisi pour le plan de validation.

- pour chaque série prévoir K' niveaux $(1 \le k \le K')$ de solutions étalons de concentrations connues, couvrant la gamme d'étalonnage. Le nombre de niveaux K' peut être différent du nombre K choisi pour le plan de validation.

II.2.6 Réaliser les essais :

Réaliser les mesures du plan de caractérisation en vue de validation en appliquant la méthode telle qu'elle sera utilisée en routine et en veillant à ce que ces mesures soient aussi indépendantes que possible. Le nombre de répétitions utilisées pour exprimer un résultat final doit être fidèlement respecté. Par exemple, si chaque résultat final est exprimé comme la moyenne de deux répétitions, chaque essai doit être fait selon cette méthode.

Le rôle du profil d'exactitude est d'estimer, à partir des résultats obtenus lors de la validation, quelle garantie aura l'utilisateur que la méthode utilisée en routine fournira des résultats acceptables. C'est pourquoi, la réalisation des plans doit respecter les conditions suivantes :

Les mesurages doivent être réalisés en condition de fidélité intermédiaire ou de reproductibilité, avec pour objectif de prendre en compte le plus de sources d'incertitude possible. Comme ces sources d'incertitude dépendent de la méthode et des matrices analysées, il est impossible de définir une stratégie unique. Il est recommandé de construire un diagramme causes/effets pour choisir les conditions les plus globales. Dans la plupart des cas, on pourra décider de faire les mesurages sur plusieurs jours dans la mesure où on prend ainsi en compte les incertitudes dues à l'appareillage (réglages, et préparation des réactifs), à l'étalonnage, au personnel, à la conservation de l'échantillon... Mais pour des échantillons très instables, on pourra réaliser les mesurages sur un seul jour avec plusieurs opérateurs ou instruments.

Exigence de couvrir le domaine d'application. Avant de commencer il faut disposer de quantités suffisantes d'échantillons pour faire tous les mesurages :

- utiliser un seul échantillon dont on sait faire varier le niveau de concentration, par exemple au moyen d'ajouts dosés
- utiliser des matériaux de référence externes ou certifiés...

Exigence de synchroniser les plans de validation et d'étalonnage. Il faut réaliser des mesurages d'étalonnage et de validation pour un même jour donné. Les données d'étalonnage de ce jour serviront à prédire les concentrations à partir des données de validation faites le même jour.

II.2.7 Calculer les concentrations prédites inverses :

a. Calculer les modèles d'étalonnage :

Pour les méthodes indirectes, il est nécessaire d'exprimer la réponse instrumentale Y en fonction de concentrations x des solutions étalons, à l'aide d'un modèle mathématique f de la forme : Y = f(x). Les fonctions f classiquement utilisées sont regroupées au tableau 1 mais cette liste n'est pas limitative. Les paramètres a1, a2,... sont appelés les paramètres du modèle.

Tame	Équation	Souhaitable pour	Minimum pour
туре		K'	K'
Droite passant par l'origine	$Y = a_1 x$	2	1
Droite	$Y = a_0 + a_1 x$	3	2
Fonction quadratique	$Y = a_0 + a_1 x + a_2 x^2$	4	3
Fonction logistique à 4 paramètres	$Y = a_0 + \frac{a_3 - a_0}{1 + \left(\frac{a_2}{x}\right)^{a_1}}$	5	5

Tableau 1: Principales fonctions de réponse utilisables pour un étalonnage

Calculer les paramètres du modèle d'étalonnage à partir des données recueillies pour chaque série I, mais les valeurs des paramètres peuvent être différentes d'une série à l'autre. Cette approche permet de prendre en compte les variations inter-séries (inter-jours) observées.

Le calcul des estimations des coefficients du modèle d'étalonnage peut faire appel aux diverses techniques statistiques classiques détaillées dans la littérature : la Régression par la méthode des moindres carrés, Régression pondérée ou Régression non linéaire.

b. Calculer les concentrations retrouvées par prédiction inverse :

En utilisant la fonction inverse du modèle d'étalonnage, selon le modèle mathématique suivant : x = z=f-1(Y), tel que z est la concentration retrouvée.

II.2.8 Calculer les critères de validation :

a. Calculer la justesse par niveau :

Il est possible de faire figurer un ou plusieurs critères exprimant la justesse sous la forme d'un biais, ces critères sont :

4)

Biais absolu : b = z-x (*Eq* : 3)

; Biais relatif : b% =
$$\frac{z-x}{x} \times 100$$
 (Eq :

Recouvrement :
$$R\% = \frac{z}{x} \times 100$$
 (*Eq* : 5)

Avec :

x : La concentration introduite.

z : La concentration retrouvée.

On peut rassembler les résultats sous forme du tableau suivant :

Tableau 2: Tableau de calcul de la justesse

Niveau	Concentration introduite x	concentration retrouvée z	Biais absolu	Biais %	Recouvrement %
1	<i>x</i> ₁	<i>z</i> ₁	b_1	$b_1\%$	<i>R</i> ₁ %
K	x_K	Z_K	b_K	b_K %	$R_K\%$

b. Calculer la fidélité par niveau :

Utiliser les concentrations retrouvées Z pour calculer les écarts-types de répétabilité, inter-séries et de fidélité intermédiaire. Ce calcul s'effectue indépendamment pour chaque niveau de concentration K selon le principe de la norme NF ISO 5725-2.

Principe de la norme NF ISO 5725-2 pour le calcul des écarts-types de répétabilité, fidélité intermédiaire et reproductibilité :

Les calculs doivent être effectués indépendamment niveau par niveau k, sur les concentrations retrouvées par prédiction inverse dans le cas des méthodes indirectes ou sur les concentrations retrouvées dans le cas des méthodes directes. Dans les deux cas les concentrations retrouvées sont notées z_{ijk} . Par convention, l'indice i $(1 \le i \le I)$ représente le numéro de la série et j $(1 \le j \le J)$ celui de la répétition dans la série. Pour simplifier les notations, l'indice k $(1 \le k \le K)$ du niveau est supprimé dans les formules qui suivent.

Calculer les écarts-types de répétabilité, inter-séries et de fidélité intermédiaire pour chaque niveau en effectuant l'analyse de la variance « ANOVA ».

- La moyenne générale d'un niveau : $\bar{z} = \frac{\sum z_{ij}}{I \times J}$ (*Eq* : 6)

Le nombre total de répétitions doit être égal à I×J. Par contre, ce total peut être différent pour chaque niveau.

- L'écart-type de répétabilité $S_r = \sqrt{S_r^2}$ (*Eq* : 7); avec S_r^2 la variance intra-série. - Le coefficient de variation de la répétabilité du niveau : $CV_r = \frac{S_r}{\overline{z}} \times 100$ (*Eq* : 8) - L'écart-type inter-série $S_B = \sqrt{S_B^2}$ (*Eq* : 9); avec S_B^2 la variance inter-série.
- Finalement, calculer l'écart-type de fidélité intermédiaire du niveau :

Ecart-type de fidélité intermédiaire : $S_{FI} = \sqrt{S_r^2 + S_B^2}$ (*Eq: 10*)

-Le coefficient de variation de la fidélité intermédiaire du niveau : $CV_{FI} = \frac{S_{FI}}{\bar{z}} \times 100$ (*Eq: 11*)

II.2.9 Calculer les intervalles de tolérance :

Le calcul se fait pour chaque niveau de concentration k. Pour des raisons de simplification des formules, l'indice k est omis dans les formules suivantes.

Exprimer l'intervalle de tolérance comme un intervalle symétrique autour de la concentration retrouvée moyenne \overline{z} du niveau :

$$\bar{z} \pm K_{tol} \times S_{IT} \qquad (Eq: 12)$$

Avec S_{IT} est l'écart-type de l'intervalle de tolérance et K_{tol} est le facteur de couverture. L'ensemble des calculs est rassemblé dans un tableau de la forme du Tableau suivant :

	Niveau		
Symbole	1		К
Ī			
$\overline{\overline{z}}$ - $K_{tol} imes S_{IT}$			
$\overline{\overline{z}} + K_{tol} \times S_{IT}$			
$\frac{\bar{z} - \kappa_{tol} \times s_{IT}}{\bar{x}} \times 100$			
$\frac{\overline{z} + \kappa_{tol} \times s_{IT}}{\overline{x}} \times 100$			
-λ			
$+\lambda$			
	$\begin{array}{c} \hline \textbf{Symbole} \\ \hline \overline{\textbf{z}} \\ \hline \overline{\textbf{z}} - \textbf{K}_{tol} \times \textbf{S}_{IT} \\ \hline \overline{\textbf{z}} + \textbf{K}_{tol} \times \textbf{S}_{IT} \\ \hline \overline{\textbf{z}} + \textbf{K}_{tol} \times \textbf{S}_{IT} \\ \hline \frac{\overline{\textbf{z}} - \textbf{K}_{tol} \times \textbf{S}_{IT}}{\overline{\textbf{x}}} \times 100 \\ \hline \frac{\overline{\textbf{z}} + \textbf{K}_{tol} \times \textbf{S}_{IT}}{\overline{\textbf{x}}} \times 100 \\ \hline -\lambda \\ +\lambda \end{array}$		$\begin{array}{c c c c c c } & & & & & \\ \hline & & & \\ \hline Symbole & 1 & & \\ \hline \hline & & \\ \hline & & \\ \hline & & \\ \hline \hline & & \\ \hline & & \\ \hline & & \\ \hline & & \\ \hline \hline & & \\ \hline & & \\ \hline \hline & & \hline \hline \\ \hline \hline & & \\ \hline \hline & & \\ \hline \hline \hline \\ \hline \hline & & \\ \hline \hline \hline \hline \\ \hline \hline \hline \hline \hline \hline \\ \hline \hline \hline \hline \hline \hline \hline \\ \hline \hline$

Tableau 3: Récapitulatif de calcul des intervalles de tolérances

II.2.10 Construire le profil d'exactitude :

Le profil d'exactitude peut être construit de différentes façons, en fonction du type de données traité. La figure 2 illustre un exemple de profil d'exactitude construit avec 3 niveaux de concentration -0.2; 2,0 et 4,0 mg/l – qui délimitent le domaine de validation (ou d'application) de la méthode à valider.

Etude Bibliographique

Figure 2: Profil d'exactitude établi avec 3 niveaux de concentration.

Chaque cercle gris représente la concentration moyenne retrouvée pour le niveau et quantifie la justesse. Les lignes pointillées délimitent l'intervalle d'acceptabilité et les lignes continues l'intervalle de tolérance calculé à partir des écarts-types de fidélité intermédiaire pour chaque niveau. Les traits verticaux délimitent le domaine de validité, dans lequel la méthode est capable de produire une proportion élevée et connue des résultats acceptables.

Les éléments graphiques entrant dans le profil d'exactitude sont les suivants :

- sur l'axe horizontal, Les valeurs de référence moyennes.
- sur l'axe vertical, simultanément :
 - La limite de tolérance basse relative ;
 - La limite de tolérance haute relative ;
 - Le taux de recouvrement moyen ;
 - La limite d'acceptabilité basse relative ;
 - La limite d'acceptabilité haute relative.

II.2.11 Interpréter le profil d'exactitude pour la validation

Pour utiliser le profil d'exactitude en vue de valider une méthode, il faut avoir fixé les deux critères de décision suivants :

- les limites d'acceptabilité $\pm \lambda$. Elles servent à traduire les objectifs pratiques des utilisateurs. Elles délimitent un intervalle autour de la valeur de référence.

- la proportion β . Elle représente la proportion de futurs résultats qui seront en moyenne compris dans les intervalles de tolérance. Dans la méthode du profil d'exactitude cette proportion a été fixée à 80 %, au moins.

4 Règles de décision :

Reporter les limites d'acceptabilité sur le graphique du profil d'exactitude pour permettre une interprétation visuelle directe des résultats. La figure en dessous illustre une situation classique où la majeure partie des intervalles de tolérance est comprise dans l'intervalle d'acceptabilité. Dès que l'intervalle de tolérance sort de l'intervalle d'acceptabilité, on peut conclure que la méthode n'est plus capable de fournir suffisamment de résultats acceptables, en fonction des choix faits au départ de l'étude. Par exemple, pour $\beta = 80$ % et une limite d'acceptabilité de ± 25 %, on peut conclure que la méthode est valide entre environ 0,2 mg/kg et 4,0 mg/kg.

En outre, ce graphique fournit d'autres indications. En particulier, il apparaît que la justesse varie avec la concentration. Le taux de récupération qui traduit la justesse est d'environ 108 % aux basses concentrations pour être proche de 100 % aux concentrations élevées.

Figure 3: Exemple de profil d'exactitude illustrant les règles de décision.

4 Définir le domaine de validité :

Le domaine de validité est déterminé par la zone du domaine de validation dans laquelle la méthode fournit une proportion de résultats acceptables au moins égale à β . Il est limité par une borne inférieure qui équivaut à la limite de quantification inférieure et une limite supérieure qui correspond à la limite de quantification supérieure.

II.2.12 Maîtriser les résultats en routine :

Lors de l'application en routine de la méthode ainsi validée, il convient de vérifier de façon régulière si les résultats obtenus restent acceptables, par exemple au moyen d'une carte de contrôle, en particulier, si on utilise un facteur de correction, des actions correctives inefficaces peuvent ainsi conduire à la revalidation de la méthode. La revalidation peut alors être complète ou partielle, une revalidation partielle consistant à faire un plan d'expérience à un seul niveau de concentration pour vérifier si l'intervalle de tolérance obtenu reste bien entre les limites d'acceptabilité.

II.2.13 Calcul de l'incertitude :

Le modèle est proposé par la norme NF ISO/TS 21748, pour un niveau de concentration donné on peut écrire : $u^2(Z) = u^2(D) + S_{FI}^2$

Avec Z la valeur du mesurande et D le biais absolu moyen. Si on néglige les incertitudes sur la valeur de référence et d'autres sources d'incertitude éventuelles, on démontre que :

$$u_Z = S_{FI} \qquad (Eq: 13)$$

On peut conclure que l'écart-type de l'intervalle de tolérance S_{FI} permet d'estimer les composantes de l'incertitude liées, par exemple à l'environnement du laboratoire ,aux opérateurs , à la manipulation et au stockage des échantillons lors de leur séjour dans le laboratoire, etc.

Cette liste n'est pas exhaustive et dépend beaucoup des conditions de fidélité intermédiaire choisies pour réaliser les essais. En tous les cas, elle ne prend pas en compte l'incertitude liée à la traçabilité des mesurages puisque l'incertitude sur les valeurs de référence n'est pas incluse.

B. Les méthodes d'analyse des minerais

Introduction

La spectrométrie d'absorption atomique (AAS), la spectrométrie d'émission optique à plasma par couplage inductif (ICP-OES) et depuis peu la spectrométrie de masse à plasma par couplage inductif (ICP-MS) sont devenues les techniques les plus couramment utilisées pour l'analyse des éléments majeurs et traces dans les matériaux géologiques. Cependant devant les difficultés rencontrées par ces appareils de mesure pour analyser directement des échantillons solides (effet de matrice important, mauvaise homogénéité de l'échantillon, etc.), la mise en solution préalable des matériaux avant dosage reste la méthode largement préférée, mais souvent longue et entièrement manuelle.

Pour réaliser une analyse élémentaire complète d'un échantillon géologique les méthodes aujourd'hui les plus utilisées sont :

- la digestion, ce terme désigne l'opération de mise en solution d'un échantillon solide afin d'obtenir une solution utilisable pour un dosage par des méthodes spectroscopiques et spectrométriques. la digestion par les acides la plus utilisée est la digestion à l'eau régale, elle est effectuée par l'utilisation d'une combinaison de HNO3 et HCl.
- l'attaque diacides HF HCL dans des capsules en platine sur plaque chauffante pour l'analyse des éléments traces (Ba, Co, Ni, Sr, Zn, terres rares...).
- l'attaque triacides HF HC1-HNO₃, en bombe Téflon pour le dosage des éléments volatils en traces et ultra-traces tels que Pb, Cd, As...

Il existe aussi des méthodes sans préparation d'échantillon comme la fluorescence X.

I La Spectrométrie de Fluorescence X

La méthode analytique de fluorescence X est une méthode spectrométrique élémentaire basée sur l'analyse du rayonnement émis par un échantillon en réponse à son excitation par une source de rayon X.

Lorsque l'on bombarde de la matière avec des rayons X, les éléments présents vont entrer dans un état excité et réémettre un rayonnement durant la relaxation (transition de l'état excité à l'état fondamental) sous la forme, entre autres, de rayons X. C'est le phénomène de fluorescence X. Le spectre des rayons X émis par la matière est caractéristique de la composition de l'échantillon. Par analyse du spectre émis et après avoir préalablement étalonné l'appareil, la composition élémentaire de l'échantillon peut être déduite.

II La Spectrométrie d'Absorption Atomique

La spectrométrie d'absorption atomique constitue un outil privilégié d'analyse en industrie minière. La SAA autorise le dosage d'éléments majeurs ou sous forme traces dans divers types de substrats : végétaux, sols, sédiments, roches, aliments, déchets solides, effluents liquides, eaux souterraines, eaux de surface, eaux usées....

II.1 Principe

L'échantillon liquide contenant l'élément à doser est nébulisé dans une flamme. Dans cette dernière, les éléments sont vaporisés à l'état d'atomes neutres dont la plupart restent à l'état fondamental.

On envoie à travers la flamme un rayonnement d'intensité I_0 , de longueur d'onde λt (raie de résonance "la raie la plus intense"), dont une fraction est absorbée. Il reste une intensité I.

On mesure le rapport ($A = Log(I_0/I)$) qui est fonction de la concentration dans la flamme en atomes absorbants.

L'intensité lumineuse du rayonnement excitant est liée à la concentration des éléments par la loi de Beer-Lambert selon l'équation : A = Log I0/I = K.C.L

A : Absorbance

I₀: Intensité de la radiation incidente

I : Intensité de la radiation transmise

- K : Coefficient d'extinction
- C : Concentration de l'élément
- L : Parcours du chemin optique dans le brûleur

II.2 Les avantages :

- ✓ Haute sensibilité,
- ✓ Grande spécificité,
- ✓ Influence négligeable de la composition du milieu analysé,
- ✓ Rapidité,
- ✓ Faible quantité de substance nécessaire (1ml de la solution peut suffire),
- ✓ Facilité de préparation des solutions étalons.

II.3 Les inconvénients :

- Nécessité d'utiliser pour chaque élément à doser une source caractéristique,
- Technique d'analyse destructrice,
- Domaine d'application limité presque exclusivement aux métaux,
- Nécessité d'avoir des concentrations assez peu élevées,
- Nécessité enfin de faire passer l'échantillon en solution.

III La Spectrométrie à Plasma à Couplage Inductif

L'ICP, abréviation de "*Inductively Coupled Plasma*», est une méthode physique d'analyse chimique permettant d'analyser qualitativement et quantitativement la quasi-totalité des éléments simultanément à l'état des traces et ultra-traces (l'analyse prend quelques minutes, hors préparation) grâce à la grande puissance du plasma d'argon (> 8000°C).Cette technique est applicable à tout type d'éléments chimiques élémentaire.

L'analyse d'échantillon par ICP est composée de plusieurs étapes : premièrement, l'échantillon doit être mis en solution avant analyse c'est une phase très délicate (risques de pertes d'éléments, de contaminations). Les analyses sont réalisées en voie liquide soit après dilution adéquate pour les solutions aqueuses (exemples : eau de rivière, saumures...), soit après dissolution acide ou fusion alcaline pour les matériaux solide pour briser leur structure (exemples : poudres naturelles ou synthétiques, roches, sols, plantes...). Si le matériau ne dissout pas facilement il est possible procéder à une destruction à l'aide d'une micro-onde, on parle alors de minéralisation.

En général, la préparation de l'échantillon varie de l'un à l'autre, elle dépende de types d'échantillon (solide ou liquide), la source de l'échantillon (de l'eau, de roches, de l'air...) et enfin de l'élément à analyser.

La préparation est ensuite introduite par vaporisation au plasma d'argon puis placée à très hautes températures. Ces excitations thermiques entraînent des phénomènes d'ionisation et de séparation des éléments, permettant ainsi de caractériser et de détecter chaque élément selon les analyseurs utilisés.

La détection élémentaire est réalisée selon deux techniques principales :

- Spectrométrie d'émission optique/atomique (OES ou AES) : mesurant les longueurs d'ondes émises par les ions.
- Spectrométrie de masse (MS) : via lesquels les éléments sont analyses selon leurs charges et leurs masses.

4 *Définition de plasma*

Un plasma est un gaz atomique électriquement neutre mais très ionisé (on définit un plasma comme un 4éme état de la matière après le solide, liquide et gaz). Il est constitué d'atomes neutres (atomes du gaz) et d'autant de charges positives (cations du gaz) que négatives (électrons).

Le plasma le plus utilisé est le plasma d'argon car l'argon ne se recombine pas avec les espèces chimiques d'une façon stable et possède un potentiel d'ionisation très élevé (15,6 eV), ce qui permet l'excitation de la majorité des ions. De plus, il s'agit d'un gaz rare, il est ainsi difficile à ioniser et peut atteindre une température de plasma très élevée (de l'ordre de 10 000 K). En outre,

l'argon possède l'avantage d'être un des gaz les plus présents sur Terre. L'hélium pourrait être utilisé, mais possède l'inconvénient d'être cher.

Un plasma d'argon est ainsi constitué d'atomes d'argon, d'ions argon Ar+ et d'électrons. L'inconvénient de l'argon est que celui-ci a une mauvaise conductibilité thermique, il est donc nécessaire d'avoir une bonne optimisation des paramètres pour permettre d'avoir des conditions très proches entre les mesures des différents échantillons, en particulier au niveau de la température.

III.1 La Spectrométrie de Masse à Plasma à Couplage Inductif

Le plasma d'argan de la source d'ICP permet de décomposer l'échantillon, préalablement introduit sous forme liquide avant d'être transformé en aérosol puis d'atomiser et ioniser les espèces présentes. Cependant contrairement à l'OES le plasma dans l'ICP-MS est utilisé pour générer des ions qui sont accélérer dans un analyseur de masse quadripolaire, les ions sont ensuite séparés et collectés en fonction de leurs rapports de masse sur charge .les constituants d'un échantillon inconnu peuvent ensuite être identifies et mesures .l'ICP-MS offre une sensibilité extrêmement élevée à un large éventail d'éléments.

III.2 Spectrométrie d'Emission Optique à Plasma à Couplage Inductif

ICP-OES (Induced Coupled Plasma Optical Emission Spectrometry ICP-OES = Spectrométrie d'émission optique à plasma par couplage inductif en français), également connu sous le nom d'ICP-EAS (La spectrométrie d'émission atomique à plasma par couplage inductif) est une méthode d'analyse chimique basée sur la spectroscopie d'émission atomique permettant d'analyser qualitativement et quantitativement la quasi-totalité des éléments de tableau périodique parfois à l'état de traces dans une fourchette allant du ppb (partie par billion).

Il serait utile de connaître le principe de l'émission atomique pour pouvoir comprendre le fonctionnement de l'ICP-OES. Le principe de l'émission atomique est expliqué dans l'annexe I.

4 Analyse qualitative : consiste à la recherche des éléments constituants un échantillon totalement inconnu. Cette recherche s'effectue par une visualisation des raies caractéristiques des éléments.

4 Analyse quantitative : L'analyse quantitative, quant à elle, est basée sur l'intensité de photons caractéristiques émis, qui est proportionnel à la concentration de l'élément considéré :

I = K.C (K étant une constante déterminée pour chaque raie à partir des courbes d'étalonnage).
 On peut déduire la concentration de la solution en élément considéré en traçant une droite d'étalonnage.

Figure 4: Les éléments analysés par ICP-OES

Figure 5:Photographie d'un appareil ICP-OES 5100 SVDV Agilent Technologies de la société CETEMCO.

III.2.1 À quoi sert un analyseur ICP-OES

En général, l'analyseur ICP-OES transforme le liquide en lumière et la lumière en réponse. Pour découvrir exactement quels éléments chimiques se trouvent dans un échantillon (méthode qualitative) et à quelle proportion (méthode quantitative).

L'analyseur fait circuler l'échantillon à travers un plasma à température extrêmement haute alors que la chaleur excite les atomes et les ions des éléments de l'échantillon, ceux-ci émettent de la lumière. Le système optique de l'analyseur capture cette lumière. L'intensité de cette lumière est généralement liée à la concentration d'un élément donné dans l'échantillon.

Etude Bibliographique

Il s'agit donc d'une tâche essentielle, en mesurant précisément l'intensité lumineuse, vous pouvez déterminer quels éléments sont présents dans l'échantillon et en quelles proportions.

III.2.2 Principe de l'ICP-OES

Un spectromètre ICP-OES peut être divisé en quatre parties :

- le système d'introduction de l'échantillon est constitué d'une pompe péristaltique, d'un nébuliseur et d'une chambre de nébulisation.
- le système d'atomisation et d'excitation (la torche) ;
- le système optique ;
- le système de détection.

L'ensemble de la composition d'un spectromètre ICP-OES est visible sur la figure 6.

Figure 6:Schéma de l'appareillage d'un spectromètre ICP-OES (ici en visée radiale).

Explication de la figure 6

Tout d'abord, un volume d'échantillon est prélevé à l'aide d'une sonde. Ce volume d'échantillon est ensuite entraîné vers une pompe péristaltique afin de permettre un entraînement de l'échantillon dans le système d'introduction à un débit constant. La caractéristique principale des pompes de ce type est l'affranchissement de la viscosité des solutions. Cette pompe peut utiliser deux ou trois voies. La première voie permet le transfert de l'échantillon. La deuxième voie sert à retirer l'excès de liquide dans la chambre de nébulisation. La troisième voie peut servir à insérer un étalon interne. Mais avant d'être excité, l'échantillon doit subir au préalable 2 étapes : la génération d'un aérosol grâce au nébuliseur et la sélection des gouttes formant l'aérosol grâce à la chambre de nébulisation(b), les plus grosses gouttes sont évacuées mais les plus fines gouttes sont dirigées vers le plasma chaud d'argon (c) .Le système d'excitation représente tous les phénomènes se produisant dans le plasma. Le nébulisât, obtenu après nébulisation de l'échantillon, subit différents processus (désolvatation, vaporisation, atomisation (dissociation des molécules) et éventuellement

ionisation) avant l'excitation des atomes ou des ions de l'échantillon par les collisions entre plasma d'argon et les atomes de l'échantillon afin d'émettre des longueurs d'ondes caractéristiques.

Figure 7:Schéma représentant les différents processus lors de l'atomisation et l'excitation

Lors de la collision d'une particule et d'un atome pendant l'atomisation et l'ionisation, trois processus peuvent se produire :

- excitation : $Ar + M \rightarrow Ar + M^* ou Ar^+ + M \rightarrow Ar^+ + M^*$;
- ionisation : $Ar + M \rightarrow Ar + M^{+*} + e$ ou $Ar + M \rightarrow Ar^{+} + M^{+*} + e$;
- transfert de charge : $Ar^+ + M \rightarrow Ar + M^+$.

Apres l'excitation des atomes ou des ions de l'échantillon, la lumière est transférée vers le système optiques haute résolution, scellé est sans purge qui sépare la lumière en longueurs d'ondes spécifiques pour les éléments à mesurer (e).

Les longueurs d'ondes sont captés par le détecteur (f), les intensités pour chaque longueur d'onde sont alors quantifiées (par le détecteur), un logiciel sophistique permet alors de les convertir en unités de concentration (g).

Position de la torche

Il y a deux manières différentes d'observer les signaux émis par un plasma : par visée radiale (ou latérale) ou par visée axiale. La différence entre ces deux visées repose sur la position du système optique par rapport à l'axe du plasma On parle de visée radiale lorsque l'axe du plasma et l'axe d'observation sont perpendiculaires et de visée axiale lorsque ceux-ci sont superposés. L'intérêt de ces configurations est de supprimer la zone de refroidissement du plasma pour limiter les recombinaisons et d'orienter les photons au maximum vers le spectrophotomètre. En visée axiale, la queue du plasma est déplacée de l'axe d'observation par un flux d'air et par aspiration à l'aide d'une hotte d'extraction.

Chaque position présente des avantages et des inconvénients résumés dans un tableau ci-après:

	Fente radiale	Fente axiale
Echantillons	Concentrés	Dilués
La calibration pour l'analyse des métaux		
alcalins	Linéaire	Moins linéaire
Interférences spectrales		+++
Sensibilité	Faible	Elevée
Limite de détection	Elevée	Très faible

Tableau 4: Avantages et inconvénients du positionnement de la torche à plasma en fente radiale ou axiale.

Remarque : un troisième mode de visualisation est la combinaison de ces deux modes de bases et il est connu sous le nom de double vue. Ils sont tous disponibles dans le commerce et présent chacun des avantages et des inconvénients. Actuellement dans le commerce, il existe 3 types des instruments ICP-OES (axial, radial et double vue).

III.2.3 Les limites de la méthode ICP-OES

Tous les éléments du lithium à l'uranium (à quelques exceptions près) peuvent être analysés. Oui, mais dans une certaine mesure. La première condition est de pouvoir mettre l'élément en solution et de l'y maintenir. Si cette condition est remplie, il y a peu de contraintes pour les fortes concentrations, si l'élément à doser est trop sensible, on choisira une longueur d'onde de moindre sensibilité ou on diluera la solution. Pour les faibles concentrations, on atteint assez classiquement 0,01% pour la plupart des éléments. La mesure de plus faibles teneurs s'étudie au cas par cas. Certains éléments sont si sensibles que l'on dosera sans difficulté quelques ppm. Pour d'autres, ils peuvent être peu sensibles ou trop interférés pour atteindre ce niveau de teneur et ce qui peut être possible dans un alliage peut être impossible dans un autre, les éléments interférents étant différents. Dans le cas des très faibles teneurs (<0,01%), il est préférable de faire appel à l'ICP-MS

C. Les métaux lourds ou éléments traces métalliques

Les Eléments Traces Métalliques (ETM) appelés aussi « métaux lourds », sont des éléments chimiques ubiquistes présents à la surface de la terre à des concentrations inférieures à 0,1% et ayant une densité supérieure à 5 et un numéro atomique supérieur à 20. Ils correspondent à un groupe de 58 éléments parmi lesquels on peut citer les ETM les plus connus pour leur dangerosité sont le plomb (Pb), le mercure (Hg), le cadmium (Cd), le chrome (Cr), le cuivre (Cu), le nickel (Ni), le zinc (Zn), l'arsenic (As), le sélénium(Se). La plupart d'entre eux présentent la double propriété d'être à la fois des oligo-éléments, c'est à dire indispensable à la vie, mais aussi des éléments toxiques.

	Croute océanique	Croute continentale
Cd (mg/Kg)	0,13	0,098
Co (mg/Kg)	47	29
Cr (mg/Kg)	270	185
Cu (mg/Kg)	86	75
Ni (mg/Kg)	135	105
Pb (mg/Kg)	0,8	8
Zn (mg/Kg)	85	80

Tableau 5: Concentration des ETM dans différents compartiments.

I De « Métaux lourd » au « Traces métalliques »

Les éléments traces métalliques sont généralement définis comme des métaux lourds. Cependant, la classification en métaux lourds est souvent discutée car certains métaux toxiques ne sont pas particulièrement « lourds » (par exemple le zinc), tandis que certains éléments toxiques ne sont pas des métaux (c'est le cas de l'arsenic qui est un métalloïde4). Ce terme générique désigne donc indistinctement des métaux et métalloïdes réputés toxiques. Pour ces différentes raisons, l'appellation « éléments traces métalliques » -ETM- ou par extension « éléments traces » est préférable à celle de métaux lourds.

Selon les éléments et le contexte (acidité du milieu, synergies entre ETM ou entre ETM et d'autres polluants...), ils sont plus ou moins bioassimilables et pouvant être bioconcentrés par la chaine alimentaire. C'est pourquoi certains font l'objet d'un suivi (réglementaire ou volontaire) dans l'eau, l'air (associés aux aérosols ou poussières), les sols, l'alimentation, les boues d'épuration, etc.

II Utilisations

Beaucoup d'ETM ont une utilité dans le processus biologique : par exemple le fer est un composant essentiel de l'hémoglobine, le zinc, le cuivre sont des oligo-éléments indispensables.

Tous les éléments-traces métalliques sont présents naturellement à l'état de traces dans le sol. L'activité humaine peut avoir renforcé cette présence ; en effet, nombre d'ETM jouent un rôle important dans la vie quotidienne. On peut citer comme sorte d'exemple :

- le cuivre (Cu), dans le domaine de l'électronique ainsi que comme fongicide (sulfate de cuivre, notamment utilisé lors du traitement des vignes) ;
- le zinc (Zn) pour la galvanisation de l'acier, et pour des pièces moulées utilisées dans l'automobile ;
- le nickel (Ni) pour les aciers inoxydables ;
- le chrome (Cr), comme pigment rouge et pour le chromage de pièces;
- le plomb (Pb) pour les batteries d'accumulateurs (en particulier pour les automobiles), les tuyauteries, les soudures ;
- le mercure (Hg) pour de très nombreux usages dont les amalgames dentaires et les piles électriques ;
- le cadmium (Cd) utilisé entre autres pour les accumulateurs électriques.

III Impacts

Les éléments traces métalliques ne posent pas seulement un problème our la pollution de l'air : ils sont biopersistant, perturbent les écosystèmes, détériorent les sols, les eaux de surface, les forêts et les cultures et s'accumulent dans la chaine alimentaire .certains sont cancérigènes pour l'homme.

Impact toxicologique :

Les métaux ont, de façon générale, des effets toxiques sur les êtres vivants, plus ou moins importants. Certains sont cependant des éléments indispensables pour les êtres vivants comme le cuivre, le sélénium, le zinc. Le Cadmium, le mercure et le plomb n'ont pas de telles fonctions et sont toxiques à très faibles doses. Au-delà d'une certaine concentration, la plupart des métaux deviennent toxiques. Certains métaux peuvent être cancérigènes (arsenic par exemple) et dégrader les systèmes immunitaires et reproductifs (mercure par exemple). Il est à noter que les impacts santé sont différents selon la forme chimique sous laquelle le métal se retrouve dans l'environnement. L'impact dépend de leurs concentrations, de leur biodisponibilité et de leur capacité à entrer dans la chaîne alimentaire.

Par ailleurs la Directive Européenne a définie 9 éléments traces à risque pour la santé humaine. Ces éléments sont Cd, Pb, Hg, As, Ni, Cr, Cu, Zn et Se.

Tableau	6:Effet	des	ETM
---------	---------	-----	-----

ELEMENT TRACE METALLIQUE	EFFETS
As	Toxique, possible cancérigène
Cd	Hypertension, dommage sur le foie
Cr	Cancérigène sous forme de Cr(VI)
Cu	toxique envers les végétaux
Hg	toxique chronique et aigué
Ni	Allergie de peau, maladie respiratoires, cancérigène
Pb	Toxique
Se	Essentiel à faibles doses, Toxique a doses élevées
Zn	Ecotoxique pour les végétaux a des forts teneurs

27

Impact environnemental :

• Pour les sols

La concentration naturelle de l'élément trace dans le sol résulte de son évolution à partir de la roche initiale. On parle de pollution des sols par un élément trace lorsque l'élément trace est présent à une dose constituant une menace pour l'activité biologique ou les fonctions du sol.

Les contaminations diffuses, qui affectent les niveaux superficiels des sols, résultent de phénomènes naturels tels que les retombées atmosphériques d'aérosols d'origine volcanique ou d'actions anthropiques intentionnelles ou non : poussières et dépôts atmosphériques, fertilisants minéraux (cuivre contenu dans les phosphates), pesticides, lisiers et fumiers, boues de stations d'épuration, activités minières, déchets industriels (bâtiments) ou urbains, transports, etc.

• Pour l'air

Les métaux lourds se dispersent dans les hautes couches de l'atmosphère et retombent ailleurs, après un transport sur de très longues distances. On estime qu'une particule de mercure dans l'atmosphère reste un an dans celui-ci, avant de retomber. Les métaux lourds dans l'air peuvent se trouver principalement sous deux formes :

- Soit sous forme gazeuse pour certains composés métalliques volatiles ou dont la pression de vapeur saturante est élevée;

Soit sous forme de composés métalliques solides, déposés sur les très fines particules ou poussières formées lors des phénomènes de combustion. Les principales sources de métaux dans l'air sont des sources fixes. Les métaux lourds sont transportés par des particules atmosphériques provenant de combustions à haute température, de fusions métallurgiques, véhicules. Les effets biologiques, physiques et chimiques de ces particules sont fonction de la taille des particules, de leur concentration et de leur composition.

• Pour l'eau

Les métaux présents dans l'eau peuvent exister sous forme de complexes, de particules ou en solutions. Les principales sources de contamination de l'eau sont les suivantes :

- Les eaux usées domestiques et industrielles,
- La production agricole,
- Les polluants atmosphériques,
- Les anciennes décharges.
Chapitre 2 Partie Expérimentale

Introduction

Cette étude porte sur la validation analytique de la méthode d'analyse " l'ICP-OES " de sept métaux (Vanadium (V), Chrome (Cr), Cobalt (Co), Nickel (Ni), Cuivre (Cu), Zinc (Zn), Arsenic (As)) présents sous forme de traces dans trois minerais de références certifiés. La démarche appliquée est l'approche d'erreur totale, combinant l'erreur systématique et l'erreur aléatoire, fondée sur l'estimation des intervalles de tolérance, avec une proportion β de mesures dans les limites d'acceptations ($\pm \lambda$).

- Les limites d'acceptabilité sont fixées à ±10% autour de la valeur de concentration introduite.
- la proportion β est fixée à 80%.

La méthode de dosage est une méthode indirecte qui nécessite un étalonnage pour réaliser la quantification des traces métaux présents dans un échantillon à l'aide d'un modèle de régression reliant l'intensité du pic à la concentration.

I Méthode de minéralisation des minerais

I.1 Objet et domaine d'application

Le présent mode opératoire décrit la méthode d'essai pour la détermination des teneurs en V, Cr, Co, Ni, Cu, Zn, As présents dans les minerais.

Dans cette étude pour valider la méthode on va commencer par l'application de cette méthode sur des matériaux de références certifiés MRC en métal de base géochimique (OREAS 277, OREAS 20a et OREAS 751).

I.2 Principe d'essai

Dissolution des minerais certifiés contenant les traces des métaux ciblés par la méthode de digestion acide sur plaque chauffante.

Les teneurs des métaux extraits sont déterminés par la technique de spectrométrie d'émission optique à plasma par couplage inductif (ICP-OES).

I.3 Matériels et réactifs

- Spectrométrie d'émission optique à plasma par couplage inductif : ICP-OES 5100 Agilent Technologies, couplé à un ordinateur muni du logiciel ICP expert ;
- Acides : Acide nitrique (≥ 69 %), Acide chlorhydrique (37 %) ;
- Solution standard multiéléments 100 ppm ;
- Eau purifiée ;
- Petit outillage : Plaque chauffante, Montage à reflux, Balance et spatule, Etuve, micropipette, Papier filtre, Seringue, Filtre seringue ;

• Verrerie : bécher, pipette graduée, erlenmeyer, fiole jaugée, entonnoir ...

I.4 Echantillons

Le nombre d'échantillons soumis à l'essai est de trois matériaux de références certifiés MRC en métal de base géochimique sous forme poudre notés OREAS 277, OREAS 20a et OREAS 751. Ils sont clairement identifiés et représentent le domaine d'application de la méthode pour le valider. La composition de ces matériaux est indiquée dans l'annexe II.

I.5 Solution d'étalonnage

La solution d'étalonnage est une solution multiélément certifiée contenant 27 éléments métalliques (Ag, Al, As, B, Ba, Be, Cd, Co, Cr, Cu, Fe, Hg, K, Mg, Mn, Mo, Na, Ni, Pb, Sb, Se, Si, Sr, Ti, Tl, V, et Zn) de concentration 100 ppm.

I.6 Mode Opératoire

La procédure de préparation des échantillons

Premièrement les échantillons ont été séchés dans une étuve à 105° C pendant une heure. Dans un erlenmeyer on a pesé environ 0,5 g de poudre pour chaque échantillon. Ensuite nous avons ajouté un mélange de 6 ml d'acide chlorhydrique (37%) et 2 ml d'acide nitrique ($\geq 69\%$), les échantillons ont été ensuite portés à reflux sur plaque chauffante à 95°C pendant 75 min. Après refroidissement, les solutions ont été filtrées dans une fiole de 50 ml.

La procédure de préparation des solutions étalons

A partir de la solution multiéléments on prépare une gamme d'étalonnage de concentrations de 10 ppm, 5 ppm, 2,5 ppm, 0,5 ppm et 0,25 ppm d'ions métallique ciblé. Toutes ces solutions étalons sont préparées dans le même mélange d'acide utilisé pour la dissolution des minerais.

I.7 Mise en pratique d'une analyse en ICP-AES

Les métaux analysés en ICP-OES sont: V, Cr, Co, Ni, Cu, Zn et As. L'appareil utilisé permet d'analyser tous les éléments en même temps dans une courte période de temps. Les échantillons, les étalons, le blanc et les solutions de contrôle qualité (QC) sont placés sous le passeur automatique (SPS 3 autosampler). Avant les analysés, tous les échantillons ont été filtrés par un filtre seringue de diamètre 30 mm et porosité 0,45 µm.

a. Mesure de série analytique par ICP-OES

L'analyse débute par le blanc d'analyse qui est une solution d'acide chloridrique et d'acide nitrique qui a été déjà utilisée pour préparer les étalons.

Ce blanc contient approximativement 0 ppm des éléments cherchés et correspond à l'ordonnée à l'origine de la fonction de la droite d'étalonnage.

- Les solutions étalons de concentrations connues sont ensuite analysées.
- La lecture de solution de contrôle qualité (vérification initiale de l'étalonnage) est réalisée.

- Une lecture d'un autre blanc identique au premier. Ce dernier permettra de retirer le bruit de fond correspondant à l'acide utilisé pour acidifier les échantillons.
- Le passage des échantillons de référence OREAS 277, OREAS 20a et OREAS 751.
- Le passage de dernière solution de contrôle qualité (QC).
- <u>Remarque :</u>

Les solutions de contrôle qualité (QC) servent à vérifier s'il y a eu une dérive de l'appareil au cours de l'analyse de la séquence. Ces solutions sont préparées à partir de solutions multiélémentaires certifiées d'un numéro de lot différent.

Chaque échantillon (le blanc, les étalons, les OREAS et les CQ) est lu 3 fois, la valeur moyenne est ensuite prise. La durée d'analyse d'un échantillon est d'environ 3 minutes. La solution de rinçage est une solution d'acide nitrique à 5%.

Le logiciel utilisé pour le traitement des données est ICP expert.

b. Les Paramètres de fonctionnement de ICP-OES 5100 SVDV

Les conditions de fonctionnement de ICP-OES 5100 SVDV sont résumées dans le tableau suivant :

Paramètre	Réglage
Temps de lecture (s)	5
Réplique	Chaque échantillon est lu 3 fois
Temps de stabilisation (s)	15
Temps de rinçage (s)	20
Pompe (tr/min)	12
Puissance RF (KW)	Par défaut : 1,4
Débit de nébulisât dans le nébuliseur (L/min)	Par défaut : 0,7
Débit du plasma Par défaut	Par défaut : 12
Débit du gaz auxiliaire (L/min)	Par défaut : 1

Tableau 7:Les conditions de fonctionnement de ICP-OES 5100 SVDV

c. Mesure du signal en ICP-OES :

4 Mesure de la concentration :

Il y a une proportionnalité entre l'intensité du signal et la concentration de l'élément présent dans l'échantillon dans une certaine plage de concentrations qui dépendent des conditions d'analyses et pour une raie donnée : I = K.C (K étant une constante déterminée pour chaque raie à partir des courbes d'étalonnage).

La linéarité de la courbe I = K.C doit être observée pour les solutions étalons. Une droite d'étalonnage est validée lorsque le facteur de corrélation est au moins égale à 0.95.

4 Acceptation des résultats :

Une fois la lecture des échantillons faite, on vérifie :

- ✓ Tout d'abord, la concentration des blancs qui doit être égale à zéro ;
- \checkmark Les concentrations de solution CQ.

- ✓ Les résultats des échantillons qui doivent être situés dans le domaine d'analyse.
- ✓ La symétrie de signal de chaque élément mesuré.
- ✓ Il faut également vérifier que le RSD (Relative Standard Deviation en anglais) est inférieur ou égal à 10 %. Le RSD correspond au pourcentage d'erreur entre les trois lectures et il est calculé automatiquement par le logiciel ICP expert.

II Validation analytique par profil d'exactitude de la méthode de dosage du (V, Cr, Co, Ni, Cu, Zn, As)

II.1 Domaine d'application de la méthode

Tableau 8:Les domaines de validation de la méthode de dosage du V, Cr, Co, Ni, Cu, Zn, As.

Echantillon de validation	V (ppm)	Cr (ppm)	Co (ppm)	Ni (ppm)	Cu (ppm)	Zn (ppm)	As (ppm)
OREAS 751	24,6	31,3	3,81	13,1	31,9	93	10,3
OREAS 277	31,5	27,8	5,99	20,1	25,5	53	467
OREAS 20a	105	67	12,5	36,3	45,9	63	17,2

II.2 Plan d'étalonnage

Le plan d'étalonnage est formé de 5 séries (codées jour1, jour2, jour3, jour4, jour5) avec 5 niveaux de concentration (0,25ppm, 0,5ppm, 2,5ppm, 5ppm et 10ppm) et 2 répétitions par jour. Le plan d'expérience d'étalonnage a pour objectif de réaliser la quantification des échantillons de validation à l'aide d'un modèle de régression reliant l'intensité du pic à la concentration. Et le but aussi est de prendre en compte la variabilité de la réponse instrumentale d'une série à l'autre (c'est-à-dire d'un jour à l'autre) et de vérifier sur plusieurs jours si la méthode est capable de quantifier de façon constante le même échantillon.

Fonction de réponse

En utilisant les données de la gamme des standards d'étalonnage pour générer des modèles de calibrations et choisir le meilleur modèle qui permet de prédire le plus exactement possible le mesurande .

II.3 Plan de validation

Le plan de validation est formé également de 5 séries (codées jour1, jour2, jour3, jour4, jour5) avec 3 niveaux de concentration et 3 répétitions par jour. Les concentrations introduites sont exprimées en ppm.

Etude Expérimentale

II.4 Validation du Vanadium------

a. Données brutes recueillies

Les données brutes de mesures effectuées des deux gammes d'étalonnage et de validation sont regroupées dans les deux tableaux suivants :

Niveau	Concentration	Réponse analytique (Intensité)						
	(ppm)	Série n°1	Série n°2	Série n°3	Série n°4	Série n°5		
1	0,25	1382,58	1379,32	1381,90	1377,90	1383,12		
1	0,25	1360,23	1381,57	1382,05	1370,82	1381,51		
2	0,50	2720,19	2730,12	2721,45	2720,78	2718,67		
2	0,50	2719,88	2723,30	2723,22	2721,10	2720,36		
2	2,50	13037,81	13130,40	13011,76	13041,58	13056,89		
3	2,50	13037,99	13037,80	13027,12	13037,91	13047,37		
Λ	5,00	26669,31	26760,56	26700,23	26678,04	26659,56		
4	5,00	26668,33	26769,20	26668,80	26669,30	26663,23		
_	10,00	52369,56	52370,89	52369,89	52400,16	52387,60		
3	10,00	52276,13	52385,65	52367,90	52321,93	52390,77		

Tableau 9:Les données de standards d'étalonnage du Vanadium.

Tableau 10:Les données de standards de validation du Vanadium.

Nimoon	Concentration	Réponse analytique (Intensité)					
Iniveau	introduite (ppm)	Série n°1	Série n°2	Série n°3	Série n°4	Série n°5	
	24,6	128713,56	125745,80	128600,12	126113,18	126720,06	
1	24,6	126290,44	128510,45	126453,85	123544,50	126735,78	
	24,6	128713,59	128677,46	128540,56	127560,52	128710,72	
	31,5	164967,34	170056,80	165789,89	170899,94	168932,89	
2	31,5	166890,44	170934,67	167289,67	168845,24	162948,30	
	31,5	169356,47	175032,58	166739,70	166983,30	168740,23	
	105,0	546898,89	543498,70	536880,33	546821,32	547589,23	
3	105,0	546700,90	546045,09	539898,00	540889,90	544563,67	
	105,0	545800,58	547467,89	546620,61	543574,01	540008,09	

b. Fonction de réponse

En utilisant les données de la gamme d'étalonnage pour générer les modèles de calibration suivants à partir des données recueillies pour chaque série :

Modèle de régression	Paramètres du modèle	Série 1	Série 2	Série 3	Série 4	Série 5
Modèle Linéaire	<i>a</i> ₀	115,59	137,1	110,43	112,19	112,1
Simple	<i>a</i> ₁	5235,23	5241,04	5239,73	5238,84	5240,77
Madèla Daoina Comé	<i>a</i> ₀	0,978	1,088	1,023	0,981	1,029
Modele Racine Carre	<i>a</i> ₁	72,134	72,165	72,134	72,15	72,142
Modèle Logarithmique	<i>a</i> ₀	8,58993	8,59388	8,59247	8,59082	8,59263
(Népérien)	<i>a</i> ₁	0,98745	0,98653	0,98596	0,98713	0,98612
	<i>a</i> ₀	-21	-27	-16	-18	-9,4
Modèle Quadratique	<i>a</i> ₁	5363,9	5395,1	5359,2	5361,4	5355,1
	<i>a</i> ₂	-12,65	-15,15	-11,74	-12,05	-11,24

Tableau11:Les paramètres des modèles de calibration du Vanadium

c. Validation du Modèle Linéaire Simple

4 Prédiction Inverse

En utilisant la fonction inverse du modèle d'étalonnage, selon le modèle mathématique suivant : x = z=f-1(Y), tel que z est la concentration retrouvée.

Niveeu	Concentration	Concentration retrouvée (ppm)						
Niveau	introduite (ppm)	Série n°1	Série n°2	Série n°3	Série n°4	Série n°5		
	24,6	24,56	23,97	24,52	24,05	24,16		
1	24,6	24,10	24,49	24,11	23,56	24,16		
	24,6	24,56	24,53	24,51	24,33	24,54		
	31,5	31,49	32,42	31,62	32,60	32,21		
2	31,5	31,86	32,59	31,91	32,21	31,07		
	31,5	32,33	33,37	31,80	31,85	32,18		
	105,0	104,44	103,67	102,44	104,36	104,47		
3	105,0	104,41	104,16	103,02	103,22	103,89		
	105,0	104,23	104,43	104,30	103,74	103,02		

Tableau11: Les concentrations retrouvées du Vanadium- Modèle Linéaire Simple.

4 Calcul de justesse, de fidélité et des intervalles de tolérance

Les calculs sont effectués comme il est indiqué dans la partie théorique, ces résultats sont donnés par des feuilles de calcul du logiciel Microsoft Excel qui sont développées par Max Feinberg. (Voir P : 12 - P : 14).

Tableau 11:Résultats de calcul de justesse, de fidélité et de intervalles de tolérance de la méthodede dosage du V- Modèle Linéaire Simple.

Niveau	1	2	3
Valeur de référence	24,6	31,5	105
Moyenne niveau	24,28	32,10	103,85
Biais absolu	-0,32	0,60	-1,15
Biais relatif (%)	-1,31	1,90	-1,09
Taux de recouvrement (%)	98,69	101,90	98,91
Écart-type de répétabilité (S _r)	0,29	0,45	0,62
Coefficient de variation de répétabilité CV _r (%)	1,20	1,40	0,60
Écart-type de fidélité (S _{FI})	0,29	0,56	0,65
Coefficient de variation de fidélité CV _{FI} (%)	1,21	1,75	0,63
Valeur basse intervalle tolérance	23,87	31,29	102,94
Valeur haute intervalle tolérance	24,69	32,91	104,77
Limite basse tolérance (%)	97,03	99,32	98,04
Limite haute tolérance (%)	100,35	104,49	99,78
Limite d'acceptabilité basse	90,00	90,00	90,00
Limite d'acceptabilité haute	110,00	110,00	110,00

Construction du profil d'exactitude

Figure 8:Profil d'exactitude de la méthode de dosage du V – Modèle Linéaire Simple.

• Interprétation :

On observe que les limites de tolérance à 80% sont comprises entre les limites d'acceptabilité à \pm 10% dans un domaine de validité qui s'étend de 24,6 ppm à 105ppm. La méthode est validée dans ce domaine. Par ailleurs, on constate que, d'une part la fidélité varie en fonction de la concentration puisque son coefficient de variation passe de 0,63% à 1,75%, d'autre part, la justesse varie aussi puisque le biais de justesse varie de -1,09% à +1,90%. Cette remarque souligne l'intérêt de procéder aux calculs niveau par niveau. Cependant, ce biais n'a pas d'influence importante sur la validité de la méthode.

Calcul d'incertitude

Tableau 12:Calcul de l'incertitude de la méthode de dosage du V – Modèle Linéaire Simple.

Niveau	1	2	3
Valeur de référence	24,6	31,5	105
Incertitude-type composée	0,304	0,593	0,678
Incertitude relative (%)	2,470	3,768	1,292

• Conclusion

On constate que le coefficient de variation de la fidélité ne dépasse pas 1,75 % (le plus haut des trois niveaux) et le biais relatif converge vers 1,9%, donc l'erreur totale sera la combinaison de ces deux erreurs, vaut à 3,65%. Alors elle reste inférieure à la limite d'acceptabilité $\pm 10\%$. Aussi l'incertitude ne dépasse pas 3,768% (le plus haut des trois niveaux).

On peut donc conclure la capacité de la méthode à quantifier exactement la concentration du vanadium dans les matériaux de références sur le domaine de validité ainsi défini.

d. Validation du Modèle Racine Carrée

4 Prédiction Inverse

En utilisant la fonction inverse du modèle d'étalonnage, selon le modèle mathématique suivant : x = z=f-1(Y), tel que z est la concentration retrouvée.

Nilizaou	Concentration	Concentration retrouvée (ppm)					
Niveau	introduite (ppm)	Série n°1	Série n°2	Série n°3	Série n°4	Série n°5	
	24,60	24,602	23,998	24,574	24,093	24,208	
1	24,60	24,138	24,527	24,163	23,601	24,211	
	24,60	24,602	24,559	24,563	24,370	24,589	
	31,50	31,552	32,482	31,702	32,674	32,297	
2	31,50	31,920	32,650	31,990	32,280	31,150	
	31,50	32,393	33,435	31,885	31,924	32,260	
3	105,00	104,828	104,055	102,893	104,766	104,923	
	105,00	104,790	104,543	103,472	103,628	104,342	
	105,00	104,617	104,816	104,762	104,143	103,468	

Tableaul1: Les concentrations retrouvées du Vanadium- Modèle Racine Carrée.

4 Calcul de justesse, de fidélité et des intervalles de tolérance

Les calculs sont effectués comme il est indiqué dans la partie théorique, ces résultats sont donnés par des feuilles de calcul du logiciel Microsoft Excel qui sont développées par Max Feinberg. (Voir P : 12 - P : 14).

Tableau 13: Résultats de calcul de justesse, de fidélité et des intervalles de tolérance de la méthode de dosage du V- Modèle Racine Carrée.

Niveau	1	2	3
Valeur de référence	24,6	31,5	105
Moyenne niveau	24,32	32,17	104,27
Biais absolu	-0,28	0,67	-0,73
Biais relatif (%)	-1,14	2,14	-0,70
Taux de recouvrement (%)	98,86	102,14	99,30
Écart-type de répétabilité (S _r)	0,29	0,45	0,62
Coefficient de variation de répétabilité CV _r (%)	1,20	1,41	0,60
Écart-type de fidélité (S _{FI})	0,29	0,56	0,64
Coefficient de variation de fidélité CV _{FI} (%)	1,21	1,73	0,61
Valeur basse intervalle tolérance	23,91	31,37	103,38
Valeur haute intervalle tolérance	24,73	32,98	105,16
Limite basse tolérance (%)	97,19	99,58	98,46
Limite haute tolérance (%)	100,53	104,70	100,15
Limite d'acceptabilité basse	90,00	90,00	90,00
Limite d'acceptabilité haute	110,00	110,00	110,00

U *Construction du profil d'exactitude*

Figure 9: Profil d'exactitude de la méthode de dosage du V – Modèle Racine Carrée.

On observe également que les limites de tolérance à 80% sont comprises entre les limites d'acceptabilité à $\pm 10\%$ dans un domaine de validité qui s'étend de 24,6 ppm environ à 105 ppm. La méthode est validée dans ce domaine.

4 Calcul d'incertitude

Tableau 14: Calcul de l'incertitude de la méthode de dosage du V – Modèle Racine Carrée.

Niveau	1	2	3
Valeur de référence	24,6	31,5	105
Incertitude-type composée	0,305	0,589	0,660
Incertitude relative (%)	2,478	3,738	1,257

• Conclusion

Pour ce modèle l'erreur totale est de 3.87% et l'incertitude ne dépasse pas 3,738 % (le plus haut des trois niveaux).

On peut donc conclure la capacité de la méthode à quantifier exactement la concentration du vanadium dans les matériaux de références sur le domaine de validité ainsi défini.

e. Validation du Modèle Logarithmique (Népérien)

4 Prédiction Inverse

En utilisant la fonction inverse du modèle d'étalonnage, selon le modèle mathématique suivant :

x = z = f - 1(Y), tel que z est la concentration retrouvée.

Tableau11: Les concentrations retrouvées du Vanadium- Modèle Logarithmique (Népérien).

Nilitanu	Concentration	Concentration retrouvée (ppm)					
Niveau	introduite (ppm)	Série n°1	Série n°2	Série n°3	Série n°4	Série n°5	
	24,60	24,923	24,316	24,957	24,416	24,570	
1	24,60	24,447	24,858	24,535	23,912	24,574	
	24,60	24,923	24,890	24,945	24,700	24,962	
	31,50	32,043	33,020	32,291	33,218	32,888	
2	31,50	32,422	33,193	32,587	32,814	31,707	
	31,50	32,907	34,000	32,479	32,447	32,850	
	105,00	107,860	107,219	106,333	107,911	108,385	
3	105,00	107,820	107,728	106,940	106,725	107,778	
	105,00	107,641	108,013	108,290	107,262	106,863	

4 Calcul de justesse, de fidélité et des intervalles de tolérance

Les calculs sont effectués comme il est indiqué dans la partie théorique, ces résultats sont donnés par des feuilles de calcul du logiciel Microsoft Excel qui sont développées par Max Feinberg. (Voir P : 12 - P : 14).

Tableau 15:résultats de calcul de justesse, de fidélité et des intervalles de tolérance de la méthode de dosage du V- Modèle Logarithmique (Népérien).

Niveau	1	2	3
Valeur de référence	24,6	31,5	105
Moyenne niveau	24,66	32,72	107,52
Biais absolu	0,06	1,22	2,52
Biais relatif (%)	0,25	3,89	2,40
Taux de recouvrement (%)	100,25	103,89	102,40
Écart-type de répétabilité (S _r)	0,30	0,47	0,65
Coefficient de variation de répétabilité CV _r (%)	1,21	1,42	0,61
Écart-type de fidélité (S _{FI})	0,31	0,56	0,65
Coefficient de variation de fidélité CV _{FI} (%)	1,24	1,71	0,61
Valeur basse intervalle tolérance	24,23	31,92	106,61
Valeur haute intervalle tolérance	25,09	33,53	108,42
Limite basse tolérance (%)	98,51	101,33	101,54
Limite haute tolérance (%)	101,99	106,44	103,26
Limite d'acceptabilité basse	90,00	90,00	90,00
Limite d'acceptabilité haute	110,00	110,00	110,00

4 Construction du profil d'exactitude

Figure 10: Profil d'exactitude de la méthode de dosage du V – Modèle Logarithmique (Népérien).

• Interprétation :

D'après le profil d'exactitude, on remarque également que la méthode d'analyse est valide sur l'ensemble des niveaux de concentration avec une erreur totale de 5,6%.

4 Calcul d'incertitude

Tableau 16: Calcul de l'incertitude de la méthode du V- Modèle Logarithmique (Népérien).

Niveau	1	2	3
Valeur de référence	24,6	31,5	105
Incertitude-type composée	0,317	0,589	0,672
Incertitude relative (%)	2,581	3,742	1,280

• Conclusion

On peut donc conclure la capacité de la méthode à quantifier exactement la concentration du vanadium dans les matériaux de références sur le domaine de validité ainsi défini avec une incertitude qui ne dépasse pas 3,742%.

f. Validation du Modèle Quadratique

4 Prédiction Inverse

En utilisant la fonction inverse du modèle d'étalonnage, selon le modèle mathématique suivant : x = z=f-1(Y), tel que z est la concentration retrouvée.

Nivoqu	Concentration	Concentration retrouvée (ppm)				
Niveau	introduite (ppm)	Série n°1	Série n°2	Série n°3	Série n°4	Série n°5
	24,60	25,538	25,079	25,414	24,922	24,974
1	24,60	25,025	25,676	24,964	24,383	24,978
	24,60	25,538	25,712	25,401	25,226	25,390
2	31,50	33,388	34,957	33,379	34,565	33,970
	31,50	33,814	35,160	33,707	34,111	32,671
	31,50	34,362	36,109	33,587	33,702	33,928
	105,00	170,608	153,092	148,473	158,358	148,616
3	105,00	170,420	169,124	150,100	154,627	147,126
	105,00	169,573	170,110	153,854	156,289	144,928

Tableau11: Les concentrations retrouvées du Vanadium- Modèle Quadratique.

4 Calcul de justesse, de fidélité et des intervalles de tolérance

Les calculs sont effectués comme il est indiqué dans la partie théorique, ces résultats sont donnés par des feuilles de calcul du logiciel Microsoft Excel qui sont développées par Max Feinberg. (Voir P : 12 - P : 14).

Tableau 17:Résultats de calcul de la justesse, la fidélité et les intervalles de tolérance de la méthode de dosage du V- Modèle Quadratique.

Niveau	1	2	3
Valeur de référence	24,6	31,5	105
Moyenne niveau	25,21	34,09	157,69
Biais absolu	0,61	2,59	52,69
Biais relatif (%)	2,50	8,23	50,18
Taux de recouvrement (%)	102,50	108,23	150,18
Écart-type de répétabilité (S _r)	0,32	0,52	4,61
Coefficient de variation de répétabilité CV _r (%)	1,28	1,54	2,92
Écart-type de fidélité (S _{FI})	0,36	0,89	10,25
Coefficient de variation de fidélité CV _{FI} (%)	1,44	2,60	6,50
Valeur basse intervalle tolérance	24,70	32,74	141,43
Valeur haute intervalle tolérance	25,73	35,45	173,95
Limite basse tolérance (%)	100,41	103,93	134,69
Limite haute tolérance (%)	104,59	112,54	165,66
Limite d'acceptabilité basse	90,00	90,00	90,00
Limite d'acceptabilité haute	110,00	110,00	110,00

Etude Expérimentale

4 Construction du profil d'exactitude

Figure 11:Profil d'exactitude de la méthode de dosage du V – Modèle Quadratique.

• Interprétation :

On observe que les limites de tolérance à 80% ne sont pas comprises entre les limites d'acceptabilité à $\pm 10\%$ (niveaux 2 et 3).Par ailleurs, on constate que, d'une part la fidélité varie en fonction de la concentration puisque son coefficient de variation passe de 1,44% à 6,50%, d'autre part, la justesse varie aussi puisque le biais de justesse varie de 2% à 50,18%. Cette remarque souligne l'intérêt de procéder aux calculs niveau par niveau. Donc on peut conclure que la méthode n'est pas valide dans ce domaine.

4 Calcul d'incertitude

Tableau 18: Calcul de l'incertitude de la méthode du V- Modèle Quadratique.

Niveau	1	2	3
Valeur de référence	24,6	31,5	105
Incertitude-type composée	0,379	0,951	11,097
Incertitude relative (%)	3,083	6,035	21,137

• Conclusion

On remarque que le coefficient de variation de la fidélité dépasse 6,5% (le plus haut des trois niveaux) et le biais relatif converge vers 50,18%, donc l'erreur totale vaut à 57,3%. Alors elle dépasse la limite d'acceptabilité $\pm 10\%$. Aussi l'incertitude dépasse 21,13%.

On peut donc conclure que la méthode n'est pas capable de quantifier exactement la concentration du vanadium dans les matériaux de références sur ce domaine de validation.

Récapitulatif

D'après cette étude on constate que les trois modèles de régression sont validés (la régression linéaire simple, la régression racine carré ,la régression logarithmique (népérien) et ayant des incertitudes de mesure très proches par contre le modèle de la régression quadratique n'est pas valide .On comparant les incertitudes de mesure pour les modèles de régression validés, on peut conclure que le modèle racine carré est le meilleure modèle car c'est celui qui a l'incertitude la

Etude Expérimentale

plus faible, mais on peut travailler par le modèle linéaire simple car c'est le modèle le plus facile à appliquer.

II.5 Validation du Chrome-----

Remarque : On suivant la même démarche de validation pour valider la méthode de dosage du Crome, les données et les résultats de calcul de la fidélité, la justesse, les intervalles de tolérances et l'incertitude de mesure de chaque modèle de calibration sont bien présentés dans l'annexe II. Voici un récapitulatif de cette validation.

modèle de calibration	Modèle Linéaire Simple	Modèle Racine Carrée	Modèle Logarithmique (Népérien)
Biais relatif (%)	-0,47	2,91	23,71
Coefficient de variation de fidélité CV _{FI} (%)	1,08	7,48	42,54
Exactitude	1,55	10,39	66,25
Incertitude relative (%)	2,234	16,75	115,308

• Profil d'exactitude du Modèle Linéaire Simple

Figure 12: Profil d'exactitude de la méthode de dosage du Cr – Modèle Linéaire Simple.

• Interprétation :

On observe que les limites de tolérance à 80% sont comprises entre les limites d'acceptabilité à ± 10 % dans un domaine de validité qui s'étend de 27,8 ppm environ à 67 ppm. La méthode est validée dans ce domaine avec une erreur totale de 1,55%, alors elle reste inférieure à la limite d'acceptabilité ± 10 %. Aussi l'incertitude ne dépasse pas 2,234 %.

On peut donc conclure la capacité de la méthode à quantifier exactement la concentration du Chrome dans les matériaux de références sur le domaine de validité ainsi défini.

• Profil d'exactitude du Modèle Racine Carrée

Figure 13: Profil d'exactitude de la méthode de dosage du Cr – Modèle Racine Carrée.

• Interprétation :

On observe que les limites de tolérance à 80% ne sont pas comprises entre les limites d'acceptabilité à $\pm 10\%$ pour tous les niveaux et l'erreur totale (10,39%) dépasse la limite d'acceptabilité ($\pm 10\%$), aussi l'incertitude dépasse 16,756% .On peut donc conclure que pour ce modèle la méthode n'est pas capable de quantifier exactement la concentration du Cr dans les matériaux de références sur ce domaine de validation.

Profil d'exactitude du Modèle Logarithmique (Népérien)

Figure 14: Profil d'exactitude de la méthode de dosage du Cr – Modèle Logarithmique (Népérien).

• Interprétation

Pour ce modèle, on observe que les limites de tolérance à 80% dépassent clairement les limites d'acceptabilité à $\pm 10\%$ pour tous les niveaux avec une erreur totale de 66,25% et une incertitude de 115,308% .On peut conclure donc que la méthode n'est pas valide dans ce domaine de validation.

4 Conclusion

D'après cette étude on constate que seul le modèle linéaire simple qu'est validé, donc pour quantifier exactement la concentration du Cr dans les matériaux de références sur ce domaine de validation, on doit travailler par ce modèle.

II.6 Validation du Cobalt-----

On suivant la même démarche de validation pour valider la méthode de dosage du Cobalt, les données et les résultats de calcul de la fidélité, la justesse, les intervalles de tolérances et l'incertitude de mesure de chaque modèle de calibration sont bien présentés dans l'annexe III. Voici un récapitulatif de cette validation.

Tableau 20: Récapitulatif des résultats de la validation du Co

Modèle de calibration	Modèle Linéaire Simple	Modèle Racine Carrée	Modèle Logarithmique (Népérien)	Modèle Quadratique.
Biais relatif (%)	2,7	2,41	2	2,06
Coefficient de variation de fidélité CV _{FI} (%)	2,49	2,5	2,52	2,51
Exactitude	5,19	4,91	4,52	4,57
Incertitude relative (%)	5,135	5,144	5,188	5,153

Les profils d'exactitude de tous les modèles de régression sont les suivants :

Profil d'exactitude du Modèle Linéaire Simple

Figure 15 : Profil d'exactitude de la méthode de dosage du Co-modèle Linéaire Simple.

• Profil d'exactitude du Modèle Racine Carrée

Figure 16: Profil d'exactitude de la méthode de dosage du Co – Modèle Racine Carrée.

• Profil d'exactitude du Modèle Logarithmique (Népérien)

Figure 17: Profil d'exactitude de la méthode de dosage du Co – Modèle Logarithmique (Népérien).

Profil d'exactitude du Modèle Quadratique

Figure 18:Profil d'exactitude de la méthode de dosage du Co – Modèle Quadratique.

• Interprétation

Pour tous les modèles de régression étudies, on observe que les limites de tolérance à 80% sont comprises entre les limites d'acceptabilité à $\pm 10\%$ dans un domaine de validité qui s'étend de 3,81 ppm environ à 12,5 ppm. La méthode est validée dans ce domaine. Par ailleurs, on constate que la fidélité et la justesse varient en fonction de la concentration. Cette remarque souligne l'intérêt de procéder aux calculs niveau par niveau. Cependant, ce biais n'a pas d'influence importante sur la validité de la méthode.

4 Conclusion :

On constate que tous les modèles de régression sont validés car ils ont des erreurs totales inferieures à la limite d'acceptabilité $\pm 10\%$. Le modèle de régression linéaire simple est le meilleur modèle car c'est celui qui a l'incertitude la plus faible et aussi il est facile à appliquer.

II.7 Validation du Nickel------

On suivant la même démarche de validation pour valider la méthode de dosage du Nickel, les données et les résultats de calcul de la fidélité, la justesse, les intervalles de tolérances et l'incertitude de mesure de chaque modèle de calibration sont bien présentés dans l'annexe IV. Voici un récapitulatif de cette validation.

modèle de calibration	Modèle Linéaire Simple	Modèle Racine Carrée	Modèle Logarithmique (Népérien)	Modèle Quadratique.
Biais relatif (%)	-10,5	-10,61	-10,56	8,28
Coefficient de variation de fidélité CV_{FI} (%)	0,58	0,58	0,75	1,24
Exactitude	11,08	11,19	11,31	9,52
Incertitude relative (%)	1,338	1,335	1,34	2,292

Tableau 21 : Récapitulatif des résultats de la validation du Ni

Les profils d'exactitude de tous les modèles de régression sont les suivants :

115% Profil d'exactitude du Ni -RLS 110% 105% Exactitude (%) 100% 2,0 3,5 1,0 2,5 3,0 95% 90% Taux de recouvrement (%) Limite basse tolérance (%) 85% Limite haute tolérance (%) Limite d'acceptabilité basse 80% Niveau Limite d'acceptabilité haute

• Profil d'exactitude du Modèle Linéaire Simple

Figure 19 : Profil d'exactitude de la méthode de dosage du Ni –modèle Linéaire Simple.

• Interprétation :

On observe que les limites de tolérance à 80% sont comprises entre les limites d'acceptabilité à $\pm 10\%$ sauf le premier niveau qui présente un niveau critique dans un domaine de validité qui s'étend de 13,2 ppm environ à 36,3 ppm. La méthode est validée dans ce domaine. Par ailleurs, on remarque, d'une part que la fidélité varie en fonction de la concentration puisque son coefficient de variation passe de 0,01% à 0,58%, d'autre part, la justesse varie aussi puisque le biais de justesse varie de -10,5% à +6,26%.

On constate aussi que l'erreur totale tend vers 11,08, donc elle dépasse la limite d'acceptabilité $\pm 10\%$. Aussi l'incertitude est de 1,338 % (le plus haut des trois niveaux).

Figure 20: Profil d'exactitude de la méthode de dosage du Ni – Modèle Racine Carrée.

L'interprétation de ce modèle de calibration est identique à celle du modèle linière simple.

• Profil d'exactitude du Modèle Logarithmique (Népérien)

Figure 21: Profil d'exactitude de la méthode de dosage du Ni – Modèle Logarithmique (Népérien).

• Interprétation :

Ce profil d'exactitude montre également que les résultats de la validation du modèle logarithmique (népérien) sont identiques aux résultats des deux premiers modèles.

• Profil d'exactitude du Modèle Quadratique

Figure 22: profil d'exactitude de la méthode de dosage du Ni – Modèle Quadratique.

• Interprétation :

On observe que les limites de tolérance à 80 % sont comprises entre les limites d'acceptabilité à ± 10 %, sauf le deuxième niveau qui présente un niveau critique dans un domaine de validité qui s'étend de 13,1 ppm environ à 36,3ppm. La méthode est validée dans ce domaine. Par ailleurs, on remarque, d'une part la fidélité varie en fonction de la concentration puisque son coefficient de variation passe de 0,05% à 1,21%, d'autre part, la justesse varie aussi puisque le biais de justesse varie de -8,28% à +9,44%. On constate aussi que l'erreur totale tend vers 9,52, donc elle est inférieure à la limite d'acceptabilité $\pm 10\%$. Aussi l'incertitude est de 2,292 %

Conclusion

D'après la comparaison ces modèles on constate que le modèle de régression quadratique est le modèle qui peut être adopté pour prédire la concentration du Ni dans les matériaux de référence dans ce domaine de validation avec une incertitude qui ne dépasse pas 2,292%.

II.8 Validation du Cuivre-----

On suivant la même démarche de validation pour valider la méthode de dosage du Cuivre, les données et les résultats de calcul de la fidélité, la justesse, les intervalles de tolérances et l'incertitude de mesure de chaque modèle de calibration sont bien présentés dans l'annexe V. Voici un récapitulatif de cette validation.

modèle de calibration	Modèle Linéaire Simple	Modèle Racine Carrée	Modèle Logarithmique (Népérien)	Modèle Quadratique.
Biais relatif (%)	-1,89	1,94	2	2,06
Coefficient de variation de fidélité CV_{FI} (%)	0,7	0,7	2,52	2,51
Exactitude	2,59	2,64	4,52	4,57
Incertitude relative (%)	5,135	5,144	5,188	5,153

Tableau 22: Récapitulatif des résultats de la validation du Cu

Profil d'exactitude du Modèle Linéaire Simple 120% Profil d'exactitude du Cu -RLS 110% Exactitude (%) 100% 1,5 2,0 0,5 1,0 2,5 3,0 3,5 90% Taux de recouvrement (%) Limite basse tolérance (%) Limite haute tolérance (%) 80% - Limite d'acceptabilité basse Niveau

Figure 23: Profil d'exactitude de la méthode de dosage du Cu –modèle Linéaire Simple.

• Profil d'exactitude du Modèle Racine Carrée

Figure 24: Profil d'exactitude de la méthode de dosage du Cu – Modèle Racine Carrée.

• Profil d'exactitude du Modèle Logarithmique (Népérien)

Figure 25: Profil d'exactitude de la méthode de dosage du Cu – Modèle Logarithmique (Népérien).

• Profil d'exactitude du Modèle Quadratique

Figure 26:Profil d'exactitude de la méthode de dosage du Cu – Modèle Quadratique.

• Interprétation

Pour tous les modèles de régression, on a observé que les limites de tolérance à 80% sont comprises entre les limites d'acceptabilité à $\pm 10\%$ dans un domaine de validité qui s'étend de 25,5 ppm environ à 45,9 ppm. La méthode est validée dans ce domaine. Par ailleurs, on constate que la fidélité et la justesse varient en fonction de la concentration puisque le coefficient de variation de la fidélité intermédiaire et le biais de la justesse varient d'un niveau à l'autre. Cette remarque souligne l'intérêt de procéder aux calculs niveau par niveau. Cependant, ce biais n'a pas d'influence importante sur la validité de la méthode.

4 Conclusion

D'apes cette étude, tous les modèles de régression sont valides car ils ont des erreurs totales inferieures à la limite d'acceptabilité $\pm 10\%$. Le modèle de régression linéaire simple est le meilleur modèle car c'est celui qui a l'incertitude la plus faible et aussi il est facile à appliquer.

On peut donc conclure que la méthode est capable de quantifier exactement la concentration du cuivre dans les matériaux de références sur le domaine de validation prédéfini.

II.9 Validation du Zinc-----

On suivant la même démarche de validation pour valider la méthode de dosage du Zinc, les données et les résultats de calcul de la fidélité, la justesse, les intervalles de tolérances et l'incertitude de mesure de chaque modèle de calibration sont bien présentés dans l'annexe VI. Voici un récapitulatif de cette validation.

modèle de calibration	Modèle Linéaire Simple	Modèle Racine Carrée	<i>Modèle Logarithmique (Népérien)</i>
Biais relatif (%)	-6,01	-5,47	7,51
Coefficient de variation de fidélité CV _{FI} (%)	0,97	0,96	0,97
Exactitude	6,98	6,43	8,48
Incertitude relative (%)	2,14	2,158	2,262

Tableau 23: Récapitulatif des résultats de la validation du Zn

Figure 27: Profil d'exactitude de la méthode de dosage du Zn –modèle Linéaire Simple.

• Profil d'exactitude du Modèle Racine Carrée :

Figure 28: Profil d'exactitude de la méthode de dosage du Zn – Modèle Racine Carrée.

1. Profil d'exactitude du Modèle Logarithmique (Népérien)

Figure 29: profil d'exactitude de la méthode de dosage du Zn – Modèle Logarithmique (Népérien).

D'après les profils d'exactitudes de tous les modèles de régression étudies, on a observé que les limites de tolérance à 80% sont comprises entre les limites d'acceptabilité à ± 10 % dans un domaine de validité qui s'étend de 53 ppm environ à 93 ppm. La méthode est validée dans ce domaine. Par ailleurs, on constate que la fidélité et la justesse varient en fonction de la concentration puisque le coefficient de variation de la fidélité intermédiaire et le biais de la justesse varient d'un niveau à l'autre. Cependant, ce biais n'a pas d'influence importante sur la validité de la méthode.

4 Conclusion

D'apes cette étude, tous les modèles de régression sont valides car ils ont des erreurs totales inferieures à la limite d'acceptabilité $\pm 10\%$. Le modèle de régression linéaire simple est le meilleur modèle car c'est celui qui a l'incertitude la plus faible (2,14%) et aussi il est facile à appliquer. On peut donc conclure que la méthode est capable de quantifier exactement la concentration du Zinc dans les matériaux de références sur le domaine de validation prédéfini.

II.10 Validation d'Arsenic-----

On suivant la même démarche de validation pour valider la méthode de dosage du Zinc, les données et les résultats de calcul de la fidélité, la justesse, les intervalles de tolérances et l'incertitude de mesure de chaque modèle de calibration sont bien présentés dans l'annexe VII. Voici un récapitulatif de cette validation.

modèle de calibration	Modèle Linéaire Simple	Modèle Racine Carrée	Modèle Logarithmique (Népérien)	Modèle Quadratique.
Biais relatif (%)	37,18	40,74	71,59	-9,55
Coefficient de variation de fidélité CV _{FI} (%)	2,05	2,08	2,15	2,03
Exactitude	39,23	42,82	73,74	11,58
Incertitude relative (%)	4,37	4,438	4,699	4,313

Tableau 24 : Récapitulatif des résultats de la validation du d'As

Figure 30: Profil d'exactitude de la méthode de dosage d'As -modèle Linéaire Simple.

On observe que les limites de tolérance à 80% pour les deux premiers niveaux sont comprises entre les limites d'acceptabilité à $\pm 10\%$ mais elles les dépassent fortement pour le troisième niveau est ceci peut être due à la méthode de minéralisation utilisée ou au problème des interférences. Par ailleurs, on remarque, d'une part que la fidélité varie en fonction de la concentration puisque son coefficient de variation passe de 0,26% à 2,05%, d'autre part, la justesse varie aussi puisque le biais de justesse varie de -1,48% à 37,18%, avec une incertitude est de 4,37 % (le plus haut des trois niveaux).

Profil d'exactitude du Modèle Racine Carrée

Figure 31: Profil d'exactitude de la méthode de dosage d'As – Modèle Racine Carrée.

• Interprétation :

Ce profil d'exactitude montre également les mêmes résultats de la validation du modèle linéaire simple avec une erreur totale de 42,82%, et une incertitude de 4,438%.

• Profil d'exactitude du Modèle Logarithmique (Népérien)

Figure 32: Profil d'exactitude de la méthode de dosage d'As – Modèle Logarithmique (Népérien).

L'interprétation de ce modèle de calibration est identique à celles des deux premiers modèles, par contre on remarque que l'erreur totale augmente (73,74%) et l'incertitude également (4,699%).

• Profil d'exactitude du Modèle Quadratique

Figure 33:Profil d'exactitude de la méthode de dosage d'As – Modèle Quadratique.

• Interprétation :

Pour ce modèle, on observe que les limites de tolérance à 80 % sont comprises entre les limites d'acceptabilité à ± 10 % dans un domaine de validité qui s'étend de 10,3 ppm environ à 467 ppm, mais on remarque que le troisième niveau est un niveau critique ,donc la méthode est validée dans ce domaine. Par ailleurs, on constate que, d'une part la fidélité varie en fonction de la concentration puisque son coefficient de variation passe de 0,24% à 2,03%, d'autre part, la justesse varie aussi puisque le biais de justesse varie de -9,55% à -1,61%, avec une incertitude de 4,313 % (le plus haut des trois niveaux).

4 Conclusion :

D'après la comparaison des résultats trouvés on constate que le modèle quadratique est le modèle qui peut être adopté pour prédire la concentration d'As dans les matériaux de référence dans le domaine de validation prédéfini.

Conclusion Générale

A travers ce travail, nous avons effectué une validation analytique par profil d'exactitude de la méthode d'analyse de sept métaux présents dans trois matériaux de références par l'ICP-OES. On se base sur le profil d'exactitude pour accepter ou rejeter cette méthode analytique suivant l'usage attendu, et également pour sélectionner le modèle de régression le plus approprié pour la calibration .Ce profil permet de garantir qu'une proportion définie des futurs résultats qui seront fournis par la méthode lors de son utilisation en routine, sera bien inclue dans des limites d'acceptation fixées a priori en fonction des besoins des utilisateurs. De cette manière, l'objectif de la validation est parfaitement cohérant avec celui de toute méthode quantitative : obtenir des résultats exacts.

En effet, cette étude a montré que la méthode d'analyse "ICP-OES" utilisée pour l'analyse de sept métaux (Vanadium (V), Chrome (Cr), Cobalt (Co), Nickel (Ni), Cuivre (Cu), Zinc (Zn), Arsenic (As)) présents sous forme de traces dans trois matériaux de références certifies est capable de quantifier exactement les concentrations de ces métaux chacun sur son domaine de validation prédéfini, avec le module de calibration le plus adéquat.

Tout aussi important, avec le profil d'exactitude nous avons réussi à estimer l'incertitude de mesure de notre méthode analytique pour tous les métaux traités sans avoir recours à des expériences supplémentaires.

<u>Références Bibliographiques</u>

[1] http://www.cetemco.ma/.

[2] https://www.aquaportail.com/definition-12006-spectre-d-emission.html

[3]https://cais.uga.edu/facilities/plasma-chemistry-laboratory/guide-selecting-the-most-suitable-technique/

[4] Asian J. Inductively Coupled Plasma –Optical Emission Spectroscopy: A Review, 2013, Vol.3, Pg 24-3.

[5] Fatna Bendjebbar. Modélisation hydrodynamique d'une torche à plasma couplée

inductivement, thèse de doctorat. ORAN : UNIVERSITE DES SCIENCES ET DE LA

TECHNOLOGIE D'ORAN MOHAMED BOUDIAF, Soutenue le 9 avril 2016, 212p.

[6] FUGER Denis. Analyse de métaux par ICP-AES. Mise en application de processus

analytique complexe. Strasbourg : Université de Strasbourg IUT Robert Schuman, 2011, 36p.

[7] https://tpesabrelaser.wordpress.com/2016/03/13/la-torche-a-plasma/

[8] Fanny Demay. Torche à Plasma ICP. BTS BioAnalyses & Contrôles, 3p.

[9] Bouchra RAMZI. Analyse par Spectrométrie ICP-AES, Unité Surveillance de l'environnement CNESTEN, 2011, p 31.

[10] Pierret MC, Stille P, Prunier J, Viville D, Chabaux F. Analyses multi-élémentaires par ICP-AES ICP-MS, laboratoire d'Hydrologie et de Géochimie de Strasbourg, Université de Strasbourg, 2014, P15.

[11] https://metalblog.ctif.com/2018/04/02/lanalyse-des-metaux-par-voie-humide-icp-oes/

[12] https://www.mines-stetienne.fr/spin-fr/ressources/caracterisation/icp-aes/

[13] MOUHSIN Mouad. Validation analytique par profil d'exactitude de la méthode de dosage simultané de métronidazole et de spiramycine par HPLC, Rabat, Faculté de médecine et de pharmacie RABAT, 2014, p46. 66

Références Bibliographiques

[17] Guide de validation des méthodes d'analyses. Laboratoires de l'Anses, 2015, p67.

[18] Max Feinberg et Michel Laurentie. Cahier des Techniques de l'Inra : Validation des méthodes d'analyse quantitative par le profil d'exactitude. Paris, 2010, P140.

[19] John Cauduro. Ultra-fast determination of base metals in geochemical samples using the 5100 SVDV ICP-OES Agilent Technologies, 2015.

[20] Laurence Whitty-Léveillé. Développement d'une méthode d'analyse des éléments de terres rares (ETR) par ICP-MS/MS, Canada, université LAVAL, 2016, P79.

[21] ISO 5725- 1, Accuracy (trueness and precision) of measurement methods and results — Part1: Introduction and basic principles

[22] ISO 5725- 2, Application of statistics — Accuracy (trueness and precision) of measurement methods and results — Part 2: Basic method for the determination of repeatability and reproducibility of a standard measurement method

[23] ISO 5725- 3, Accuracy (trueness and precision) of measurement methods and results -Part3:Intermediate measures of the precision of a standard measurement method

[24] ISO 5725- 4, Accuracy (trueness and precision) of measurement methods and results -Part 4: Basic methods for the determination of the trueness of a standard measurement method

[25] ISO 5725-6, Application de la statistique - Exactitude (justesse et fidélité) des résultats et méthodes de mesure - Partie 6 : Utilisation dans la pratique des valeurs d'exactitude.

[26] SFSTP-1,Validation of quantitative analytical procedures, Harmonization of aproaches SFSTP-2,Validation of quantitative analytical procedures, Harmonization of aproaches: Part II – Statistics.

[27] SFSTP-3,Quantitative analytical procedures validation: harmonization of the approaches Part III. Examples of application.

[28] <u>http://dictionnaire.sensagent.leparisien.fr/%C3%89l%C3%A9ment</u> trace%20m%C3%A9tallique/fr-fr/

Annexes

Annexes

Annexe I : Composition des matériaux de références

• **OREAS 277**

OREAS 277 a été préparé à partir d'un mélange de minerai aurifère à haute teneur et de sédiments stériles (schiste, quartz et calcaire). Le minerai provenait de la mine Leeville, située près de la crête ouest des montagnes Tuscarora, à environ 20 miles au nord-ouest de Carlin dans le Nevada, aux États-Unis. OREAS 277 contient 72 valeurs certifiées, y compris la spéciation C et S et les suites complètes ICP-OES et MS par digestion à l'eau régale.

Analyte	Certified Value	1SD	95% Confidence Low	95% Confidence High	Method
Au, Gold (ppm)	3.39	0.120	3.36	3.43	Pb Fire Assay
C, Carbon (wt.%)	1.86	0.051	1.84	1.88	Infrared Combustion
C-(Carbonate), Carbon as CO3.2- (wt.%)	1.71	0.040	1.69	1.73	Infrared Combustion
S, Sulphur (wt.%)	0.619	0.043	0.603	0.635	Infrared Combustion
Ag, Silver (ppm)	0.093	0.011	0.089	0.098	Aqua Regia Digestion
Al, Aluminium (wt.%)	0.923	0.049	0.904	0.941	Aqua Regia Digestion
As, Arsenic (ppm)	467	23	459	475	Aqua Regia Digestion
B, Boron (ppm)	< 10.0	IND	IND	IND	Aqua Regia Digestion
Be, Beryllium (ppm)	0.33	0.05	0.31	0.36	Aqua Regia Digestion
Bi, Bismuth (ppm)	0.20	0.016	0.20	0.21	Aqua Regia Digestion
Ca, Calcium (wt.%)	4.50	0.186	4.43	4.57	Aqua Regia Digestion
Cd, Cadmium (ppm)	0.36	0.029	0.35	0.37	Aqua Regia Digestion
Ce, Cerium (ppm)	28.2	1.64	27.5	29.0	Aqua Regia Digestion
Co, Cobalt (ppm)	5.99	0.372	5.83	6.14	Aqua Regia Digestion
Cr, Chromium (ppm)	27.8	1.53	27.3	28.4	Aqua Regia Digestion
Cs, Caesium (ppm)	2.05	0.125	2.00	2.11	Aqua Regia Digestion
Cu, Copper (ppm)	25.5	1.74	24.9	26.2	Aqua Regia Digestion
Dy, Dysprosium (ppm)	1.51	0.048	1.47	1.54	Aqua Regia Digestion
Er, Erbium (ppm)	0.66	0.049	0.61	0.71	Aqua Regia Digestion
Eu, Europium (ppm)	0.55	0.07	0.47	0.62	Aqua Regia Digestion
Fe, Iron (wt.%)	1.80	0.082	1.78	1.83	Aqua Regia Digestion
Ga, Gallium (ppm)	2.92	0.223	2.82	3.02	Aqua Regia Digestion
Gd, Gadolinium (ppm)	2.18	0.169	2.03	2.34	Aqua Regia Digestion
Ge, Germanium (ppm)	0.054	0.006	0.048	0.060	Aqua Regia Digestion
Hf, Hafnium (ppm)	0.47	0.06	0.44	0.49	Aqua Regia Digestion

Annexes

Hg, Mercury (ppm)	4.45	0.433	4.25	4.66	Aqua Regia Digestion
Ho, Holmium (ppm)	0.26	0.015	0.24	0.27	Aqua Regia Digestion
In, Indium (ppm)	0.022	0.002	0.021	0.023	Aqua Regia Digestion
K, Potassium (wt.%)	0.373	0.023	0.365	0.382	Aqua Regia Digestion
La, Lanthanum (ppm)	15.2	0.79	14.8	15.5	Aqua Regia Digestion
Li, Lithium (ppm)	13.7	1.35	13.1	14.3	Aqua Regia Digestion
Lu, Lutetium (ppm)	0.079	0.005	0.075	0.082	Aqua Regia Digestion
Mg, Magnesium (wt.%)	1.27	0.057	1.25	1.29	Aqua Regia Digestion
Mn, Manganese (wt.%)	0.027	0.001	0.026	0.027	Aqua Regia Digestion
Mo, Molybdenum (ppm)	4.51	0.253	4.41	4.61	Aqua Regia Digestion
Na, Sodium (wt.%)	0.017	0.005	0.015	0.019	Aqua Regia Digestion
Nb, Niobium (ppm)	0.077	0.017	0.066	0.088	Aqua Regia Digestion
Nd, Neodymium (ppm)	13.8	0.74	13.2	14.5	Aqua Regia Digestion
Ni, Nickel (ppm)	20.1	1.33	19.7	20.6	Aqua Regia Digestion
P, Phosphorus (wt.%)	0.050	0.002	0.049	0.051	Aqua Regia Digestion
Pb, Lead (ppm)	7.25	0.366	7.08	7.42	Aqua Regia Digestion
Pd, Palladium (ppb)	< 10.0	IND	IND	IND	Aqua Regia Digestion
Pr, Praseodymium (ppm)	3.52	0.237	3.32	3.72	Aqua Regia Digestion
Pt, Platinum (ppb)	< 5.00	IND	IND	IND	Aqua Regia Digestion
Rb, Rubidium (ppm)	26.8	2.06	25.8	27.7	Aqua Regia Digestion
Re, Rhenium (ppm)	0.003	0.001	0.003	0.003	Aqua Regia Digestion
S, Sulphur (wt.%)	0.641	0.038	0.626	0.655	Aqua Regia Digestion
Sb, Antimony (ppm)	30.4	3.9	29.0	31.9	Aqua Regia Digestion
Sc, Scandium (ppm)	2.60	0.148	2.55	2.66	Aqua Regia Digestion
Se, Selenium (ppm)	0.70	0.17	0.60	0.79	Aqua Regia Digestion
Sm, Samarium (ppm)	2.57	0.167	2.40	2.74	Aqua Regia Digestion
Sn, Tin (ppm)	0.93	0.10	0.89	0.98	Aqua Regia Digestion
Sr, Strontium (ppm)	56	2.8	55	57	Aqua Regia Digestion
Ta, Tantalum (ppm)	< 0.010	IND	IND	IND	Aqua Regia Digestion
Tb, Terbium (ppm)	0.29	0.029	0.27	0.31	Aqua Regia Digestion
Te, Tellurium (ppm)	0.13	0.03	0.12	0.14	Aqua Regia Digestion
Th, Thorium (ppm)	5.16	0.377	4.99	5.33	Aqua Regia Digestion
Ti, Titanium (wt.%)	0.035	0.002	0.034	0.036	Aqua Regia Digestion
Tl, Thallium (ppm)	6.88	0.514	6.66	7.09	Aqua Regia Digestion
Tm, Thulium (ppm)	0.090	0.008	0.082	0.098	Aqua Regia Digestion

Annexes

U, Uranium (ppm)	1.52	0.120	1.47	1.57	Aqua Regia Digestion
V, Vanadium (ppm)	31.5	2.92	30.4	32.6	Aqua Regia Digestion
W, Tungsten (ppm)	2.10	0.33	1.95	2.25	Aqua Regia Digestion
Y, Yttrium (ppm)	6.86	0.405	6.69	7.04	Aqua Regia Digestion
Yb, Ytterbium (ppm)	0.56	0.045	0.51	0.61	Aqua Regia Digestion
Zn, Zinc (ppm)	53	3.4	52	54	Aqua Regia Digestion
Zr, Zirconium (ppm)	15.2	1.52	14.5	15.9	Aqua Regia Digestion

• **OREAS 751**

Analyte	Certified	1SD	95% Confidence	95% Confidence	Method
	Value		Low	High	
Li2O, Lithium oxide (wt.%)	1.01	0.037	0.99	1.02	Peroxide Fusion ICP
Li, Lithium (wt.%)	0.468	0.017	0.460	0.475	Peroxide Fusion ICP
Sn, Tin (ppm)	156	11	148	164	Peroxide Fusion ICP
Al, Aluminium (wt.%)	8.24	0.268	8.11	8.36	Peroxide Fusion ICP
As, Arsenic (ppm)	10.4	2.0	9.2	11.6	Peroxide Fusion ICP
Ba, Barium (ppm)	405	21	394	416	Peroxide Fusion ICP
Be, Beryllium (ppm)	105	8	100	110	Peroxide Fusion ICP
Bi, Bismuth (ppm)	1.93	0.33	1.67	2.19	Peroxide Fusion ICP
Ca, Calcium (wt.%)	0.772	0.098	0.717	0.828	Peroxide Fusion ICP
Cd, Cadmium (ppm)	1.15	0.22	0.89	1.40	Peroxide Fusion ICP
Ce, Cerium (ppm)	31.6	2.01	30.3	32.9	Peroxide Fusion ICP
Co, Cobalt (ppm)	3.72	0.182	3.66	3.79	Peroxide Fusion ICP
Cs, Caesium (ppm)	48.5	1.80	47.4	49.6	Peroxide Fusion ICP
Cu, Copper (ppm)	31.3	3.9	26.3	36.2	Peroxide Fusion ICP
Dy, Dysprosium (ppm)	2.34	0.24	2.22	2.45	Peroxide Fusion ICP
Er, Erbium (ppm)	1.27	0.19	1.15	1.39	Peroxide Fusion ICP
Eu, Europium (ppm)	0.53	0.06	0.49	0.56	Peroxide Fusion ICP
Fe, Iron (wt.%)	1.67	0.057	1.65	1.69	Peroxide Fusion ICP
Ga, Gallium (ppm)	19.3	1.28	18.3	20.3	Peroxide Fusion ICP
Gd, Gadolinium (ppm)	3.03	0.226	2.89	3.17	Peroxide Fusion ICP
Ge, Germanium (ppm)	4.80	0.62	4.45	5.15	Peroxide Fusion ICP
Ho, Holmium (ppm)	0.43	0.06	0.39	0.48	Peroxide Fusion ICP
K, Potassium (wt.%)	2.39	0.072	2.36	2.42	Peroxide Fusion ICP
La, Lanthanum (ppm)	15.7	1.54	14.6	16.7	Peroxide Fusion ICP
Lu, Lutetium (ppm)	0.16	0.03	0.14	0.18	Peroxide Fusion ICP
Mg, Magnesium (wt.%)	0.293	0.011	0.289	0.297	Peroxide Fusion ICP
Mn, Manganese (wt.%)	0.066	0.003	0.065	0.068	Peroxide Fusion ICP
Mo, Molybdenum (ppm)	3.48	0.49	3.14	3.81	Peroxide Fusion ICP
Nb, Niobium (ppm)	40.9	3.95	38.7	43.2	Peroxide Fusion ICP
Nd, Neodymium (ppm)	14.1	0.80	13.6	14.7	Peroxide Fusion ICP
P, Phosphorus (wt.%)	0.117	0.007	0.115	0.120	Peroxide Fusion ICP
Pb, Lead (ppm)	22.3	4.7	18.3	26.3	Peroxide Fusion ICP
Pr, Praseodymium (ppm)	3.78	0.217	3.61	3.94	Peroxide Fusion ICP
Rb, Rubidium (ppm)	496	26	479	513	Peroxide Fusion ICP
S, Sulphur (wt.%)	0.065	0.008	0.060	0.070	Peroxide Fusion ICP
Sb, Antimony (ppm)	0.62	0.10	0.58	0.67	Peroxide Fusion ICP
Si, Silicon (wt.%)	33.23	0.507	32.85	33.60	Peroxide Fusion ICP
Sm, Samarium (ppm)	3.00	0.294	2.84	3.16	Peroxide Fusion ICP
Sr, Strontium (ppm)	81	3.1	79	83	Peroxide Fusion ICP
Ta, Tantalum (ppm)	28.1	3.3	26.2	29.9	Peroxide Fusion ICP
Tb, Terbium (ppm)	0.43	0.06	0.38	0.48	Peroxide Fusion ICP
The Titerian (ppm)	0.33	0.048	5.95	0.70	Peroxide Fusion ICP
11, 11tanium (wt.%)	0.141	0.008	0.137	0.144	Peroxide Fusion ICP
The There's a constant	2.95	0.185	2.80	5.09	Peroxide Fusion ICP
Im, Inunum (ppm)	0.17	0.02	0.15	0.19	Peroxide Fusion ICP
V. Vonadierer (ppm)	1.13	2.2	0.04	1.03	Perovide Fusion ICP
v, vanacium (ppm)	20.4	0.76	24.0	28.8	Derovide Fusion ICP
w, Tungsten (ppm)	0.93	0.76	0.44	1.43	Peroxide Fusion ICP

Annexes

	10.1	1.0=		10.0	
Y, Yttrium (ppm)	12.1	1.07	11.5	12.8	Peroxide Fusion ICP
Yb, Ytterbium (ppm)	1.10	0.15	1.02	1.18	Peroxide Fusion ICP
Zn, Zinc (ppm)	95	3.7	92	97	Peroxide Fusion ICP
7r Zirconium (nnm)	103	4	101	104	Perovide Fusion ICP
Al2O2 Aluminium(III) orido (ret 0/)	15.99	0.004	15.94	15.01	Poreta Eusion VDE
A1203, Aluminium(III) oxide (wl.%)	13.88	0.094	13.64	13.91	Borate Fusion ARF
BaO, Barium oxide (ppm)	499	54	470	529	Borate Fusion XRF
CaO, Calcium oxide (wt.%)	1.06	0.016	1.05	1.07	Borate Fusion XRF
Fe2O3, Iron(III) oxide (wt.%)	2.40	0.026	2.39	2.41	Borate Fusion XRF
$\frac{1}{1} \frac{1}{1} \frac{1}$	2.02	0.027	2.01	2.03	Borate Eusion XRE
	2.92	0.027	2.31	2.93	Dorate Pusion ARI
MgO, Magnesium oxide (wt.%)	0.507	0.015	0.500	0.514	Borate Fusion XRF
MnO, Manganese oxide (wt.%)	0.089	0.002	0.088	0.090	Borate Fusion XRF
Na2O, Sodium oxide (wt.%)	3.42	0.046	3.40	3.44	Borate Fusion XRF
P2O5, Phosphorus(V) oxide (wt.%)	0.280	0.004	0.279	0.281	Borate Fusion XRF
SiO2 Silicon dioxido (wt %)	71.42	0.509	71.25	71.62	Dorate Fusion VDE
	0.155	0.006	0.151	71.02	
SO3, Sulphur trioxide (wt.%)	0.155	0.006	0.151	0.159	Borate Fusion XRF
TiO2, Titanium dioxide (wt.%)	0.243	0.008	0.240	0.246	Borate Fusion XRF
LOI1000, Loss On Ignition @1000°C	0.696	0.125	0.634	0.759	Thermogravimetry
(wt.%)					
Al. Aluminium (wt.%)	8.01	0.386	7.88	8.15	4-Acid Digestion
Ac Arconio (nnm)	10.3	1.2	0.8	10.8	4-Acid Digestion
As, Arsenic (ppin)	10.5	1.5	2.0	10.8	
Ba, Barium (ppm)	414	16	408	420	4-Acid Digestion
Be, Beryllium (ppm)	97	6.8	94	100	4-Acid Digestion
Bi, Bismuth (ppm)	1.77	0.114	1.72	1.81	4-Acid Digestion
Ca. Calcium (wt.%)	0.742	0.029	0.733	0.752	4-Acid Digestion
Cd Cadmium (nnm)	1.14	0.12	1 10	1 10	1 Acid Digestion
	1.14	0.12	1.10	1.17	4-Acid Digestion
Ce, Cerium (ppm)	28.9	2.18	28.1	29.8	4-Acid Digestion
Co, Cobalt (ppm)	3.81	0.354	3.63	3.99	4-Acid Digestion
Cr, Chromium (ppm)	31.3	7.8	27.7	34.9	4-Acid Digestion
Cs. Caesium (nnm)	49.4	2.71	48.2	50.6	4-Acid Digestion
Cu Connor (nnm)	21.0	2.71	20.0	22.0	4 Acid Digestion
	1.75	2.42	1.69	1.01	
Dy, Dysprosium (ppm)	1.75	0.092	1.68	1.81	4-Acid Digestion
Er, Erbium (ppm)	0.60	0.07	0.55	0.66	4-Acid Digestion
Eu, Europium (ppm)	0.61	0.038	0.57	0.64	4-Acid Digestion
Fe. Iron (wt.%)	1.62	0.055	1.60	1.64	4-Acid Digestion
$C_{0} Callium (nnm)$	18.8	1.20	18.3	10.3	A-Acid Digestion
	10.0	0.22	2.10	17.5	
Gd, Gadolinium (ppm)	2.43	0.32	2.19	2.67	4-Acid Digestion
Hf, Hafnium (ppm)	2.01	0.119	1.96	2.06	4-Acid Digestion
Ho, Holmium (ppm)	0.27	0.016	0.26	0.28	4-Acid Digestion
K. Potassium (wt.%)	2.41	0.080	2.38	2.44	4-Acid Digestion
La Lanthanum (nnm)	1/13	0.92	13.0	14.6	A-Acid Digestion
	0.462	0.92	0.457	0.470	
Ll, Lltnlum (Wt.%)	0.463	0.016	0.457	0.470	4-Acid Digestion
Li2O, Lithium oxide (wt.%)	0.998	0.034	0.984	1.011	4-Acid Digestion
Lu, Lutetium (ppm)	0.070	0.009	0.064	0.076	4-Acid Digestion
Mg. Magnesium (wt.%)	0.287	0.016	0.280	0.294	4-Acid Digestion
Mn Manganese (wt %)	0.065	0.002	0.064	0.066	4-Acid Digestion
Ma Malah danam (mam)	2.07	0.002	2 19	2.25	4 Acid Digestion
Mo, Wolybdenum (ppm)	3.27	0.219	5.16	3.33	4-Actu Digestion
Na, Sodium (wt.%)	2.47	0.086	2.44	2.51	4-Acid Digestion
Nb, Niobium (ppm)	39.3	2.66	38.0	40.6	4-Acid Digestion
Nd, Neodymium (ppm)	14.4	1.39	13.4	15.5	4-Acid Digestion
Nj. Nickel (nnm)	13.1	0.65	12.8	13.4	4-Acid Digestion
P Phoenhorus (wt %)	0.124	0.007	0.121	0.127	4-Acid Digestion
	10.2	0.007	10.0	10.0	
PD, Lead (ppm)	19.2	0.86	18.8	19.6	4-Acid Digestion
Pr, Praseodymium (ppm)	3.66	0.234	3.50	3.82	4-Acid Digestion
Rb, Rubidium (ppm)	487	25	475	498	4-Acid Digestion
S. Sulphur (wt.%)	0.060	0.006	0.055	0.065	4-Acid Digestion
Sh Antimony (npm)	0.61	0.08	0.56	0.65	4-Acid Digestion
So, Coordination (ppin)	2 41	0.00	2 20	2.51	
Sc, Scandium (ppm)	5.41	0.228	3.32	3.31	4-Acia Digestion
Sm, Samarium (ppm)	3.03	0.186	2.91	3.15	4-Acid Digestion
Sn, Tin (ppm)	54	6	51	56	4-Acid Digestion
Sr, Strontium (ppm)	79	4.1	77	81	4-Acid Digestion
Ta Tantalum (ppm)	27.3	29	25.9	28.6	4-Acid Digestion
The Torbium (ppin)	0.24	0.04	0.21	0.27	1 Agid Digestion
TD, Terbium (ppm)	0.54	0.04	0.51	0.57	4-Actu Digestion
Th, Thorium (ppm)	6.07	0.361	5.94	6.19	4-Acid Digestion
Ti, Titanium (wt.%)	0.144	0.006	0.141	0.146	4-Acid Digestion
Tl, Thallium (ppm)	2.82	0.166	2.75	2.90	4-Acid Digestion
Tm. Thulium (ppm)	0.088	0.013	0.075	0.102	4-Acid Digestion
II Inonium (nam)	6.000	0.015	6.67	7.00	Acid Digestion
U, Uramum (ppm)	0.01	0.490	0.02	7.00	4-Actu Digestion
v, vanadium (ppm)	24.6	1.31	24.0	25.2	4-Acid Digestion

Annexes

W, Tungsten (ppm)	6.98	0.582	6.77	7.19	4-Acid Digestion
Y, Yttrium (ppm)	6.82	0.485	6.60	7.03	4-Acid Digestion
Yb, Ytterbium (ppm)	0.50	0.06	0.45	0.54	4-Acid Digestion
Zn, Zinc (ppm)	93	3.0	92	94	4-Acid Digestion
Zr, Zirconium (ppm)	35.5	2.97	34.2	36.8	4-Acid Digestion

OREAS 20a

Analyte	Certified	1SD	95% Confidence	95% Confidence	Method
	Value		Low	High	
Au, Gold (ppb)	< 3	IND	IND	IND	Pb Fire Assay
Al2O3, Aluminium(III) oxide	15.28	0.105	15.23	15.34	Borate Fusion XRF
(wt.%)					
BaO, Barium oxide (ppm)	1239	78	1191	1286	Borate Fusion XRF
CaO, Calcium oxide (wt.%)	3.61	0.020	3.60	3.62	Borate Fusion XRF
Fe2O3, Iron(III) oxide (wt.%)	5.33	0.029	5.31	5.34	Borate Fusion XRF
K2O, Potassium oxide (wt.%)	4.00	0.027	3.98	4.01	Borate Fusion XRF
MgO, Magnesium oxide (wt.%)	2.40	0.030	2.38	2.41	Borate Fusion XRF
MnO, Manganese oxide (wt.%)	0.070	0.001	0.070	0.071	Borate Fusion XRF
Na2O, Sodium oxide (wt.%)	2.73	0.054	2.70	2.75	Borate Fusion XRF
P2O5, Phosphorus(V) oxide	0.231	0.004	0.229	0.232	Borate Fusion XRF
(wt.%)					
S, Sulphur (wt.%)	0.063	0.001	0.063	0.064	Borate Fusion XRF
SiO2, Silicon dioxide (wt.%)	64.49	0.339	64.33	64.64	Borate Fusion XRF
Sr, Strontium (ppm)	292	36	267	316	Borate Fusion XRF
TiO2, Titanium dioxide (wt.%)	0.828	0.011	0.822	0.834	Borate Fusion XRF
V2O5, Vanadium(V) oxide (ppm)	205	17	196	214	Borate Fusion XRF
LOI1000, Loss On Ignition	0.611	0.042	0.580	0.641	Thermogravimetry
@1000°C (wt.%)	7.00	0.157	7 70	0.10	
Al, Aluminium (wt.%)	7.99	0.157	1.79	8.19	Borate / Peroxide Fusion ICP
Ba, Barium (ppm)	1082	31	1065	1099	Borate / Peroxide Fusion ICP
Be, Beryllium (ppm)	3.60	0.00	3.10	4.09	Borate / Peroxide Fusion ICP
Ca, Calcium (wt.%)	2.61	0.047	2.57	2.64	Borate / Peroxide Fusion ICP
Ce, Cerium (ppm)	82	2.0	81	83	Borate / Peroxide Fusion ICP
Co, Cobait (ppm)	13.7	0.08	13.0	14.4	Borate / Peroxide Fusion ICP
Cr, Chromium (ppm)	0/	10	01	95	Borate / Peroxide Fusion ICP
Cy. Compon (ppm)	15.5	0.09	14.9	13.7	Borate / Perovide Fusion ICP
Du Dugnagium (nnm)	40.5	4.13	45.0	49.5	Borate / Peroxide Fusion ICP
En Erbium (nnm)	3.24	0.280	3.12	3.16	Borate / Perovide Fusion ICP
Er, Erblum (ppm)	3.06	0.140	1.40	1.40	Borate / Perovide Fusion ICP
Eq. Irop (wt %)	3.78	0.078	3.71	3.85	Borate / Perovide Fusion ICP
Ga Gallium (nnm)	19.4	1 14	18 7	20.0	Borate / Peroxide Fusion ICP
Cd Cadolinium (nnm)	5 79	0.296	5.63	5.95	Borate / Peroxide Fusion ICP
Hf Hefnium (nnm)	7.91	0.270	7.68	8.15	Borate / Peroxide Fusion ICP
Ho Holmium (ppm)	1.07	0.049	1.04	1 10	Borate / Peroxide Fusion ICP
K Potassium (wt %)	3 34	0.070	3.28	3 39	Borate / Peroxide Fusion ICP
La, Lanthanum (nnm)	41.9	1 99	40.9	43.0	Borate / Peroxide Fusion ICP
Li, Lithium (ppm)	37.5	2.66	34.4	40.6	Borate / Peroxide Fusion ICP
Lu. Lutetium (ppm)	0.45	0.028	0.43	0.47	Borate / Peroxide Fusion ICP
Mg. Magnesium (wt.%)	1.45	0.025	1.43	1.47	Borate / Peroxide Fusion ICP
Mn. Manganese (wt.%)	0.054	0.001	0.053	0.055	Borate / Peroxide Fusion ICP
Nd. Neodymium (ppm)	35.2	1.10	34.7	35.7	Borate / Peroxide Fusion ICP
Ni. Nickel (ppm)	40.6	4.2	38.6	42.6	Borate / Peroxide Fusion ICP
P. Phosphorus (wt.%)	0.099	0.005	0.097	0.101	Borate / Peroxide Fusion ICP
Pb. Lead (ppm)	21.4	1.73	19.2	23.6	Borate / Peroxide Fusion ICP
Pr, Praseodymium (ppm)	9.36	0.359	9.14	9.58	Borate / Peroxide Fusion ICP
Rb, Rubidium (ppm)	233	10	228	239	Borate / Peroxide Fusion ICP
Si, Silicon (wt.%)	30.20	0.414	29.78	30.63	Borate / Peroxide Fusion ICP
Sm, Samarium (ppm)	6.66	0.199	6.59	6.73	Borate / Peroxide Fusion ICP
Sn, Tin (ppm)	4.07	0.57	3.99	4.16	Borate / Peroxide Fusion ICP
Sr, Strontium (ppm)	299	12	292	307	Borate / Peroxide Fusion ICP
Ta, Tantalum (ppm)	1.60	0.106	1.54	1.66	Borate / Peroxide Fusion ICP
Tb, Terbium (ppm)	0.88	0.051	0.84	0.92	Borate / Peroxide Fusion ICP
Th, Thorium (ppm)	22.0	0.82	21.6	22.3	Borate / Peroxide Fusion ICP

Annexes

Th. Thanlam (ppa) 0.503 0.011 0.493 0.513 Borne / Pervide Pasion (PP Tm, Thallum (ppm) Other Statistics 0.45 0.015 0.45 0.46 Borne / Pervide Pasion (PP Tm, Thallum (ppm) Other Statistics 0.69 0.358 6.57 6.641 Borne / Pervide Pasion (PP V, Yunadium (ppm) 114 10 107 120 Borne / Pervide Pasion (PP V, Yunadium (ppm) 22.3 0.99 23.6 4.14 Borne / Pervide Pasion (PP V, Yurfum (ppm) 22.2 0.99 23.0 Borne / Pervide Pasion (PP V, Yurfum (ppm) 29.6 0.054 0.068 4.4.cid Digestion (PP V, Yurfum (ppm) 303 23 25.7 31.9 Borne / Pervide Pasion (PS Acid Digestion (Pp M) 30.6 0.024 0.068 4.4.cid Digestion (Ps M) R, Baroin (ppm) 30.5 2.14 7.01 4.4.cid Digestion (Ps M) 30.6 0.075 0.075 4.4.cid Digestion (Ps M) R, Baroin (ppm) 77 3.4 75 79 4.4.cid Digestion (Ps M) 26.7 4.4.cid Digestion (Ps M) 26.7 4.4.cid Digestion (Ps M) 26.7 4.4.cid Digestion (Ps M) <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>						
Th. Thallium (ppm) 1.14 0.11 1.05 1.23 Dente / Perskel Eusion ICP Th., Thallium (ppm) 6.69 0.358 6.57 6.81 Borate / Perskel Eusion ICP V, Vanadim (ppm) 3.85 0.75 3.55 4.14 Borate / Perskel Eusion ICP W, Tungsten (ppm) 2.85 0.75 3.55 4.14 Borate / Perskel Eusion ICP Y, Tyrthium (ppm) 2.96 0.195 2.90 3.62 Borate / Perskel Eusion ICP Y, Terrbium (ppm) 2.96 0.195 2.90 3.62 Borate / Perskel Eusion ICP Ar, Aleminium (ptm) 0.61 0.077 0.16 7.54 7.90 6.4cid Digestion At, Aleminium (ptm) 3.63 0.18 0.13 0.13 0.14 4.4cid Digestion Bt, Bermin (ppm) 3.65 0.18 3.78 4.4cid Digestion 6.57 0.91 4.4cid Digestion C, Carbinn (ppn) 1.34 0.55 0.93 4.4cid Digestion 6.57 0.91 4.4cid Digestion 6.5 4.ccid Digestion <t< th=""><th>Ti, Titanium (wt.%)</th><th>0.503</th><th>0.011</th><th>0.493</th><th>0.513</th><th>Borate / Peroxide Fusion ICP</th></t<>	Ti, Titanium (wt.%)	0.503	0.011	0.493	0.513	Borate / Peroxide Fusion ICP
Train Training (ppm) 0.45 0.45 0.46 Borate / Perside Fusion ICP U, Training (ppm) 114 10 107 120 Borate / Perside Fusion ICP W, Tungster (ppm) 134 107 120 Borate / Perside Fusion ICP Y, Yittium (ppm) 292 0.99 28.6 29.8 Borate / Perside Fusion ICP Yb, Yittiim (ppm) 303 23 287 319 Borate / Perside Fusion ICP Ag, Sirver (ppm) 303 23 287 319 Borate / Perside Fusion ICP Ag, Sirver (ppm) 303 23 287 7.90 4-Acid Digestion As, Arsen (ppm) 17.0 2.1 15.0 18.1 4-Acid Digestion Ba, Barium (ppm) 17.0 4.3 10.13 13.7 4-Acid Digestion CG, Calumin (ppm) 7.7 3.4 7.5 7.9 4-Acid Digestion CG, Calumin (ppm) 7.5 4.9 6.2 6.8 4-Acid Digestion CG, Calumin (ppm) 5.5 4.9 6.2 6.	Tl. Thallium (ppm)	1.14	0.11	1.05	1.23	Borate / Peroxide Fusion ICP
U. V. L'analian (ppn) 6.69 0.58 6.57 6.81 Borne / Peroxide Pusion ICP V. Yungsten (ppn) 385 0.75 3.56 4.14 Borne / Peroxide Pusion ICP V. Yutterbium (ppn) 2.96 0.195 2.90 3.62 Borne / Peroxide Pusion ICP Y. Yutterbium (ppn) 2.96 0.195 2.90 3.62 Borne / Peroxide Pusion ICP Ar, Alemainian (vt. 5%) 0.661 0.007 0.064 0.068 4-Acid Digestion Al, Aluminian (vt. 5%) 7.22 0.316 7.54 7.90 4-Acid Digestion Ba, Baruim (ppn) 1.70 2.1 15.9 18.1 4-Acid Digestion Ba, Baruim (ppn) 7.72 0.316 0.75 4.760 Digestion Ca, Caladum (vt. 5%) 2.23 0.090 2.48 2.57 4.4cid Digestion Ca, Caladum (vt. 5%) 2.52 0.090 2.48 2.57 4.4cid Digestion Ca, Caladum (vt. 5%) 2.50 4.41 4.4cid Digestion 4.4cid Digestion Ca, Caladum (vt. 5%) 5.20	Tm. Thulium (ppm)	0.45	0.015	0.45	0.46	Borate / Peroxide Fusion ICP
v, v, nanatima (ppm) 114 10 107 120 Borate / Perside Lusion ICP W, Tongster (ppm) 235 0.75 3.55 4.14 Borate / Perside Lusion ICP Vh, Vettrium (ppm) 292 0.99 2.90 3.02 Borate / Perside Lusion ICP Vh, Vettrium (ppm) 303 23 287 319 Borate / Perside Lusion ICP Ag, Silver (ppm) 0.061 0.0654 0.068 4-Acid Digestion Ag, Silver (ppm) 17.0 2.1 15.9 18.1 4-Acid Digestion Rs, Arsen (ppm) 17.0 4.3 1047 1092 4-Acid Digestion Rs, Carelinu (ppm) 0.14 0.02 0.13 0.15 4-Acid Digestion Cc, Carelinu (ppm) 0.44 0.22 0.090 2.48 2.57 4-Acid Digestion Cc, Carelinu (ppm) 0.43 0.31 1.1 1.37 4-Acid Digestion Cc, Carelinu (ppm) 1.54 0.53 0.68 4-Acid Digestion Cc, Castaium (ppm) 1.52 0.69	I Uranium (ppm)	6.69	0.358	6.57	6.81	Borate / Peroxide Fusion ICP
Humpton (ppm) 3.85 0.75 3.56 4.14 Dense: / Pervalde Inside Fusion (FV) Y, Yutenium (ppm) 2.96 0.195 2.90 3.02 Borne: / Pervalde Insion (FV) Ag, Silver (ppm) 0.061 0.007 0.054 0.098 4-Acid Digestion AL, Aluminiam (ot.%) 7.22 0.316 7.54 7.90 4-Acid Digestion Ba, Bactinum (opm) 17.0 2.1 15.9 18.1 4-Acid Digestion Ba, Bactinum (opm) 3.65 0.218 3.53 3.78 4-Acid Digestion Ba, Bactinum (opm) 3.65 0.218 3.53 3.78 4-Acid Digestion CG, Calcium (vfm) 0.43 0.02 2.48 2.57 4-Acid Digestion CG, Calcium (vfm) 13.4 0.53 13.1 13.7 4-Acid Digestion Ce, Cectum (ppm) 15.4 0.50 14.4 4.68 4-Acid Digestion Ce, Cectum (ppm) 15.5 0.41 4.68 4-Acid Digestion Ce, Catum (ppm) 2.54 0.50	V Vanadium (nnm)	114	10	107	120	Borate / Perovide Fusion ICP
Hymester (pm) 2.92 0.95 2.86 1.93 Data: / Evolution (pm) Y, Yitterbur (pm) 2.96 0.195 2.90 3.03 Borat: / Evolution (CP Ar, Silver (pm) 0.061 0.071 0.054 0.068 4-Acid Descion (CP Ar, Silver (pm) 0.061 0.071 0.54 0.068 4-Acid Descion (CP Ar, Almminium (vt. 50) 1.710 2.11 1.59 1.81 4-Acid Descion Ar, Arentin (pm) 1.64 0.021 1.55 1.81 4-Acid Descion Re, Rery limp 0.66 0.015 0.078 0.078 4-Acid Descion Ca, Cachian (pm) 0.66 0.015 0.078 0.093 4-Acid Descion Ca, Cachian (pm) 1.51 0.74 1.51 1.77 4-Acid Descion Ca, Cachian (pm) 1.52 0.69 1.48 1.66 4-Acid Descion Ca, Cachian (pm) 1.51 0.214 1.30 1.55 4-Acid Descion Ca, Cachian (pm) 1.52 0.69 1.	W Tungston (ppm)	3.85	0.75	3 56	4.14	Borate / Perovide Fusion ICP
1, 11 2-52 0-53 2-53 Date: Peroxide Pixon IUSD.	V Vttrium (nnm)	20.2	0.75	28.6	20.8	Borate / Derovide Fusion ICD
Theorem Data Provide Pission ICP Ar, Silver (ppn) 0.061 0.075 0.068 4-Arid Digestion ICP Ar, All Alumidian (wt.5) 7.22 0.316 7.24 7.90 4-Arid Digestion ICP As, Arcenic (ppn) 17.0 2.11 15.9 18.1 4-Arid Digestion Ba, Barring (ppn) 3.65 0.218 3.33 3.78 4-Arid Digestion Bt, Basumi (ppn) 3.65 0.218 3.33 3.78 4-Arid Digestion Cd, Cathinn (ppn) 3.64 0.218 3.33 3.78 4-Arid Digestion Cd, Cathinn (ppn) 7.7 3.4 73 79 4-Arid Digestion Cd, Cathinn (ppn) 7.7 3.4 77 79 4-Arid Digestion Ce, Casim (ppn) 4.51 2.94 4.1 4.63 4-Arid Digestion Ce, Casim (ppn) 4.54 2.94 4.1 4.63 4-Arid Digestion Ce, Casim (ppn) 2.51 0.33 5.25 5.34 4-Arid Digestion Ce, Ca	1 , 1 turium (ppm)	29.2	0.99	20.0	29.0	Donate / Peroxide Fusion ICP
<i>LP</i> , Ziromium (ppn) 90.30 2.3 2.87 319 Decide / Revision Ag, Sirver (ppn) 0.061 0.007 0.0654 0.0668 4. Acid Digestion As, Arseit (ppn) 17.0 2.1 15.9 18.1 4. Acid Digestion Ba, Barrian (ppn) 1070 4.3 1047 1092 4-Acid Digestion Bc, Berglimm (ppn) 0.14 0.02 0.13 0.15 4-Acid Digestion Ca, Calcium (vt.%) 2.52 0.0068 0.013 0.13 4-Acid Digestion Ca, Calcium (vt.%) 2.52 0.000 2.48 2.57 4-Acid Digestion Ca, Calcium (vt.%) 3.53 13.1 13.7 4-Acid Digestion 15.0 Ca, Cassium (ppn) 1.54 0.52 0.69 14.8 15.6 4-Acid Digestion Ca, Cassium (ppn) 5.15 0.214 5.01 5.29 4-Acid Digestion Ca, Cassium (ppn) 1.42 0.170 1.30 1.55 4-Acid Digestion Ga, Galdiant (ppn) 1.60	Y D, Y tterblum (ppm)	2.96	0.195	2.90	3.02	Borate / Peroxide Fusion ICP
Ag, Silver (ppn) 0.061 0.075 0.054 0.068 4-Acid Digestion Al, Aluminim (vt.%) 7.72 0.316 7.74 7.90 4-Acid Digestion Bs, Barring (ppn) 17.0 2.1 15.9 18.1 4-Acid Digestion Bs, Barning (ppn) 3.65 0.218 3.53 3.78 4-Acid Digestion Bt, Bismuth (ppn) 0.64 0.02 0.13 0.15 4-Acid Digestion Cd, Catching (ppn) 7.7 3.4 75 79 4-Acid Digestion Co, Cabatt (ppn) 77 3.4 75 79 4-Acid Digestion Co, Cobatt (ppn) 15.4 0.53 13.1 13.7 4-Acid Digestion Co, Cobatt (ppn) 15.5 0.41 4.8 4-Acid Digestion Dy, Dyspostom (ppn) 2.54 0.214 5.01 5.29 4-Acid Digestion Dy, Dyspostom (ppn) 2.94 0.173 3.54 3.65 4-Acid Digestion Ga, Gatolininm (ppn) 2.94 0.172 2.81 2.94 <th>Zr, Zirconium (ppm)</th> <th>303</th> <th>23</th> <th>287</th> <th>319</th> <th>Borate / Peroxide Fusion ICP</th>	Zr, Zirconium (ppm)	303	23	287	319	Borate / Peroxide Fusion ICP
Al, Aluminium (vt.%) 7.72 0.316 7.54 7.90 4.Acid Digestion Ba, Barium (ppm) 1070 4.3 1047 1092 4.Acid Digestion Be, Beryllum (ppm) 0.14 0.02 0.13 0.15 4.Acid Digestion Ca, Calcium (vt.%) 2.52 0.090 2.48 2.57 4.Acid Digestion Ca, Calcium (vt.%) 2.52 0.090 2.48 2.57 4.Acid Digestion Co, Cobalt (ppm) 13.4 0.33 13.1 13.7 4.Acid Digestion Co, Cobalt (ppm) 15.2 0.69 14.8 15.6 4.Acid Digestion Cy, Cassium (ppm) 15.1 0.214 5.01 5.29 4.Acid Digestion Cy, Cassium (ppm) 15.4 0.214 5.01 5.29 4.Acid Digestion Ge, Germanium (ppm) 15.4 0.214 1.30 1.55 4.Acid Digestion Ge, Gaditium (ppn) 19.6 0.41 19.4 19.8 4.Acid Digestion Ge, Gaditium (ppn) 19.6 0.41	Ag, Silver (ppm)	0.061	0.007	0.054	0.068	4-Acid Digestion
As, Arsenic (ppm) 17.0 2.1 15.9 18.1 4-Acid Digestion Ba, Barim (ppm) 3.65 0.218 3.53 3.78 4-Acid Digestion Bi, Bismuth (ppm) 0.34 0.02 0.13 0.15 4-Acid Digestion Ca, Calcium (vt.%) 2.52 0.090 2.48 2.57 4-Acid Digestion Ca, Calcium (vt.%) 2.52 0.090 2.48 2.57 4-Acid Digestion Ca, Calcium (vt.%) 2.52 0.090 2.48 2.57 4-Acid Digestion Ca, Carbinum (ppm) 0.055 0.078 0.092 4-Acid Digestion 2.57 Ca, Corport (ppm) 15.4 0.50 4.8 15.6 4-Acid Digestion 2.57 Dy, Desprositin (ppm) 2.54 0.50 1.48 15.6 4-Acid Digestion Dy, Desprositin (ppm) 2.54 0.179 2.77 3.12 4-Acid Digestion Fe, Fronicu (vt.%) 3.60 0.13 3.54 3.65 4-Acid Digestion Ga, Gardinium (ppm) 19.6	Al, Aluminium (wt.%)	7.72	0.316	7.54	7.90	4-Acid Digestion
Ba, Bariam (ppm) 1070 43 1047 1092 4-Acid Digestion Be, Beryllium (ppm) 0.14 0.02 0.13 0.15 4-Acid Digestion Ca, Calcium (wt.%) 2.52 0.090 2.48 2.57 4-Acid Digestion Ca, Cadmium (ppm) 0.086 0.015 0.078 0.093 4-Acid Digestion Ce, Cerium (ppm) 13.4 0.53 13.1 13.7 4-Acid Digestion Cr, Cobalt (ppm) 15.2 0.69 14.8 15.6 4-Acid Digestion Cr, Crostim (ppm) 15.2 0.69 14.8 15.6 4-Acid Digestion Dy, Dysprosium (ppm) 5.15 0.214 5.01 5.29 4-Acid Digestion Er, Erolium (ppm) 2.24 0.179 2.77 3.12 4-Acid Digestion Fe, Iron (wt.%) 3.60 0.113 3.54 3.65 4-Acid Digestion Ga, Cadolinium (ppm) 0.55 0.563 5.28 5.84 4-Acid Digestion Ga, Cadolinium (ppm) 0.050 0.061	As, Arsenic (ppm)	17.0	2.1	15.9	18.1	4-Acid Digestion
Be, Beryllium (ppn) 3.65 0.218 3.53 3.78 4-Acid Digestion Bi, Bismuth (ppn) 0.14 0.02 0.13 0.15 4-Acid Digestion Cd, Cathium (vt.%) 2.52 0.090 2.48 2.57 4-Acid Digestion Cd, Cathium (ppn) 77 3.4 75 79 4-Acid Digestion Co, Cobatt (ppn) 154 0.53 13.1 13.7 4-Acid Digestion Cx, Canonium (ppn) 65 4.9 62 68 4-Acid Digestion Cx, Casiam (ppn) 15.2 0.69 14.8 15.6 4-Acid Digestion Cx, Cassiam (ppn) 5.15 0.214 501 5.29 4-Acid Digestion Fx, Erbium (ppn) 1.42 0.124 1.30 1.55 4-Acid Digestion Ga, Galliam (ppn) 1.9.6 0.41 1.9.4 1.9.8 4-Acid Digestion Ge, Germanium (ppn) 0.17 0.03 0.13 0.20 4-Acid Digestion Ga, Galliam (ppn) 0.9.6 0.41 1.9.4	Ba, Barium (ppm)	1070	43	1047	1092	4-Acid Digestion
Bis Bismeth (ppm) 0.14 0.02 0.15 4-Acid Digestion Ca, Cachaim (vet.%) 2.52 0.090 2.48 2.57 4-Acid Digestion Ce, Cerbait (ppm) 13.4 0.53 13.1 13.7 4-Acid Digestion Ce, Cobait (ppm) 15.2 0.69 14.8 15.6 4-Acid Digestion Ce, Cobait (ppm) 45.4 2.50 44.1 46.8 4-Acid Digestion Dy, Dyproting (ppm) 45.4 2.50 44.1 46.8 4-Acid Digestion By, Dyproting (ppm) 2.94 0.179 2.77 3.12 4-Acid Digestion Fe, Frontim (ppm) 2.94 0.179 2.77 3.12 4-Acid Digestion Fe, Fron (wt.%) 3.60 0.13 3.54 3.65 4-Acid Digestion Ga, Gailliam (ppm) 9.9 0.72 2.81 2.98 4-Acid Digestion Ga, Gaudinium (ppm) 0.050 0.066 0.047 0.053 4-Acid Digestion Ga, Gaudinium (ppm) 0.050 0.066 <t< th=""><th>Be, Beryllium (ppm)</th><th>3.65</th><th>0.218</th><th>3.53</th><th>3.78</th><th>4-Acid Digestion</th></t<>	Be, Beryllium (ppm)	3.65	0.218	3.53	3.78	4-Acid Digestion
Ca, Calcium (vtr.%) 2.52 0.090 2.48 2.57 4-Acid Digestion Cd, Carium (ppm) 77 3.4 75 79 4-Acid Digestion Co, Cobalt (ppm) 13.4 0.53 13.1 13.7 4-Acid Digestion Cr, Chronim (ppm) 15.4 0.60 14.8 15.6 4-Acid Digestion Cr, Carium (ppm) 15.2 0.60 14.8 15.6 4-Acid Digestion Cu, Copper (ppm) 45.4 2.50 4+Acid Digestion 4-Acid Digestion Er, Erbium (ppm) 2.14 0.179 2.77 3.12 4-Acid Digestion Ga, Gallium (ppm) 1.42 0.124 1.30 1.55 4-Acid Digestion Ge, Gardanium (ppm) 1.6 0.41 1.9.4 19.8 4-Acid Digestion Ge, Gardanium (ppm) 0.16 0.363 5.28 5.84 4-Acid Digestion Ge, Garbanium (ppm) 0.17 0.03 0.13 0.20 4-Acid Digestion Ho, Holmium (ppm) 0.050 0.060 0.047	Bi, Bismuth (ppm)	0.14	0.02	0.13	0.15	4-Acid Digestion
Cd. Cardmium (ppm) 0.086 0.015 0.078 0.093 4 - Acid Digestion Co. Corbalt (ppm) 77 3.4 75 79 4 - Acid Digestion Co. Cobalt (ppm) 13.4 0.53 13.1 13.7 4 Acid Digestion Co. Cobalt (ppm) 0.5 4.9 62 68 4 - Acid Digestion Cs. Cassium (ppm) 0.51 0.01 5.29 4 - Acid Digestion Dy. Dysprosium (ppm) 5.15 0.214 5.01 5.29 4 - Acid Digestion Fe, Frbium (ppm) 2.94 0.179 2.77 3.12 4 - Acid Digestion Fe, Lron (wt.%) 3.60 0.113 3.54 3.65 4 - Acid Digestion Ga. Gallinium (ppm) 1.96 0.41 19.4 19.8 4 - Acid Digestion Ho, Hohrium (ppm) 2.89 0.172 2.81 2.98 4 - Acid Digestion La, Lanhaum (ppm) 0.050 0.006 0.047 0.053 4 - Acid Digestion La, Lanhaum (ppm) 3.62 3.42 3.31	Ca. Calcium (wt.%)	2.52	0.090	2.48	2.57	4-Acid Digestion
Ce, Cerium (ppm) 770 3.4 750 797 4-Acid Digestion Co, Cobalt (ppm) 13.4 0.53 13.1 13.7 4-Acid Digestion Cr, Curonium (ppm) 15.2 0.69 14.8 15.6 4-Acid Digestion Cu, Coper (ppm) 15.2 0.69 14.8 15.6 4-Acid Digestion Dy, Dysprosium (ppm) 5.15 0.214 5.01 5.29 4-Acid Digestion Fr, Fribmin (ppm) 1.42 0.124 1.30 1.55 4-Acid Digestion Fe, Terolyum (ppm) 1.42 0.124 1.30 1.55 4-Acid Digestion Ga, Gallium (ppm) 19.6 0.41 19.4 19.8 4-Acid Digestion Ge, Germanium (ppm) 2.80 0.17 0.03 0.13 0.20 4-Acid Digestion In, Indium (ppm) 1.00 0.048 0.95 1.04 4-Acid Digestion In, Indium (ppm) 0.65 3.02 3.49 38.2 4-Acid Digestion In, Indium (ppm) 3.65 3.02 <th>Cd Cadmium (nnm)</th> <th>0.086</th> <th>0.015</th> <th>0.078</th> <th>0.093</th> <th>4-Acid Digestion</th>	Cd Cadmium (nnm)	0.086	0.015	0.078	0.093	4-Acid Digestion
Co. Colum (ppm) 17 25 17 4 Acid Digestion Co. Colum (ppm) 65 4.9 62 68 4 Acid Digestion Cs. Casium (ppm) 65 4.9 62 68 4 Acid Digestion Cs. Casium (ppm) 15.2 0.69 14.8 15.6 4 Acid Digestion Dy. Dysproxim (ppm) 5.15 0.214 5.01 5.29 4 Acid Digestion Er, Erbium (ppm) 2.94 0.179 2.77 3.12 4 Acid Digestion Eu, Europium (ppm) 1.84 0.124 1.30 1.55 4 Acid Digestion Ga, Gallinium (ppm) 1.96 0.41 1.94 1.98 4 Acid Digestion Ge, Gernanium (ppm) 0.17 0.03 0.13 0.20 4 Acid Digestion Ho, Hohmum (ppm) 0.050 0.006 0.047 0.053 4 Acid Digestion La, Lanhaumum (ppm) 3.62 3.42 3.31 4 Acid Digestion La, Lanhaumum (ppm) 3.65 0.051 0.052 4 Acid Digestion <t< th=""><th>Co Corium (nnm)</th><th>77</th><th>3.4</th><th>75</th><th>79</th><th>4-Acid Digestion</th></t<>	Co Corium (nnm)	77	3.4	75	79	4-Acid Digestion
Cor, Crount (ppn) 15.4 0.53 15.1 15.7 4-Acid Digestion Cr, Caronium (ppn) 15.2 0.69 14.8 15.6 4-Acid Digestion Cu, Copyer (ppn) 15.1 0.214 5.01 5.29 4-Acid Digestion Dy, Dysprosium (ppn) 2.14 0.179 2.77 3.12 4-Acid Digestion Er, Erbinm (ppn) 1.42 0.124 1.30 1.55 4-Acid Digestion Re, Taro (str.%) 3.60 0.113 3.54 3.65 4-Acid Digestion Gd, Gatolinium (ppn) 1.9.6 0.41 1.9.4 1.9.8 4-Acid Digestion Ge, Germanium (ppn) 0.17 0.03 0.13 0.20 4-Acid Digestion In, Indium (ppn) 1.00 0.048 0.95 1.04 4-Acid Digestion In, Indium (ppn) 3.57 3.02 3.49 3.8.2 4-Acid Digestion Li, Lithium (ppn) 3.6.5 3.02 3.49 3.8.2 4-Acid Digestion Li, Lithium (ppn) 3.6.5 3.02	Co. Coholt (npm)	12.4	0.52	12.1	12.7	4 Acid Digestion
Cr. Curromum (ppm) 0.3 4.3 0.2 0.6 4-Act Digestion Cs, Cosper (ppm) 45.4 2.50 44.1 46.8 4-Acid Digestion Dy, Dyspressium (ppm) 5.15 0.214 5.01 5.29 4-Acid Digestion Ex, Erbium (ppm) 2.94 0.179 2.77 3.12 4-Acid Digestion Ex, Erbium (ppm) 1.42 0.124 1.30 1.55 4-Acid Digestion Ga, Galtium (ppm) 1.96 0.41 1.94 1.98 4-Acid Digestion Gc, Gadolinium (ppm) 1.96 0.41 1.94 1.98 4-Acid Digestion Gc, Gadolinium (ppm) 0.17 0.03 0.13 0.20 4-Acid Digestion He, Holmium (ppm) 0.05 0.006 0.047 0.053 4-Acid Digestion La, Lanthanum (ppm) 0.05 0.006 0.047 0.053 4-Acid Digestion La, Lattertium (ppm) 0.40 0.021 0.37 0.42 4-Acid Digestion La, Lattertium (ppm) 0.40 0.021 <th>Co, Cobait (ppiii)</th> <th>13.4</th> <th>0.55</th> <th>15.1</th> <th>13.7</th> <th>4-Acid Digestion</th>	Co, Cobait (ppiii)	13.4	0.55	15.1	13.7	4-Acid Digestion
Cs. Caesum (ppm) 13.2 14.8 13.6 4-Acid Digestion Cu, Copper (ppm) 5.15 0.214 5.01 5.29 4-Acid Digestion By, Dysprosium (ppm) 2.94 0.179 2.77 3.12 4-Acid Digestion Ex, Europium (ppm) 1.42 0.124 1.30 1.55 4-Acid Digestion Ga, Gallium (ppm) 1.96 0.41 19.4 19.8 4-Acid Digestion Gd, Galdium (ppm) 0.56 0.363 5.28 5.84 4-Acid Digestion Ge, Gernanium (ppm) 0.17 0.03 0.13 0.20 4-Acid Digestion Hr, Hafnium (ppm) 1.00 0.048 0.95 1.04 4-Acid Digestion La, Lanthanum (ppm) 1.00 0.048 0.95 1.04 4-Acid Digestion Li, Lithium (ppm) 3.65 3.02 34.9 38.2 4-Acid Digestion Li, Lithium (ppm) 0.4052 0.001 0.051 0.052 4-Acid Digestion Li, Lithium (ppm) 0.452 0.001 0.051	Cr, Chromium (ppm)	05	4.9	02	08	4-Acid Digestion
Cu, Copper (ppm) 45.4 2.50 44.1 46.8 4-Acid Digestion Dy, Dyspressium (ppm) 5.15 0.214 5.01 5.29 4-Acid Digestion Ex, Erbium (ppm) 1.24 0.124 1.30 1.55 4-Acid Digestion Ex, Erbium (ppm) 1.42 0.124 1.30 1.55 4-Acid Digestion Ga, Galtium (ppm) 1.56 0.461 1.94 1.98 4-Acid Digestion Gd, Gadolinium (ppm) 5.56 0.363 5.28 5.84 4-Acid Digestion He, Holmium (ppm) 0.17 0.03 0.13 0.20 4-Acid Digestion Ho, Holmium (ppm) 0.050 0.006 0.047 0.053 4-Acid Digestion K, Potassium (vt.%) 3.27 0.085 3.24 3.31 4-Acid Digestion Li, Lathium (ppm) 0.456 0.021 0.37 0.42 4-Acid Digestion Li, Lithium (ppm) 0.456 0.051 0.052 0.01 0.051 0.052 4-Acid Digestion Mg, Magnesium (vt.%)	Cs, Caesium (ppm)	15.2	0.69	14.8	15.6	4-Acid Digestion
Dy, Dysprosium (ppm) 5.15 0.214 5.01 5.29 4-Acid Digestion Er, Extropium (ppm) 1.42 0.124 1.30 1.55 4-Acid Digestion Fe, Irron (vt.%) 3.60 0.113 3.54 3.65 4-Acid Digestion Ga, Gallium (ppm) 19.6 0.41 19.4 19.8 4-Acid Digestion Gd, Gadolinium (ppm) 0.17 0.03 0.13 0.20 4-Acid Digestion Ge, Germanium (ppm) 1.01 0.048 0.95 1.04 4-Acid Digestion Hr, Hafnium (ppm) 1.00 0.048 0.95 1.04 4-Acid Digestion La, Lanthanum (ppm) 1.00 0.048 0.95 1.04 4-Acid Digestion La, Lanthanum (ppm) 3.65 3.02 3.4.9 3.8.2 4-Acid Digestion La, Lanthanum (ppm) 0.40 0.021 0.37 0.42 4-Acid Digestion La, Lanthanum (ppm) 0.40 0.021 0.33 1.39 4-Acid Digestion La, Latthium (ppm) 0.40 0.	Cu, Copper (ppm)	45.4	2.50	44.1	46.8	4-Acid Digestion
Er, Erbium (ppm) 1.24 0.179 2.77 3.12 4-Acid Digestion Eu, Europium (ppm) 1.42 0.124 1.30 1.55 4-Acid Digestion Ga, Gallium (ppm) 5.66 0.363 5.28 5.84 4-Acid Digestion Ge, Germanium (ppm) 5.56 0.363 5.28 5.84 4-Acid Digestion HG, Hadinium (ppm) 0.17 0.03 0.13 0.20 4-Acid Digestion Ge, Germanium (ppm) 0.100 0.048 0.95 1.04 4-Acid Digestion Ho, Holmium (ppm) 0.050 0.066 0.047 0.053 4-Acid Digestion Li, Lithium (ppm) 3.8.5 3.18 3.14 4-Acid Digestion Li, Lithium (ppm) 38.5 2.18 37.4 39.6 4-Acid Digestion Li, Lithium (ppm) 3.8.5 2.18 3.7.4 39.6 4-Acid Digestion Mg, Magnesetum (vt.%) 1.36 0.052 0.001 0.051 0.052 4-Acid Digestion Mg, Magnesetum (vt.%) 1.08 0.052	Dy, Dysprosium (ppm)	5.15	0.214	5.01	5.29	4-Acid Digestion
Eu, Europium (ppm) 1.42 0.124 1.30 1.55 4-Acid Digestion Fe, Iron (wt.%) 3.60 0.113 3.54 3.65 4-Acid Digestion Ga, Gallium (ppm) 19.6 0.41 19.4 19.8 4-Acid Digestion Gd, Gadolinium (ppm) 0.17 0.03 0.13 0.20 4-Acid Digestion Ho, Holmium (ppm) 1.00 0.048 0.95 1.04 4-Acid Digestion In, Indium (ppm) 0.050 0.006 0.047 0.053 4-Acid Digestion La, Lanthanum (ppm) 3.67 0.085 3.24 3.31 4-Acid Digestion Li, Lithium (ppm) 3.85 2.18 37.4 39.6 4-Acid Digestion Ly, Luctitum (ppm) 0.85 0.059 1.33 1.39 4-Acid Digestion Ma, Manganese (wt.%) 0.36 0.051 0.052 4-Acid Digestion Mo, Molybednum (ppm) 3.25 0.277 3.13 3.36 4-Acid Digestion No, Noibyhednum 3.0 0.79 32.7	Er, Erbium (ppm)	2.94	0.179	2.77	3.12	4-Acid Digestion
Fe, Iron (wt.%) 3.60 0.113 3.54 3.65 4-Acid Digestion Ga, Galdinum (ppm) 5.56 0.363 5.28 5.84 4-Acid Digestion Ge, Germanium (ppm) 0.17 0.03 0.13 0.20 4-Acid Digestion HG, Hafnium (ppm) 0.89 0.172 2.81 2.98 4-Acid Digestion HG, Holmium (ppm) 0.050 0.060 0.047 0.053 4-Acid Digestion In, Indium (ppm) 0.65 3.02 34.9 38.2 4-Acid Digestion Li, Lithium (ppm) 38.5 2.18 37.4 39.6 4-Acid Digestion Li, Lithium (ppm) 38.5 0.18 37.4 39.6 4-Acid Digestion Mg, Magnessium (vt.%) 1.052 0.001 0.051 0.052 4-Acid Digestion Mg, Magnessium (vt.%) 1.98 0.052 1.96 2.00 4-Acid Digestion Mo, Molybdenum (ppm) 3.0 0.79 3.3 4-Acid Digestion Nb, Niobium (ppm) 3.0 0.79 3.3	Eu, Europium (ppm)	1.42	0.124	1.30	1.55	4-Acid Digestion
Ga, Galliam (ppm) 19.6 0.41 19.4 19.8 4-Acid Digestion Gd, Gadolinium (ppm) 5.56 0.363 5.28 5.84 4-Acid Digestion Ge, Germanium (ppm) 0.17 0.03 0.13 0.20 4-Acid Digestion Ho, Holmium (ppm) 1.00 0.048 0.95 1.04 4-Acid Digestion In, Indium (ppm) 0.050 0.006 0.047 0.053 4-Acid Digestion La, Lanthanum (ppm) 36.5 3.02 34.9 38.2 4-Acid Digestion Lu, Luctitum (ppm) 0.40 0.021 0.37 0.42 4-Acid Digestion Mu, Magnesium (vt.%) 1.36 0.059 1.33 1.39 4-Acid Digestion Mu, Magnese (vt.%) 0.052 0.001 0.051 0.052 4-Acid Digestion Na, Sodium (vt.%) 1.36 0.52 1.96 2.00 4-Acid Digestion Na, Nolybdenum (ppm) 3.0 0.79 3.37 3.33 4-Acid Digestion Na, Sodium (vt.%) 1.98 0.052	Fe, Iron (wt.%)	3.60	0.113	3.54	3.65	4-Acid Digestion
Gd, Gadolinium (ppm) 5.56 0.363 5.28 5.84 4-Acid Digestion Ge, Germanium (ppm) 0.17 0.03 0.13 0.20 4-Acid Digestion HG, Hafnium (ppm) 2.89 0.172 2.81 2.98 4-Acid Digestion Ho, Holmium (ppm) 0.005 0.006 0.047 0.053 4-Acid Digestion Li, Lithium (ppm) 36.5 3.02 34.9 38.2 4-Acid Digestion Li, Lithium (ppm) 36.5 3.02 34.9 38.2 4-Acid Digestion Li, Lithium (ppm) 36.5 0.18 37.4 39.6 4-Acid Digestion Mag, Magneseum (vt.%) 1.36 0.052 0.051 0.052 4-Acid Digestion Mag. Magnese (wt.%) 0.052 0.001 0.051 0.052 4-Acid Digestion Na, Sodium (vt.%) 1.98 0.052 1.96 2.00 4-Acid Digestion Na, Sodium (vt.%) 1.98 0.52 1.96 2.00 4-Acid Digestion Na, Sodium (vt.%) 1.98 0.52<	Ga, Gallium (ppm)	19.6	0.41	19.4	19.8	4-Acid Digestion
Ge, Germanium (ppm) 0.17 0.03 0.13 0.20 4-Acid Digestion HG, Holmium (ppm) 1.00 0.048 0.95 1.04 4-Acid Digestion In, Indium (ppm) 0.000 0.006 0.047 0.053 4-Acid Digestion In, Indium (ppm) 0.050 0.006 0.047 0.053 4-Acid Digestion La, Lanthanum (ppm) 36.5 3.02 34.9 38.2 4-Acid Digestion Li, Lithium (ppm) 36.5 3.02 34.9 38.2 4-Acid Digestion Ma, Magnesium (wt%) 1.36 0.059 1.33 1.39 4-Acid Digestion Ma, Magneseium (wt%) 1.36 0.052 1.96 2.00 4-Acid Digestion Mo, Molybdenun (ppm) 3.25 0.277 3.13 3.36 4-Acid Digestion Na, Sodium (vt.%) 1.98 0.052 1.96 2.00 4-Acid Digestion Ni, Nickel (ppm) 3.0 0.79 32.7 33.3 4-Acid Digestion Ni, Nickel (ppm) 21.9 0.94	Gd. Gadolinium (ppm)	5.56	0.363	5.28	5.84	4-Acid Digestion
Hf, Hafnium (ppm) 2.89 0.172 2.81 2.98 4-Acid Digestion Ho, Holmium (ppm) 0.050 0.048 0.95 1.04 4-Acid Digestion In, Indium (ppm) 0.050 0.066 0.047 0.053 4-Acid Digestion K, Potassium (vt.%) 3.27 0.085 3.24 3.31 4-Acid Digestion La, Lanthanum (ppm) 38.5 2.18 37.4 39.6 4-Acid Digestion Lu, Lutetium (ppm) 0.40 0.021 0.37 0.42 4-Acid Digestion Mg, Magnesium (vt.%) 1.35 0.059 1.33 1.39 4-Acid Digestion Na, Sodium (vt.%) 1.95 0.052 1.96 2.00 4-Acid Digestion Na, Sodium (vt.%) 1.98 0.052 1.96 2.00 4-Acid Digestion Nb, Niobium (ppm) 33.0 0.79 32.7 33.3 4-Acid Digestion Nk, Nickel (ppm) 39.0 1.63 38.2 39.7 4-Acid Digestion Pb, Lead (ppm) 21.9 9.4	Ge, Germanium (ppm)	0.17	0.03	0.13	0.20	4-Acid Digestion
Ho, Holmium (ppm) 1.00 0.048 0.95 1.04 4.Acid Digestion In, Indium (ppm) 0.050 0.006 0.047 0.053 4.Acid Digestion K, Potassium (wt%) 3.27 0.085 3.24 3.31 4.Acid Digestion La, Lanthanum (ppm) 36.5 3.02 34.9 38.2 4.Acid Digestion Lu, Lutetium (ppm) 0.40 0.021 0.37 0.42 4.Acid Digestion Mg, Magnesium (vt.%) 1.36 0.052 1.001 0.051 0.052 4.Acid Digestion Mo, Molybdenum (vpm) 3.25 0.277 3.13 3.36 4.Acid Digestion Na, Sodium (vt.%) 1.98 0.052 1.96 2.00 4.Acid Digestion Na, Nobium (ppm) 20.4 1.13 19.7 21.0 4.Acid Digestion Na, Neodymium (ppm) 33.0 0.79 32.7 33.3 4.Acid Digestion Ni, Nickel (ppm) 21.9 0.94 21.4 22.3 4.Acid Digestion Prophorus (wt.%) 0.101 <th>Hf. Hafnium (npm)</th> <th>2.89</th> <th>0.172</th> <th>2.81</th> <th>2.98</th> <th>4-Acid Digestion</th>	Hf. Hafnium (npm)	2.89	0.172	2.81	2.98	4-Acid Digestion
Instrumm (ppm) 1.03 0.047 0.033 4-Acid Digestion In, Indium (ppm) 0.050 0.006 0.047 0.053 4-Acid Digestion La, Lanthanum (ppm) 3.27 0.085 3.24 3.31 4-Acid Digestion Li, Lithium (ppm) 38.5 2.18 37.4 39.6 4-Acid Digestion Lu, Lutefum (ppm) 0.40 0.021 0.37 0.42 4-Acid Digestion Mg, Magnesium (vt.%) 1.36 0.059 1.33 1.39 4-Acid Digestion Mn, Manganese (vt.%) 0.052 0.001 0.051 0.052 4-Acid Digestion Ns, Sodium (vt.%) 1.98 0.052 1.96 2.00 4-Acid Digestion Ns, Nobium (ppm) 20.4 1.13 19.7 21.0 4-Acid Digestion Ns, Nickel (ppm) 39.0 1.63 38.2 39.7 4-Acid Digestion P, Phosphorus (vt.%) 0.101 0.004 0.099 0.102 4-Acid Digestion S, Sulphur (vt.%) 0.101 0.042 0.55<	Ho Holmium (ppm)	1.00	0.048	0.95	1.04	4-Acid Digestion
Int. Intuiting (pm) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001 <th>In Indium (nnm)</th> <th>0.050</th> <th>0.046</th> <th>0.047</th> <th>0.053</th> <th>4-Acid Digestion</th>	In Indium (nnm)	0.050	0.046	0.047	0.053	4-Acid Digestion
h, Protestimi (wt. %) 3.27 0.085 3.24 3.11 4-Acid Digestion La, Linthanum (ppm) 38.5 2.18 37.4 39.6 4-Acid Digestion Li, Lithium (ppm) 0.40 0.021 0.37 0.42 4-Acid Digestion Mg, Magnesium (wt.%) 1.36 0.059 1.33 1.39 4-Acid Digestion Mo, Molybdenum (ppm) 3.25 0.277 3.13 3.36 4-Acid Digestion Na, Sodium (wt.%) 1.98 0.052 1.96 2.00 4-Acid Digestion Na, Sodium (wt.%) 1.98 0.052 1.96 2.00 4-Acid Digestion Nb, Niobium (ppm) 20.4 1.13 19.7 21.0 4-Acid Digestion Ni, Nickel (ppm) 39.0 1.63 38.2 39.7 4-Acid Digestion Pb, Lead (ppm) 21.9 0.94 21.4 22.3 4-Acid Digestion Rb, Rubidium (ppm) 21.4 0.513 8.65 9.63 4-Acid Digestion St, Strontium (ppm) 0.57 0.042	K Dotossium (wt %)	2.27	0.000	2.24	2 21	4 Acid Digestion
Lik, Lithium (ppm) 36.5 3.02 34.9 38.2 4-Acid Digestion Lik, Lithium (ppm) 0.40 0.021 0.37 0.42 4-Acid Digestion Mg, Magnesium (wt.%) 1.36 0.059 1.33 1.39 4-Acid Digestion Mn, Manganese (wt.%) 0.052 0.001 0.051 0.052 4-Acid Digestion Na, Sodium (wt.%) 1.98 0.052 1.96 2.00 4-Acid Digestion Na, Sodium (wt.%) 1.98 0.052 1.96 2.00 4-Acid Digestion Nb, Niobium (ppm) 20.4 1.13 19.7 21.0 4-Acid Digestion Nk, Neodymium (ppm) 33.0 0.79 32.7 33.3 4-Acid Digestion Ni, Nickel (ppm) 21.9 0.94 21.4 22.3 4-Acid Digestion Pr. Prosphorus (wt.%) 0.0101 0.004 0.061 0.066 4-Acid Digestion S, Suphur (wt.%) 0.064 0.004 0.061 0.066 4-Acid Digestion S, Strophorus (wt.%) 0.042 <	K, Fotassium (wt. 76)	3.21	2.02	24.0	28.2	4-Acid Digestion
Li, Lithuum (ppm) 38.5 2.18 37.4 39.6 4-Acid Digestion Lu, Lutetium (ppm) 0.40 0.021 0.37 0.42 4-Acid Digestion Mg, Magnesium (wt.%) 1.36 0.059 1.33 1.39 4-Acid Digestion Mo, Molybdenum (ppm) 3.25 0.277 3.13 3.36 4-Acid Digestion Na, Sodium (wt.%) 1.98 0.052 1.96 2.00 4-Acid Digestion Nb, Niobium (ppm) 20.4 1.13 19.7 21.0 4-Acid Digestion Nd, Kodymium (ppm) 33.0 0.79 32.7 33.3 4-Acid Digestion P, Phosphorus (wt.%) 0.101 0.004 0.099 0.102 4-Acid Digestion Pb, Lead (ppm) 21.9 0.94 21.4 22.3 4-Acid Digestion Pb, Rubidium (ppm) 21.8 17 208 2277 4-Acid Digestion S, Suphur (wt.%) 0.064 0.004 0.066 4-Acid Digestion 55 S, Stontium (ppm) 12.3 0.84	La, Lantnanum (ppm)	30.5	3.02	34.9	38.2	4-Acid Digestion
Lit, Lutetum (ppm) 0.40 0.01 0.37 0.42 4-Acid Digestion Mg, Magnesium (vt%) 1.36 0.059 1.33 1.39 4-Acid Digestion Mo, Molybdenum (ppm) 3.25 0.277 3.13 3.36 4-Acid Digestion Na, Soduim (vt.%) 1.98 0.052 1.96 2.00 4-Acid Digestion Na, Soduim (vt.%) 1.98 0.052 3.33 4-Acid Digestion Nd, Neodymium (ppm) 20.4 1.13 19.7 21.0 4-Acid Digestion Ni, Nickel (ppm) 39.0 1.63 38.2 39.7 4-Acid Digestion Pr, Phosphorus (wt.%) 0.101 0.004 0.099 0.102 4-Acid Digestion Pr, Praseodymium (ppm) 9.14 0.513 8.65 9.63 4-Acid Digestion S, Sulphur (wt.%) 0.064 0.004 0.061 0.066 4-Acid Digestion S, Suphur (wt.%) 0.66 0.414 6.20 6.99 4-Acid Digestion S, Suphur (wt.%) 0.43 0.195 3	Li, Litnium (ppm)	38.5	2.18	37.4	39.6	4-Acid Digestion
Mg, Magnesium (vt.%) 1.36 0.059 1.33 1.39 4-Acid Digestion Mn, Manganese (vt.%) 0.052 0.001 0.051 0.052 4-Acid Digestion Na, Sodium (vt.%) 1.98 0.052 1.96 2.00 4-Acid Digestion Nb, Niobium (ppm) 20.4 1.13 19.7 21.0 4-Acid Digestion Nd, Neodynium (ppm) 33.0 0.79 32.7 33.3 4-Acid Digestion Ni, Nickel (ppm) 39.0 1.63 38.2 39.7 4-Acid Digestion P, Phosphorus (vt.%) 0.101 0.004 0.099 0.102 4-Acid Digestion Pb, Lead (ppm) 21.9 0.94 21.4 22.3 4-Acid Digestion Rb, Rubidium (ppm) 21.8 17 208 227 4-Acid Digestion S, Sulphur (vt.%) 0.064 0.0061 0.066 4-Acid Digestion S, Scandium (ppm) 0.57 0.42 0.55 0.58 4-Acid Digestion Se, Scandium (ppm) 0.56 0.414 6.20	Lu, Lutetium (ppm)	0.40	0.021	0.37	0.42	4-Acid Digestion
Mn, Manganese (vt.%) 0.052 0.001 0.051 0.052 4-Acid Digestion No, Molybdenum (ppm) 3.25 0.277 3.13 3.36 4-Acid Digestion Na, Sodium (vt.%) 1.98 0.052 1.96 2.00 4-Acid Digestion Nb, Niobium (ppm) 20.4 1.13 19.7 21.0 4-Acid Digestion Nd, Neodymium (ppm) 33.0 0.79 32.7 33.3 4-Acid Digestion P, Phosphorus (wt.%) 0.101 0.004 0.099 0.102 4-Acid Digestion Pb, Lead (ppm) 9.14 0.513 8.65 9.63 4-Acid Digestion S, Sulphur (wt.%) 0.064 0.004 0.066 4-Acid Digestion S, Sandium (ppm) 12.3 0.84 11.9 12.7 4-Acid Digestion S, Sandium (ppm) 6.60 0.414 6.20 6.99 4-Acid Digestion Sr, Strontium (ppm) 2.96 8 292 299 4-Acid Digestion Sr, Strontium (ppm) 0.86 0.044 0.82	Mg, Magnesium (wt.%)	1.36	0.059	1.33	1.39	4-Acid Digestion
Mo, Molybdenum (ppm) 3.25 0.277 3.13 3.36 4-Acid Digestion Na, Sodium (wt.%) 1.98 0.052 1.96 2.00 4-Acid Digestion Nb, Niobium (ppm) 20.4 1.13 19.7 21.0 4-Acid Digestion Nd, Neodymium (ppm) 33.0 0.79 32.7 33.3 4-Acid Digestion Ni, Nickel (ppm) 39.0 1.63 38.2 39.7 4-Acid Digestion P, Phosphorus (wt.%) 0.101 0.004 0.099 0.102 4-Acid Digestion Pb, Lead (ppm) 21.9 0.94 21.4 22.3 4-Acid Digestion Rb, Rubidium (ppm) 21.8 17 208 227 4-Acid Digestion S, Sulphur (wt.%) 0.064 0.061 0.066 4-Acid Digestion 5 S, Candium (ppm) 0.57 0.042 0.55 0.58 4-Acid Digestion Sr, Strontium (ppm) 6.60 0.414 6.20 6.99 4-Acid Digestion Sr, Strontium (ppm) 1.56 0.083	Mn, Manganese (wt.%)	0.052	0.001	0.051	0.052	4-Acid Digestion
Na, Sodium (wt.%) 1.98 0.052 1.96 2.00 4-Acid Digestion Nb, Niobium (ppm) 20.4 1.13 19.7 21.0 4-Acid Digestion Nd, Neodymium (ppm) 33.0 0.79 32.7 33.3 4-Acid Digestion Ni, Nickel (ppm) 39.0 1.63 38.2 39.7 4-Acid Digestion P, Phosphorus (wt.%) 0.101 0.004 0.099 0.102 4-Acid Digestion Pb, Lead (ppm) 21.9 0.94 21.4 22.3 4-Acid Digestion Pr, Prasedymium (ppm) 9.14 0.513 8.65 9.63 4-Acid Digestion S, Sulphur (wt.%) 0.064 0.004 0.061 0.066 4-Acid Digestion S, Sulphur (wt.%) 0.057 0.042 0.55 0.58 4-Acid Digestion S, Strontium (ppm) 12.3 0.84 11.9 12.7 4-Acid Digestion Sr, Strontium (ppm) 6.60 0.414 6.20 6.99 4-Acid Digestion Sr, Strontium (ppm) 296 8	Mo, Molybdenum (ppm)	3.25	0.277	3.13	3.36	4-Acid Digestion
Nb, Niobium (ppm) 20.4 1.13 19.7 21.0 4-Acid Digestion Nd, Neodymium (ppm) 33.0 0.79 32.7 33.3 4-Acid Digestion Ni, Nickel (ppm) 39.0 1.63 38.2 39.7 4-Acid Digestion P, Dhosphorus (wt.%) 0.101 0.004 0.099 0.102 4-Acid Digestion Pr, Praseodymium (ppm) 9.14 0.513 8.65 9.63 4-Acid Digestion Rb, Rubidium (ppm) 218 17 208 227 4-Acid Digestion S, Sulphur (wt.%) 0.064 0.004 0.061 0.066 4-Acid Digestion Sc, Scandium (ppm) 12.3 0.84 11.9 12.7 4-Acid Digestion Sn, Tin (ppm) 4.03 0.195 3.91 4.14 4-Acid Digestion Sn, Strontium (ppm) 2.66 0.82 0.90 4-Acid Digestion Ta, Tantalum (ppm) 0.86 0.044 0.82 0.90 4-Acid Digestion Th, Thorium (ppm) 0.13 0.036 0.39	Na, Sodium (wt.%)	1.98	0.052	1.96	2.00	4-Acid Digestion
Nd, Neodymium (ppm) 33.0 0.79 32.7 33.3 4-Acid Digestion Ni, Nickel (ppm) 39.0 1.63 38.2 39.7 4-Acid Digestion P, Phosphorus (wt.%) 0.101 0.004 0.099 0.102 4-Acid Digestion Pb, Lead (ppm) 21.9 0.94 21.4 22.3 4-Acid Digestion Pr, Praseodymium (ppm) 9.14 0.513 8.65 9.63 4-Acid Digestion Rb, Rubidium (ppm) 218 17 208 227 4-Acid Digestion S, Sulphur (wt.%) 0.064 0.004 0.661 0.0666 4-Acid Digestion Sc, Scandium (ppm) 10.57 0.42 0.55 0.58 4-Acid Digestion Sm, Samarium (ppm) 6.60 0.414 6.20 6.99 4-Acid Digestion Sr, Strontium (ppm) 1.56 0.083 1.51 1.60 4-Acid Digestion Tb, Terbium (ppm) 0.86 0.044 0.82 0.90 4-Acid Digestion Tb, Terbium (ppm) 1.13 0.065	Nb, Niobium (ppm)	20.4	1.13	19.7	21.0	4-Acid Digestion
Ni, Nickel (ppm) 39.0 1.63 38.2 39.7 4-Acid Digestion P, Phosphorus (wt.%) 0.101 0.004 0.099 0.102 4-Acid Digestion Pb, Lead (ppm) 21.9 0.94 21.4 22.3 4-Acid Digestion Pr, Praseodymium (ppm) 9.14 0.513 8.65 9.63 4-Acid Digestion Rb, Rubidium (ppm) 218 17 208 227 4-Acid Digestion S, Sulphur (wt.%) 0.064 0.004 0.061 0.066 4-Acid Digestion Sb, Antimony (ppm) 0.57 0.042 0.55 0.58 4-Acid Digestion Sc, Scandium (ppm) 12.3 0.84 11.9 12.7 4-Acid Digestion Sn, Simarium (ppm) 6.60 0.414 6.20 6.99 4-Acid Digestion Sr, Strontium (ppm) 1.56 0.044 0.82 0.90 4-Acid Digestion Ta, Tantalum (ppm) 1.56 0.044 0.82 0.90 4-Acid Digestion Th, Thorium (ppm) 1.17 21.3	Nd, Neodymium (ppm)	33.0	0.79	32.7	33.3	4-Acid Digestion
P, Phosphorus (wt.%) 0.101 0.004 0.099 0.102 4-Acid Digestion Pb, Lead (ppm) 21.9 0.94 21.4 22.3 4-Acid Digestion Pr, Praseodymium (ppm) 9.14 0.513 8.65 9.63 4-Acid Digestion Rb, Rubidium (ppm) 218 17 208 227 4-Acid Digestion S, Sulphur (wt.%) 0.064 0.004 0.061 0.066 4-Acid Digestion Sb, Antimony (ppm) 0.57 0.042 0.55 0.58 4-Acid Digestion Sc, Scandium (ppm) 12.3 0.84 11.9 12.7 4-Acid Digestion Sn, Strontium (ppm) 6.60 0.414 6.20 6.99 4-Acid Digestion Sr, Strontium (ppm) 4.03 0.195 3.91 4.14 4-Acid Digestion Ta, Tantalum (ppm) 1.56 0.083 1.51 1.60 4-Acid Digestion Th, Thorium (ppm) 1.13 0.065 0.44 0.82 0.90 4-Acid Digestion Ti, Titanium (wt.%) 0.489<	Ni, Nickel (ppm)	39.0	1.63	38.2	39.7	4-Acid Digestion
Pb, Lead (ppm) 21.9 0.94 21.4 22.3 4-Acid Digestion Pr, Praseodymium (ppm) 9.14 0.513 8.65 9.63 4-Acid Digestion Rb, Rubidium (ppm) 218 17 208 227 4-Acid Digestion S, Sulphur (wt.%) 0.064 0.004 0.061 0.066 4-Acid Digestion S, Sulphur (wt.%) 0.064 0.042 0.55 0.58 4-Acid Digestion Sc, Scandium (ppm) 12.3 0.84 11.9 12.7 4-Acid Digestion Sn, Tin (ppm) 4.03 0.195 3.91 4.14 4-Acid Digestion Sr, Strontium (ppm) 296 8 292 299 4-Acid Digestion Ta, Tantalum (ppm) 1.56 0.083 1.51 1.60 4-Acid Digestion Th, Terbium (ppm) 21.9 1.17 21.3 22.5 4-Acid Digestion Th, Thorium (ppm) 0.430 0.036 0.39 0.47 4-Acid Digestion Th, Thalium (ppm) 1.13 0.065 1.10	P. Phosphorus (wt.%)	0.101	0.004	0.099	0.102	4-Acid Digestion
Pr, Praseodymium (ppm) 9.14 0.513 8.65 9.63 4-Acid Digestion Rb, Rubidium (ppm) 218 17 208 227 4-Acid Digestion S, Sulphur (wt.%) 0.064 0.004 0.061 0.066 4-Acid Digestion Sb, Antimony (ppm) 0.57 0.042 0.55 0.58 4-Acid Digestion Sc, Scandium (ppm) 12.3 0.84 11.9 12.7 4-Acid Digestion Sn, Samarium (ppm) 6.60 0.414 6.20 6.99 4-Acid Digestion Sn, Strontium (ppm) 296 8 292 299 4-Acid Digestion Ta, Tantalum (ppm) 1.56 0.083 1.51 1.60 4-Acid Digestion Th, Thorium (ppm) 21.9 1.17 21.3 22.5 4-Acid Digestion Th, Thallium (ppm) 0.43 0.036 0.39 0.47 4-Acid Digestion Th, Thallium (ppm) 1.13 0.065 1.10 1.16 4-Acid Digestion U, Uranium (ppm) 6.37 0.432	Pb. Lead (ppm)	21.9	0.94	21.4	22.3	4-Acid Digestion
The initial regime The initial regime Rb, Rubidium (ppm) 218 17 208 227 4-Acid Digestion S, Sulphur (wt.%) 0.064 0.004 0.061 0.066 4-Acid Digestion Sb, Antimony (ppm) 0.57 0.042 0.55 0.58 4-Acid Digestion Sc, Scandium (ppm) 12.3 0.84 11.9 12.7 4-Acid Digestion Sm, Samarium (ppm) 6.60 0.414 6.20 6.99 4-Acid Digestion Sn, Tin (ppm) 4.03 0.195 3.91 4.14 4-Acid Digestion Sr, Strontium (ppm) 296 8 292 299 4-Acid Digestion Th, Thorium (ppm) 1.56 0.083 1.51 1.60 4-Acid Digestion Th, Thorium (ppm) 21.9 1.17 21.3 22.5 4-Acid Digestion Ti, Titanium (wt.%) 0.489 0.015 0.480 0.497 4-Acid Digestion Th, Thorium (ppm) 1.13 0.065 1.10 1.16 4-Acid Digestion	Pr. Praseodymium (nnm)	9.14	0.513	8.65	9.63	4-Acid Digestion
Kit, Kuhum (tpm) 2.10 1.1 2.00 2.11 1.11 <th1.11< th=""> 1.11 1.11</th1.11<>	Rh Rubidium (nnm)	218	17	208	227	4-Acid Digestion
St, Supinit (wi. 70) 0.004 0.004 0.001 0.000 4-Acid Digestion Sb, Antimony (ppm) 0.57 0.042 0.55 0.58 4-Acid Digestion Sc, Scandium (ppm) 12.3 0.84 11.9 12.7 4-Acid Digestion Sm, Samarium (ppm) 6.60 0.414 6.20 6.99 4-Acid Digestion Sn, Tin (ppm) 4.03 0.195 3.91 4.14 4-Acid Digestion Sr, Strontium (ppm) 296 8 292 299 4-Acid Digestion Ta, Tantalum (ppm) 1.56 0.083 1.51 1.60 4-Acid Digestion Th, Therbium (ppm) 0.86 0.044 0.82 0.90 4-Acid Digestion Th, Thorium (ppm) 21.9 1.17 21.3 22.5 4-Acid Digestion Ti, Titanium (wt.%) 0.489 0.015 0.480 0.497 4-Acid Digestion Th, Thulium (ppm) 0.43 0.036 0.39 0.47 4-Acid Digestion V, Vanadium (ppm) 10.43 109	S Sulphur (wt %)	0.064	0.004	0.061	0.066	4-Acid Digestion
Sit, Animity (ppin) 0.37 0.042 0.33 0.44 0.13 0.44 0.15 0.44 0.15 0.44 0.12.7 4-Acid Digestion Ser, Scandium (ppm) 6.60 0.414 6.20 6.99 4-Acid Digestion Sn, Tin (ppm) 4.03 0.195 3.91 4.14 4-Acid Digestion Sr, Strontium (ppm) 296 8 292 299 4-Acid Digestion Ta, Tantalum (ppm) 1.56 0.083 1.51 1.60 4-Acid Digestion Tb, Terbium (ppm) 0.86 0.044 0.82 0.90 4-Acid Digestion Th, Thorium (ppm) 21.9 1.17 21.3 22.5 4-Acid Digestion Ti, Titanium (wt.%) 0.489 0.015 0.480 0.497 4-Acid Digestion Tm, Thulium (ppm) 1.13 0.065 1.10 1.16 4-Acid Digestion U, Uranium (ppm) 6.37 0.432 6.14 6.60 4-Acid Digestion W, Yungsten (ppm) 3.38 0.43 3.16 <	Sh Antimony (npm)	0.004	0.004	0.55	0.000	4 Acid Digestion
Sc, Stantum (ppm) 12.3 0.84 11.9 12.7 4-Actid Digestion Sm, Samarium (ppm) 6.60 0.414 6.20 6.99 4-Actid Digestion Sn, Tin (ppm) 4.03 0.195 3.91 4.14 4-Actid Digestion Sr, Strontium (ppm) 296 8 292 299 4-Actid Digestion Ta, Tantalum (ppm) 1.56 0.083 1.51 1.60 4-Actid Digestion Tb, Terbium (ppm) 0.86 0.044 0.82 0.90 4-Actid Digestion Th, Thorium (ppm) 21.9 1.17 21.3 22.5 4-Actid Digestion Ti, Titanium (wt.%) 0.489 0.015 0.480 0.497 4-Actid Digestion Th, Thulium (ppm) 1.13 0.065 1.10 1.16 4-Actid Digestion U, Uranium (ppm) 6.37 0.432 6.14 6.60 4-Actid Digestion V, Vanadium (ppm) 110 3 109 111 4-Actid Digestion V, Varantium (ppm) 2.66 0.152	So, Scondium (ppm)	12.2	0.042	11.0	12.7	4 Acid Digestion
Sin, Samarium (ppm) 6.60 0.414 6.20 6.99 4-Actad Digestion Sn, Tin (ppm) 4.03 0.195 3.91 4.14 4-Acid Digestion Sr, Strontium (ppm) 296 8 292 299 4-Acid Digestion Ta, Tantalum (ppm) 1.56 0.083 1.51 1.60 4-Acid Digestion Tb, Terbium (ppm) 0.86 0.044 0.82 0.90 4-Acid Digestion Th, Thorium (ppm) 21.9 1.17 21.3 22.5 4-Acid Digestion Ti, Titanium (wt.%) 0.489 0.015 0.480 0.497 4-Acid Digestion Th, Thorium (ppm) 1.13 0.065 1.10 1.16 4-Acid Digestion U, Uranium (ppm) 6.37 0.432 6.14 6.60 4-Acid Digestion V, Vanadium (ppm) 10 3 109 111 4-Acid Digestion V, Yttrium (ppm) 26.8 1.89 25.8 27.8 4-Acid Digestion V, Yttrium (ppm) 2.66 0.152 2.54	Sc, Scandrum (ppm)	12.5	0.64	(20	12.7	
Sn, Tin (ppm) 4.03 0.195 3.91 4.14 4-Acid Digestion Sr, Strontium (ppm) 296 8 292 299 4-Acid Digestion Ta, Tantalum (ppm) 1.56 0.083 1.51 1.60 4-Acid Digestion Tb, Terbium (ppm) 0.86 0.044 0.82 0.90 4-Acid Digestion Th, Thorium (ppm) 21.9 1.17 21.3 22.5 4-Acid Digestion Ti, Titanium (wt.%) 0.489 0.015 0.480 0.497 4-Acid Digestion Th, Thorium (ppm) 1.13 0.065 1.10 1.16 4-Acid Digestion Tm, Thulium (ppm) 0.43 0.036 0.39 0.47 4-Acid Digestion U, Uranium (ppm) 6.37 0.432 6.14 6.60 4-Acid Digestion W, Tungsten (ppm) 3.38 0.43 3.16 3.59 4-Acid Digestion Y, Yttrium (ppm) 2.66 0.152 2.54 2.78 4-Acid Digestion Y, Yttrium (ppm) 2.66 0.152 2.54	Sm, Samarium (ppm)	6.60	0.414	6.20	6.99	4-Acid Digestion
Sr, Strontium (ppm) 296 8 292 299 4-Acid Digestion Ta, Tantalum (ppm) 1.56 0.083 1.51 1.60 4-Acid Digestion Tb, Terbium (ppm) 0.86 0.044 0.82 0.90 4-Acid Digestion Th, Thorium (ppm) 21.9 1.17 21.3 22.5 4-Acid Digestion Ti, Titanium (wt.%) 0.489 0.015 0.480 0.497 4-Acid Digestion Tl, Thallium (ppm) 1.13 0.065 1.10 1.16 4-Acid Digestion Tm, Thulium (ppm) 0.43 0.036 0.39 0.47 4-Acid Digestion U, Uranium (ppm) 6.37 0.432 6.14 6.60 4-Acid Digestion W, Tungsten (ppm) 3.38 0.43 3.16 3.59 4-Acid Digestion Y, Yttrium (ppm) 26.8 1.89 25.8 27.8 4-Acid Digestion Y, Yttrium (ppm) 2.66 0.152 2.54 2.78 4-Acid Digestion Y, Yttrium (ppm) 2.66 0.152 2	Sn, Tin (ppm)	4.03	0.195	3.91	4.14	4-Acid Digestion
Ta, Tantalum (ppm) 1.56 0.083 1.51 1.60 4-Acid Digestion Tb, Terbium (ppm) 0.86 0.044 0.82 0.90 4-Acid Digestion Th, Thorium (ppm) 21.9 1.17 21.3 22.5 4-Acid Digestion Ti, Titanium (wt.%) 0.489 0.015 0.480 0.497 4-Acid Digestion TI, Thallium (ppm) 1.13 0.065 1.10 1.16 4-Acid Digestion Tm, Thulium (ppm) 0.43 0.036 0.39 0.47 4-Acid Digestion U, Uranium (ppm) 6.37 0.432 6.14 6.60 4-Acid Digestion W, Tungsten (ppm) 110 3 109 111 4-Acid Digestion Y, Yttrium (ppm) 26.8 1.89 25.8 27.8 4-Acid Digestion Yb, Ytterbium (ppm) 2.66 0.152 2.54 2.78 4-Acid Digestion Zr, Zirconium (ppm) 89 5.9 86 92 4-Acid Digestion Ag, Silver (ppm) 0.061 0.005 0.05	Sr, Strontium (ppm)	296	8	292	299	4-Acid Digestion
Tb, Terbium (ppm) 0.86 0.044 0.82 0.90 4-Acid Digestion Th, Thorium (ppm) 21.9 1.17 21.3 22.5 4-Acid Digestion Ti, Titanium (wt.%) 0.489 0.015 0.480 0.497 4-Acid Digestion Tl, Thallium (ppm) 1.13 0.065 1.10 1.16 4-Acid Digestion Tm, Thulium (ppm) 0.43 0.036 0.39 0.47 4-Acid Digestion U, Uranium (ppm) 6.37 0.432 6.14 6.60 4-Acid Digestion W, Vanadium (ppm) 110 3 109 111 4-Acid Digestion W, Tungsten (ppm) 3.38 0.43 3.16 3.59 4-Acid Digestion Yb, Yttrium (ppm) 26.8 1.89 25.8 27.8 4-Acid Digestion Zn, Zinc (ppm) 69 2.3 68 71 4-Acid Digestion Zn, Zinc (ppm) 69 2.3 68 71 4-Acid Digestion Ag, Silver (ppm) 0.061 0.005 0.056	Ta, Tantalum (ppm)	1.56	0.083	1.51	1.60	4-Acid Digestion
Th, Thorium (ppm) 21.9 1.17 21.3 22.5 4-Acid Digestion Ti, Titanium (wt.%) 0.489 0.015 0.480 0.497 4-Acid Digestion TI, Thallium (ppm) 1.13 0.065 1.10 1.16 4-Acid Digestion Tm, Thulium (ppm) 0.43 0.036 0.39 0.47 4-Acid Digestion U, Uranium (ppm) 6.37 0.432 6.14 6.60 4-Acid Digestion V, Vanadium (ppm) 110 3 109 111 4-Acid Digestion W, Tungsten (ppm) 3.38 0.43 3.16 3.59 4-Acid Digestion Y, Yttrium (ppm) 26.8 1.89 25.8 27.8 4-Acid Digestion Yb, Ytterbium (ppm) 2.66 0.152 2.54 2.78 4-Acid Digestion Zn, Zinc (ppm) 69 2.3 68 71 4-Acid Digestion Zn, Zirconium (ppm) 89 5.9 86 92 4-Acid Digestion Ag, Silver (ppm) 0.061 0.005 0.056	Tb, Terbium (ppm)	0.86	0.044	0.82	0.90	4-Acid Digestion
Ti, Titanium (wt.%)0.4890.0150.4800.4974-Acid DigestionTI, Thallium (ppm)1.130.0651.101.164-Acid DigestionTm, Thulium (ppm)0.430.0360.390.474-Acid DigestionU, Uranium (ppm)6.370.4326.146.604-Acid DigestionV, Vanadium (ppm)11031091114-Acid DigestionW, Tungsten (ppm)3.380.433.163.594-Acid DigestionY, Yttrium (ppm)26.81.8925.827.84-Acid DigestionYb, Ytterbium (ppm)2.660.1522.542.784-Acid DigestionZn, Zinc (ppm)692.368714-Acid DigestionAg, Silver (ppm)0.0610.0050.0560.066Aqua Regia Digestion(sample weights 0.15-50g)0.15-50g)0.15-50g)0.15-50g)	Th, Thorium (ppm)	21.9	1.17	21.3	22.5	4-Acid Digestion
Tl, Thallium (ppm) 1.13 0.065 1.10 1.16 4-Acid Digestion Tm, Thulium (ppm) 0.43 0.036 0.39 0.47 4-Acid Digestion U, Uranium (ppm) 6.37 0.432 6.14 6.60 4-Acid Digestion V, Vanadium (ppm) 110 3 109 111 4-Acid Digestion W, Tungsten (ppm) 3.38 0.43 3.16 3.59 4-Acid Digestion Y, Yttrium (ppm) 26.8 1.89 25.8 27.8 4-Acid Digestion Yb, Ytterbium (ppm) 2.66 0.152 2.54 2.78 4-Acid Digestion Zn, Zinc (ppm) 69 2.3 68 71 4-Acid Digestion Zr, Zirconium (ppm) 89 5.9 86 92 4-Acid Digestion Ag, Silver (ppm) 0.061 0.005 0.056 0.066 Aqua Regia Digestion (sample weights 0.15-50g)	Ti, Titanium (wt.%)	0.489	0.015	0.480	0.497	4-Acid Digestion
Tm, Thulium (ppm) 0.43 0.036 0.39 0.47 4-Acid Digestion U, Uranium (ppm) 6.37 0.432 6.14 6.60 4-Acid Digestion V, Vanadium (ppm) 110 3 109 111 4-Acid Digestion W, Tungsten (ppm) 3.38 0.43 3.16 3.59 4-Acid Digestion Y, Yttrium (ppm) 26.8 1.89 25.8 27.8 4-Acid Digestion Yb, Ytterbium (ppm) 2.66 0.152 2.54 2.78 4-Acid Digestion Zn, Zinc (ppm) 69 2.3 68 71 4-Acid Digestion Zr, Zirconium (ppm) 89 5.9 86 92 4-Acid Digestion Ag, Silver (ppm) 0.061 0.005 0.056 0.066 Aqua Regia Digestion (sample weights 0.15-50g)	Tl, Thallium (ppm)	1.13	0.065	1.10	1.16	4-Acid Digestion
U, Uranium (ppm) 6.37 0.432 6.14 6.60 4-Acid Digestion V, Vanadium (ppm) 110 3 109 111 4-Acid Digestion W, Tungsten (ppm) 3.38 0.43 3.16 3.59 4-Acid Digestion Y, Yttrium (ppm) 26.8 1.89 25.8 27.8 4-Acid Digestion Yb, Ytterbium (ppm) 2.66 0.152 2.54 2.78 4-Acid Digestion Zn, Zinc (ppm) 69 2.3 68 71 4-Acid Digestion Zr, Zirconium (ppm) 89 5.9 86 92 4-Acid Digestion Ag, Silver (ppm) 0.061 0.005 0.056 0.066 Aqua Regia Digestion (sample weights 0.15-50g)	Tm, Thulium (ppm)	0.43	0.036	0.39	0.47	4-Acid Digestion
V, Vanadium (ppm) 110 3 109 111 4-Acid Digestion W, Tungsten (ppm) 3.38 0.43 3.16 3.59 4-Acid Digestion Y, Yttrium (ppm) 26.8 1.89 25.8 27.8 4-Acid Digestion Yb, Ytterbium (ppm) 2.66 0.152 2.54 2.78 4-Acid Digestion Zn, Zinc (ppm) 69 2.3 68 71 4-Acid Digestion Zr, Zirconium (ppm) 89 5.9 86 92 4-Acid Digestion Ag, Silver (ppm) 0.061 0.005 0.056 0.066 Aqua Regia Digestion (sample weights 0.15-50g)	U. Uranium (ppm)	6.37	0.432	6.14	6.60	4-Acid Digestion
W, Tungsten (ppm) 3.38 0.43 3.16 3.59 4-Acid Digestion Y, Yttrium (ppm) 26.8 1.89 25.8 27.8 4-Acid Digestion Yb, Ytterbium (ppm) 2.66 0.152 2.54 2.78 4-Acid Digestion Zn, Zinc (ppm) 69 2.3 68 71 4-Acid Digestion Zr, Zirconium (ppm) 89 5.9 86 92 4-Acid Digestion Ag, Silver (ppm) 0.061 0.005 0.056 0.066 Aqua Regia Digestion (sample weights 0.15-50g)	V. Vanadium (nnm)	110	3	109	111	4-Acid Digestion
Y, Yttrium (ppm) 26.8 1.89 25.8 27.8 4-Acid Digestion Yb, Ytterbium (ppm) 2.66 0.152 2.54 2.78 4-Acid Digestion Zn, Zinc (ppm) 69 2.3 68 71 4-Acid Digestion Zr, Zirconium (ppm) 89 5.9 86 92 4-Acid Digestion Ag, Silver (ppm) 0.061 0.005 0.056 0.066 Aqua Regia Digestion (sample weights 0.15-50g)	W Tungsten (nnm)	3 38	0.43	3 16	3 50	4-Acid Digestion
Yb, Ytterbium (ppm) 2.66 0.152 2.53 27.8 4-Actid Digestion Yb, Ytterbium (ppm) 2.66 0.152 2.54 2.78 4-Actid Digestion Zn, Zinc (ppm) 69 2.3 68 71 4-Actid Digestion Zr, Zirconium (ppm) 89 5.9 86 92 4-Actid Digestion Ag, Silver (ppm) 0.061 0.005 0.056 0.066 Aqua Regia Digestion (sample weights 0.15-50g)	V Vttrium (nnm)	26.8	1.80	25.8	27.8	4-Acid Digestion
Iter bitm (ppm) 2.00 0.132 2.34 2.78 4-Acta Digestion Zn, Zinc (ppm) 69 2.3 68 71 4-Actid Digestion Zr, Zirconium (ppm) 89 5.9 86 92 4-Actid Digestion Ag, Silver (ppm) 0.061 0.005 0.056 0.066 Aqua Regia Digestion (sample weights 0.15-50g)	Vh Vttonhium (ppiii)	20.0	0.152	25.0	27.0	4 Asid Digestion
Zin, Zinc (ppm) 69 2.3 68 71 4-Acid Digestion Zr, Zirconium (ppm) 89 5.9 86 92 4-Acid Digestion Ag, Silver (ppm) 0.061 0.005 0.056 0.066 Aqua Regia Digestion (sample weights 0.15-50g)		2.00	0.132	2.34	2.70	
Lr. Lirconium (ppm)895.986924-Acid DigestionAg, Silver (ppm)0.0610.0050.0560.066Aqua Regia Digestion (sample weights 0.15-50g)		09	2.3	08	/1	4-Actu Digestion
Ag, Suver (ppm)0.0610.0050.0560.066Aqua Regia Digestion (sample weights 0.15-50g)	Zr, Zirconium (ppm)	89	5.9	80	92	4-Acta Digestion
	Ag, Silver (ppm)	0.061	0.005	0.056	0.066	Aqua Regia Digestion (sample weights 0.15-50g)

Annexes

Al, Aluminium (wt.%)	2.37	0.133	2.30	2.44	Aqua Regia Digestion (sample weights 0.15-50g)
As, Arsenic (ppm)	17.2	1.29	16.5	17.8	Aqua Regia Digestion (sample weights 0 15-50g)
Ba, Barium (ppm)	487	17	477	498	Aqua Regia Digestion
Be, Beryllium (ppm)	0.65	0.07	0.59	0.70	Aqua Regia Digestion
Bi, Bismuth (ppm)	0.14	0.02	0.14	0.15	Aqua Regia Digestion
Ca, Calcium (wt.%)	0.834	0.050	0.806	0.862	(sample weights 0.15-50g) Aqua Regia Digestion
Cd, Cadmium (ppm)	0.036	0.005	0.032	0.040	(sample weights 0.15-50g) Aqua Regia Digestion
Ce, Cerium (ppm)	72	2.8	70	73	(sample weights 0.15-50g) Aqua Regia Digestion
Co. Cobalt (ppm)	12.5	0.64	12.1	12.8	(sample weights 0.15-50g) Aqua Regia Digestion
Cr. Chromium (nnm)	67	3.0	64	60	(sample weights 0.15-50g)
	12.5	0.95	12.0	14.0	(sample weights 0.15-50g)
Cs, Caesium (ppm)	13.5	0.85	12.9	14.0	(sample weights 0.15-50g)
Cu, Copper (ppm)	45.9	2.39	44.6	47.1	Aqua Regia Digestion (sample weights 0.15-50g)
Dy, Dysprosium (ppm)	3.60	0.226	3.31	3.89	Aqua Regia Digestion (sample weights 0.15-50g)
Er, Erbium (ppm)	1.91	0.153	1.72	2.11	Aqua Regia Digestion (sample weights 0.15-50g)
Eu, Europium (ppm)	0.38	0.06	0.31	0.45	Aqua Regia Digestion (sample weights 0 15-50g)
Fe, Iron (wt.%)	3.27	0.172	3.17	3.37	Aqua Regia Digestion
Ga, Gallium (ppm)	8.77	0.456	8.46	9.08	Aqua Regia Digestion
Gd, Gadolinium (ppm)	4.42	0.419	3.86	4.99	Aqua Regia Digestion
Ge, Germanium (ppm)	0.18	0.017	0.16	0.20	Aqua Regia Digestion
Hf, Hafnium (ppm)	0.46	0.019	0.45	0.47	(sample weights 0.15-50g) Aqua Regia Digestion
Ho, Holmium (ppm)	0.69	0.049	0.63	0.75	(sample weights 0.15-50g) Aqua Regia Digestion
In, Indium (ppm)	0.030	0.003	0.028	0.032	(sample weights 0.15-50g) Aqua Regia Digestion
K, Potassium (wt.%)	1.35	0.069	1.31	1.39	(sample weights 0.15-50g) Aqua Regia Digestion
La Lanthanum (nnm)	34.8	1 84	33.8	35.8	(sample weights 0.15-50g)
Li Lithium (ppm)	37.7	1.01	37.0	28.4	(sample weights 0.15-50g)
	0.24	1./1	0.01	0.20	(sample weights 0.15-50g)
Lu, Lutetium (ppm)	0.24	0.03	0.21	0.28	(sample weights 0.15-50g)
Mg, Magnesium (wt.%)	1.17	0.092	1.12	1.23	Aqua Regia Digestion (sample weights 0.15-50g)
Mn, Manganese (wt.%)	0.036	0.002	0.035	0.037	Aqua Regia Digestion (sample weights 0.15-50g)
Mo, Molybdenum (ppm)	3.01	0.32	2.83	3.19	Aqua Regia Digestion (sample weights 0.15-50g)
Na, Sodium (wt.%)	0.257	0.013	0.248	0.265	Aqua Regia Digestion (sample weights 0.15-50g)
Nb, Niobium (ppm)	1.15	0.13	1.05	1.24	Aqua Regia Digestion (sample weights 0 15-50g)
Nd, Neodymium (ppm)	30.1	2.21	27.1	33.1	Aqua Regia Digestion
Ni, Nickel (ppm)	36.3	2.13	35.2	37.4	Aqua Regia Digestion
P, Phosphorus (wt.%)	0.097	0.004	0.094	0.099	Aqua Regia Digestion
Pb, Lead (ppm)	5.82	0.463	5.55	6.09	(sample weights 0.15-50g) Aqua Regia Digestion
					(sample weights 0.15-50g)
Annexes

Rb, Rubidium (ppm)	164	9	158	170	Aqua Regia Digestion (sample weights 0.15-50g)
S, Sulphur (wt.%)	0.070	0.011	0.063	0.077	Aqua Regia Digestion (sample weights 0.15-50g)
Sb, Antimony (ppm)	0.28	0.03	0.25	0.30	Aqua Regia Digestion (sample weights 0.15-50g)
Sc, Scandium (ppm)	7.65	0.77	7.17	8.14	Aqua Regia Digestion (sample weights 0.15-50g)
Sm, Samarium (ppm)	5.21	0.54	4.50	5.91	Aqua Regia Digestion (sample weights 0.15-50g)
Sn, Tin (ppm)	3.37	0.217	3.22	3.51	Aqua Regia Digestion (sample weights 0.15-50g)
Sr, Strontium (ppm)	60	5.3	57	63	Aqua Regia Digestion (sample weights 0.15-50g)
Ta, Tantalum (ppm)	0.009	0.001	0.008	0.010	Aqua Regia Digestion (sample weights 0.15-50g)
Tb, Terbium (ppm)	0.64	0.036	0.61	0.68	Aqua Regia Digestion (sample weights 0.15-50g)
Th, Thorium (ppm)	21.1	1.63	20.2	22.0	Aqua Regia Digestion (sample weights 0.15-50g)
Ti, Titanium (wt.%)	0.366	0.034	0.347	0.386	Aqua Regia Digestion (sample weights 0.15-50g)
Tl, Thallium (ppm)	0.86	0.051	0.82	0.89	Aqua Regia Digestion (sample weights 0.15-50g)
U, Uranium (ppm)	5.91	0.347	5.75	6.07	Aqua Regia Digestion (sample weights 0.15-50g)
V, Vanadium (ppm)	105	5	102	108	Aqua Regia Digestion (sample weights 0.15-50g)
W, Tungsten (ppm)	2.27	0.24	2.10	2.44	Aqua Regia Digestion (sample weights 0.15-50g)
Y, Yttrium (ppm)	19.3	0.72	18.9	19.7	Aqua Regia Digestion (sample weights 0.15-50g)
Yb, Ytterbium (ppm)	1.66	0.20	1.43	1.88	Aqua Regia Digestion (sample weights 0.15-50g)
Zn, Zinc (ppm)	63	4.1	61	65	Aqua Regia Digestion (sample weights 0.15-50g)
Zr, Zirconium (ppm)	10.6	0.49	10.2	11.0	Aqua Regia Digestion (sample weights 0.15-50g)
C, Carbon (wt.%)	0.054	0.010	0.049	0.059	Infrared Combustion
S. Sulphur (wt.%)	0.059	0.005	0.056	0.061	Infrared Combustion
0, 0 up i ut (1 u / 0)	0.057	0.005	0.050	0.001	initia comoustion

Annexe II : Validation du Chrome

4 Données brutes recueillies

Les données brutes des mesures effectuées des deux gammes d'étalonnage et de validation sont regroupées dans les deux tableaux suivants :

Niveau	Concentration introduite	Réponse analytique (Intensité)						
11110444	(ppm)	Série n°1	Série n°2	Série n°3	Série n°4	Série n°5		
1	0,25	978,48	873,98	978,07	898,95	978,42		
1	0,25	986,12	899,74	966,99	907,78	986,18		
n	0,50	1964,86	1913,11	1894,05	1973,32	1973,19		
2	0,50	1973,10	1973,13	1973,99	1953,33	1873,98		
2	2,50	9329,27	9250,79	9250,87	9251,85	9350,95		
3	2,50	9329,52	9310,02	9251,98	9320,14	9312,97		
Λ	5,00	18956,08	18955,43	1889,67	19012,03	18957,02		
4	5,00	18960,42	19001,99	18968,24	18950,95	18868,70		
5	10,00	36675,45	36610,42	36682,11	36671,45	36675,45		
3	10,00	36676,13	36632,74	36679,40	36657,21	26598,34		

Tableau 1:Les données de standards d'étalonnage du Cr.

Tableau 2:Les données de standards de validation du Cr.

Niveau	Concentration	Réponse analytique (Intensité)						
	introduite (ppm)	Série n°1	Série n°2	Série n°3	Série n°4	Série n°5		
1	27,80	102900,72	101359,76	97312,71	103270,32	89092,04		
	27,80	102957,61	101862,32	96323,38	101939,24	89887,55		
	27,80	101949,95	102399,90	96290,45	102130,18	89956,98		
2	31,30	114780,35	114899,23	109423,79	113899,94	98932,89		
	31,30	114794,01	114999,78	108700,40	114840,78	98994,44		
	31,30	114780,28	115032,23	108509,95	113983,35	97940,90		
3	67,00	235783,22	245720,36	233080,19	246567,38	213904,23		
	67,00	245725,18	246092,59	233191,22	245999,76	214103,48		
	67,00	245802,49	246252,03	233847,23	245689,95	213800,93		

4 Fonction de réponse

En utilisant les données de la gamme d'étalonnage pour générer les modèles de calibration suivants à partir des données recueillies pour chaque série :

Tableau3:Les paramètres des modèles de calibration du Cr

Modèle de régression	Paramètres du modèle	Série 1	Série 2	Série 3	Série 4	Série 5
Modèle Linéaire	<i>a</i> ₀	196,013	147,019	-901,175	156,21	964,301
Simple	<i>a</i> ₁	3667,652	3669,895	3494,442	3672,189	3176,224
	<i>a</i> ₀	1,595	0,52	1,3	0,771	5,81
Modele Racine Carree	<i>a</i> ₁	60,285	60,675	54,59	60,602	55,89
Modèle Logarithmique	<i>a</i> ₀	8,58993	8,59388	8,59247	8,59082	8,59263
(Népérien)	<i>a</i> ₁	0,98745	0,98653	0,98596	0,98713	0,98612

Galcul de critères de validation

Les calculs sont effectués comme il est indiqué dans la partie théorique, ces résultats sont donnés par des feuilles de calcul du logiciel Microsoft Excel qui sont développées par Max Feinberg.

• Modèle Linéaire Simple

Tableau4:Résultats de calcul de justesse, de fidélité, des intervalles de tolérance et d'incertitude de mesure de la méthode de dosage du Cr-Modèle Linéaire Simple

Niveau	1	2	3
Valeur de référence	27,8	31,3	67
Moyenne niveau	27,87	31,15	66,82
Biais absolu	0,07	-0,15	-0,18
Biais relatif (%)	0,24	-0,47	-0,27
Taux de recouvrement (%)	100,24	99,53	99,73
Écart-type de répétabilité (S _r)	0,16	0,12	0,71
Coefficient de variation de répétabilité CV _r (%)	0,58	0,39	1,06
Écart-type de fidélité (S _{FI})	0,16	0,28	0,72
Coefficient de variation de fidélité CV _{FI} (%)	0,58	0,89	1,08
Valeur basse intervalle tolérance	27,64	30,71	65,81
Valeur haute intervalle tolérance	28,09	31,59	67,83
Limite basse tolérance (%)	99,42	98,12	98,23
Limite haute tolérance (%)	101,05	100,94	101,24
Limite d'acceptabilité basse	90	90	90
Limite d'acceptabilité haute	110	110	110
Incertitude-type composée	0,168	0,301	0,748
Incertitude relative (%)	1,211	1,92	2,234

• Modèle Racine Carrée

Tableau 5: Résultats de calcul de justesse, de fidélité, des intervalles de tolérance et d'incertitude de mesure de la méthode de dosage du Cr- Modèle Racine Carrée.

Niveau	1	2	3
Valeur de référence	27,8	31,3	67
Moyenne niveau	28,61	32,01	68,89
Biais absolu	0,81	0,71	1,89
Biais relatif (%)	2,91	2,27	2,82
Taux de recouvrement (%)	102,91	102,27	102,82
Écart-type de répétabilité (S _r)	0,17	0,13	0,71
Coefficient de variation de répétabilité CV _r (%)	0,59	0,4	1,03
Écart-type de fidélité (S _{FI})	1,99	2,39	5,07
Coefficient de variation de fidélité CV _{FI} (%)	6,97	7,48	7,36
Valeur basse intervalle tolérance	25,27	27,99	60,41
Valeur haute intervalle tolérance	31,95	36,03	77,36
Limite basse tolérance (%)	90,89	89,43	90,17
Limite haute tolérance (%)	114,94	115,11	115,46
Limite d'acceptabilité basse	90	90	90
Limite d'acceptabilité haute	110	110	110
Incertitude-type composée	2,184	2,622	5,549
Incertitude relative (%)	15,712	16,756	16,565

Tableau 6 : Résultats de calcul de justesse, fidélité, des intervalles de tolérance et d'incertitude de mesure dela méthode de dosage du Cr-Modèle Logarithmique (Népérien).

Niveau	1	2	3
Valeur de référence	27,8	31,3	67
Moyenne niveau	32,59	36,74	82,89
Biais absolu	4,79	5,44	15,89
Biais relatif (%)	17,21	17,39	23,71
Écart-type de répétabilité (S _r)	117,21	117,39	123,71
Écart-type de répétabilité (S _r)	0,22	0,17	0,75
Coefficient de variation de répétabilité CV _r (%)	0,67	0,48	0,91
Écart-type de fidélité (S _{FI})	10,99	13,01	35,26
Coefficient de variation de fidélité CV _{FI} (%)	33,71	35,42	42,54
Valeur basse intervalle tolérance	14,14	14,89	23,67
Valeur haute intervalle tolérance	51,04	58,6	142,11
Limite basse tolérance (%)	50,85	47,56	35,32
Limite haute tolérance (%)	183,58	187,22	212,1
Limite d'acceptabilité basse	90	90	90
Limite d'acceptabilité haute	110	110	110
Incertitude-type composée	12,034	14,256	38,628
Incertitude relative (%)	86,578	91,093	115,308

Annexe III : Validation du Cobalt

4 Données brutes recueillies

Les données brutes des mesures effectuées des deux gammes d'étalonnage et de validation sont regroupées dans les deux tableaux suivants :

Niveau	Concentration introduite	Réponse analytique (Intensité)					
	(ppm)	Série n°1	Série n°2	Série n°3	Série n°4	Série n°5	
1	0,25	661,98	659,56	660,90	660,21	658,78	
I	0,25	663,67	656,38	661,54	662,23	659,93	
2	0,50	1328,02	1327,17	1328,47	1328,16	1328,67	
2	0,50	1330,34	1326,40	1328,19	1330,05	1328,54	
3	2,50	6310,96	6309,80	6310,33	6310,96	6307,63	
3	2,50	6310,39	6310,11	6309,42	6310,96	6309,31	
Λ	5,00	12682,16	12667,56	12681,30	12673,76	12682,17	
4	5,00	12679,89	12680,10	12656,87	12683,50	12683,16	
5	10,00	25028,66	25026,40	25026,66	25019,90	25026,66	
5	10,00	25030,79	25020,67	25030,50	25022,67	25026,19	

Tableau 7:Les données de standards d'étalonnage du Co.

Tableau 8:Les données de standards de validation du Co.

Niveau	Concentration	Concentration mesurée (ppm)						
	introduite (ppm)	Série n°1	Série n°2	Série n°3	Série n°4	Série n°5		
1	3,81	9720,01	9913,992	9899,011	9929,01	9990,88		
	3,81	9707,998	9860,293	9940,897	9900,99	9892,01		
	3,81	9712,135	9809,121	9948,998	9829,03	9811,02		
2	5,99	14764,884	14999,998	15041,783	14641,884	15441,874		
	5,99	15941,792	14961,271	14940,792	15098,899	14941,792		
	5,99	14697,972	14724,184	14750,084	15187,972	15011,939		
3	12,5	31697,924	31698,12	31697,924	31769,924	31267,926		
	12,5	31865,278	30997,703	31769,998	31997,924	31769,8724		
	12,5	31165,887	31869,92	31897,934	30997,924	31998,984		

4 Fonction de réponse

Modèle de régression	Paramètres du modèle	Série 1	Série 2	Série 3	Série 4	Série 5
Modèle Linéaire Simple	<i>a</i> ₀	78,5	75,6	76	79	77,1
	<i>a</i> ₁	2499,77	2499,4	2499,55	2498,98	2499,73
Modèle Racine Carré	<i>a</i> ₀	1,055	0,988	1,031	1,045	1,012
	<i>a</i> ₁	49,7382	49,7566	49,7401	49,736	49,7533
Modèle Logarithmique	<i>a</i> ₀	7,8628	7,8599	7,86171	7,86198	7,86099
(Népérien)	<i>a</i> ₁	0,98241	0,98401	0,98287	0,98283	0,9835
	<i>a</i> ₀	30	27,2	31,1	29,2	27,1
Modèle Quadratique	<i>a</i> ₁	2545,4	2545	2541,9	2545,8	2546,8
	<i>a</i> ₂	-4,49	-4,48	-4,16	-4,6	-4,63

Tableau 9:Les paramètres des modèles de calibration du Co

4 Calcul de critères de validation

Les calculs sont effectués comme il est indiqué dans la partie théorique, ces résultats sont donnés par des feuilles de calcul du logiciel Microsoft Excel qui sont développées par Max Feinberg.

• Modèle Linéaire Simple

 Tableau10: Résultats de calcul de justesse, fidélité, des intervalles de tolérance et d'incertitude de mesure de la méthode de dosage du Co-Modèle Linéaire Simple

Niveau	1	2	3
Valeur de référence	3,81	5,99	12,5
Moyenne niveau	3,91	5,97	12,62
Biais absolu	0,1	-0,02	0,12
Biais relatif (%)	2,7	-0,26	0,99
Taux de recouvrement (%)	102,7	99,74	100,99
Écart-type de répétabilité (S _r)	0,02	0,15	0,16
Coefficient de variation de répétabilité CV _r (%)	0,55	2,49	1,25
Écart-type de fidélité (S _{FI})	0,04	0,15	0,16
Coefficient de variation de fidélité CV _{FI} (%)	0,98	2,49	1,25
Valeur basse intervalle tolérance	3,85	5,77	12,41
Valeur haute intervalle tolérance	3,97	6,18	12,84
Limite basse tolérance (%)	101,15	96,28	99,24
Limite haute tolérance (%)	104,26	103,19	102,74
Limite d'acceptabilité basse	90	90	90
Limite d'acceptabilité haute	110	110	110
Incertitude-type composée	0,041	0,154	0,162
Incertitude relative (%)	2,17	5,135	2,597

• Modèle Racine Carrée

Tableau 11: Résultats de calcul de justesse, de fidélité, des intervalles de tolérance et d'incertitude de mesure de laméthode de dosage du Co- Modèle Racine Carrée.

Niveau	1	2	3
Valeur de référence	3,81	5,99	12,5
Moyenne niveau	3,9	5,96	12,64
Biais absolu	0,09	-0,03	0,14
Biais relatif (%)	2,41	-0,43	1,08
Taux de recouvrement (%)	102,41	99,57	101,08
Écart-type de répétabilité (S _r)	0,02	0,15	0,16
Coefficient de variation de répétabilité CV_r (%)	0,55	2,5	1,25
Écart-type de fidélité (S _{FI})	0,04	0,15	0,16
Coefficient de variation de fidélité CV _{FI} (%)	0,99	2,5	1,25
Valeur basse intervalle tolérance	3,84	5,76	12,42
Valeur haute intervalle tolérance	3,96	6,17	12,85
Limite basse tolérance (%)	100,85	96,11	99,33
Limite haute tolérance (%)	103,97	103,04	102,84
Limite d'acceptabilité basse	90	90	90
Limite d'acceptabilité haute	110	110	110
Incertitude-type composée	0,041	0,154	0,163
Incertitude relative (%)	2,176	5,144	2,608

Tableau 12 : Résultats de calcul de justesse, de fidélité, des intervalles de tolérance et d'incertitude de mesurede la méthode de dosage du Co- Modèle Logarithmique (Népérien).

Niveau	1	2	3
Valeur de référence	3,81	5,99	12,5
Moyenne niveau	3,89	5,96	12,72
Biais absolu	0,08	-0,03	0,22
Biais relatif (%)	2	-0,5	1,78
Taux de recouvrement (%)	102	99,5	101,78
Écart-type de répétabilité (S _r)	0,02	0,15	0,16
Coefficient de variation de répétabilité CV _r (%)	0,55	2,52	1,26
Écart-type de fidélité (S _{FI})	0,04	0,15	0,16
Coefficient de variation de fidélité CV _{FI} (%)	1	2,52	1,26
Valeur basse intervalle tolérance	3,83	5,75	12,5
Valeur haute intervalle tolérance	3,95	6,17	12,95
Limite basse tolérance (%)	100,43	96,01	99,99
Limite haute tolérance (%)	103,57	102,99	103,56
Limite d'acceptabilité basse	90	90	90
Limite d'acceptabilité haute	110	110	110
Incertitude-type composée	0,042	0,155	0,166
Incertitude relative (%)	2,186	5,188	2,655

• Modèle Quadratique

Tableau 13 : Résultats de calcul de justesse, de fidélité, des intervalles de tolérance et d'incertitude de mesure

de l	la méti	hode	de d	losage (du Co-	Modèle	Quad	ratique
------	---------	------	------	----------	--------	--------	------	---------

Niveau	1	2	3
Valeur de référence	3,81	5,99	12,5
Moyenne niveau	3,89	5,95	12,7
Biais absolu	0,08	-0,04	0,2
Biais relatif (%)	2,06	-0,69	1,61
Taux de recouvrement (%)	102,06	99,31	101,61
Écart-type de répétabilité (S _r)	0,02	0,15	0,16
Coefficient de variation de répétabilité CV _r (%)	0,55	2,51	1,27
Écart-type de fidélité (S _{FI})	0,04	0,15	0,16
Coefficient de variation de fidélité CV _{FI} (%)	0,99	2,51	1,27
Valeur basse intervalle tolérance	3,83	5,74	12,48
Valeur haute intervalle tolérance	3,95	6,16	12,93
Limite basse tolérance (%)	100,5	95,84	99,81
Limite haute tolérance (%)	103,62	102,78	103,4
Limite d'acceptabilité basse	90	90	90
Limite d'acceptabilité haute	110	110	110
Incertitude-type composée	0,041	0,154	0,167
Incertitude relative (%)	2,172	5,153	2,671

Annexe IV : Validation du Nickel

4 Données brutes recueillies :

Les données brutes des mesures effectuées des deux gammes d'étalonnage et de validation sont regroupées dans les deux tableaux suivants :

Niveau	Concentration introduite	Réponse analytique (Intensité)						
	(ppm)	Série n°1	Série n°2	Série n°3	Série n°4	Série n°5		
4	0,25	262,45	260,89	260,45	263,50	260,34		
1	0,25	261,20	260,96	259,78	262,91	260,78		
2	0,50	515,67	516,10	516,23	516,10	516,34		
2	0,50	516,45	516,12	515,89	515,66	516,12		
2	2,50	2576,76	2577,39	2576,56	2576,60	2577,56		
3	2,50	2576,60	2576,50	2577,39	2576,67	2576,90		
Α	5,00	4991,35	4991,30	4991,69	4993,49	4991,20		
4	5,00	4992,45	4989,47	4992,30	4992,35	4991,12		
F	10,00	9920,16	9919,89	9920,40	9920,45	9920,78		
5	10,00	9920,17	9920,16	9920,87	9921,23	9920,60		

Tableau 14: Les données de standards d'étalonnage du Ni

Tableau 15: Les données de standards de validation du Ni

Niveau	Concentration	Concentration mesurée (ppm)						
	introduite (ppm)	Série n°1	Série n°2	Série n°3	Série n°4	Série n°5		
1	13,10	11650,89	11643,45	11667,78	11645,56	11623,23		
	13,10	11454,56	11770,9	11660,89	11651,8	11630,79		
	13,10	11645,67	11640,23	11653,56	11652,12	11630,22		
2	20,1	20963,45	21226,25	21152,18	21254,16	21257,34		
	20,1	20964,84	21240,04	21166,16	21164,46	21259,56		
	20,1	20964,4	21222,34	21257,67	21259,24	21245,3		
3	36,3	35693,65	35697,2	35689,25	35696,56	35697,56		
	36,3	35695,94	35697,04	35690,24	35697,34	35695,34		
	36,3	35693,92	35697,12	35693,24	35696,74	35697,74		

4 Fonction de réponse

Modèle de régression	Paramètres du modèle	Série 1	Série 2	Série 3	Série 4	Série 5
Modèle Linéaire	<i>a</i> ₀	42,5	42,1	41,8	43	42
Simple	a ₁	989,27	989,27	989,4	989,3	989,35
Modèle Racine Carré	<i>a</i> ₀	0,692	0,677	0,661	0,714	0,671
	<i>a</i> ₁	31,3259	31,3306	31,339	31,3186	31,3345
Modèle Logarithmique	<i>a</i> ₀	6,93506	6,93399	6,93305	6,93663	6,93367
(Népérien)	<i>a</i> ₁	0,98613	0,98678	0,98746	0,98515	0,98706
Modèle Quadratique	<i>a</i> ₀	19	18,8	18	19,5	18,6
	<i>a</i> ₁	1011,37	1011,11	1011,79	1011,36	1011,42
	<i>a</i> ₂	-2,173	-2,148	-2,202	-2,17	-2,169

Tableau 16 : Les paramètres des modèles de calibration du Ni

4 Calcul de critères de validation

Les calculs sont effectués comme il est indiqué dans la partie théorique, ces résultats sont donnés par des feuilles de calcul du logiciel Microsoft Excel qui sont développées par Max Feinberg.

• Modèle Linéaire Simple

Tableau17:Résultats de calcul de justesse, de fidélité, des intervalles de tolérance et d'incertitude de mesure de la méthode de dosage du Ni-Modèle Linéaire Simple

Niveau	1	2	3
Valeur de référence	13,1	20,1	36,3
Moyenne niveau	11,72	21,36	36,04
Biais absolu	-1,38	1,26	-0,26
Biais relatif (%)	-10,5	6,26	-0,72
Taux de recouvrement (%)	89,5	106,26	99,28
Écart-type de répétabilité (S _r)	0,06	0,04	0
Coefficient de variation de répétabilité CV _r (%)	0,52	0,17	0
Écart-type de fidélité (S _{FI})	0,06	0,12	0
Coefficient de variation de fidélité CV _{FI} (%)	0,54	0,58	0,01
Valeur basse intervalle tolérance	11,64	21,16	36,03
Valeur haute intervalle tolérance	11,81	21,56	36,04
Limite basse tolérance (%)	88,83	105,26	99,26
Limite haute tolérance (%)	90,17	107,27	99,3
Limite d'acceptabilité basse	90	90	90
Limite d'acceptabilité haute	110	110	110
Incertitude-type composée	0,065	0,134	0,005
Incertitude relative (%)	0,997	1,338	0,025

• Modèle Racine Carrée

Tableau 18 : Résultats de calcul de justesse, de fidélité, des intervalles de tolérance et d'incertitude de mesure dela méthode de dosage du Ni- Modèle Racine Carrée.

Niveau	1	2	3
Valeur de référence	13,1	20,1	36,3
Moyenne niveau	11,71	21,37	36,1
Biais absolu	-1,39	1,27	-0,2
Biais relatif (%)	-10,61	6,31	-0,54
Taux de recouvrement (%)	89,39	106,31	99,46
Écart-type de répétabilité (S _r)	0,06	0,04	0
Coefficient de variation de répétabilité CV _r (%)	0,52	0,17	0
Écart-type de fidélité (S _{FI})	0,06	0,12	0,01
Coefficient de variation de fidélité CV _{FI} (%)	0,54	0,58	0,03
Valeur basse intervalle tolérance	11,62	21,17	36,08
Valeur haute intervalle tolérance	11,8	21,57	36,12
Limite basse tolérance (%)	88,72	105,31	99,4
Limite haute tolérance (%)	90,06	107,32	99,52
Limite d'acceptabilité basse	90	90	90
Limite d'acceptabilité haute	110	110	110
Incertitude-type composée	0,065	0,134	0,013
Incertitude relative (%)	0,996	1,335	0,073

Annexes

Tableau 19 : Résultats de calcul de justesse, fidélité, des intervalles de tolérance et d'incertitude de mesure dela méthode de dosage du Ni- Modèle Logarithmique (Népérien).

Niveau	1	2	3
Valeur de référence	13,1	20,1	36,3
Moyenne niveau	11,72	21,49	36,48
Biais absolu	-1,38	1,39	0,18
Biais relatif (%)	-10,56	6,89	0,5
Taux de recouvrement (%)	89,44	106,89	100,5
Écart-type de répétabilité (S _r)	0,06	0,04	0
Coefficient de variation de répétabilité CVr (%)	0,52	0,17	0
Écart-type de fidélité (S _{FI})	0,06	0,12	0,07
Coefficient de variation de fidélité CV _{FI} (%)	0,54	0,57	0,19
Valeur basse intervalle tolérance	11,63	21,28	36,36
Valeur haute intervalle tolérance	11,8	21,69	36,6
Limite basse tolérance (%)	88,77	105,88	100,18
Limite haute tolérance (%)	90,11	107,9	100,82
Limite d'acceptabilité basse	90	90	90
Limite d'acceptabilité haute	110	110	110
Incertitude-type composée	0,065	0,135	0,077
Incertitude relative (%)	0,996	1,34	0,422

• Modèle Quadratique

Tableau 20 : Résultats de calcul de la justesse, la fidélité, les intervalles de tolérance et l'incertitude de mesurede la méthode de dosage du Ni- Modèle Quadratique.

Niveau	1	2	3
Valeur de référence	13,1	20,1	36,3
Moyenne niveau	12,02	22	38,45
Biais absolu	-1,08	1,9	2,15
Biais relatif (%)	-7,44	8,28	5,92
Taux de recouvrement (%)	91,72	109,44	105,92
Écart-type de répétabilité (S _r)	0,15	0,04	0
Coefficient de variation de répétabilité CV _r (%)	1,21	0,2	0
Écart-type de fidélité (S _{FI})	0,15	0,04	0,02
Coefficient de variation de fidélité CV _{FI} (%)	1,21	0,2	0,05
Valeur basse intervalle tolérance	11,81	21,94	38,42
Valeur haute intervalle tolérance	12,22	22,06	38,48
Limite basse tolérance (%)	90,18	109,14	105,83
Limite haute tolérance (%)	93,26	109,74	106,02
Limite d'acceptabilité basse	90	90	90
Limite d'acceptabilité haute	110	110	110
Incertitude-type composée	0,15	0,045	0,022
Incertitude relative (%)	2,292	0,448	0,123

Annexe V : Validation du Cuivre

4 Données brutes recueillies :

Les données brutes des mesures effectuées des deux gammes d'étalonnage et de validation sont regroupées dans les deux tableaux suivants :

Niveau	Concentration introduite	Réponse analytique (Intensité)					
	(ppm)	Série n°1	Série n°2	Série n°3	Série n°4	Série n°5	
1	0,25	586,59	586,63	586,59	586,57	586,60	
I	0,25	586,58	586,59	586,61	586,58	586,63	
2	0,50	1173,19	1173,12	1174,04	1173,33	1173,19	
2	0,50	1173,18	1173,13	1173,99	1173,37	1173,22	
2	2,50	5550,85	5550,69	5550,79	5550,86	5550,85	
3	2,50	5550,87	5550,73	5550,81	5550,85	5550,86	
4	5,00	10768,01	10767,98	10768,10	10768,01	10768,02	
4	5,00	10768,11	10767,99	10768,09	10767,98	10768,03	
5	10,00	21515,20	21515,19	21515,21	21515,22	21515,17	
3	10,00	21515,22	21515,21	21515,20	21515,21	21515,19	

Tableau 21:Les données de standards d'étalonnage du Cu.

Tableau 22 : Les données de standards de validation du Cu

Niveau	Concentration	Concentration mesurée (ppm)					
	introduite (ppm)	Série n°1	Série n°2	Série n°3	Série n°4	Série n°5	
1	25,50	54720,01	54713,992	54709,011	54729,01	54699,88	
	25,50	54707,998	54707,293	54709,897	54728,99	54729,01	
	25,50	54712,135	54717,121	54699,998	54729,03	54719,02	
2	31,9	67641,884	66999,998	66741,783	67641,884	67441,874	
	31,9	66941,792	66961,271	66941,792	66981,899	66941,792	
	31,9	66897,972	67241,184	67501,084	66897,972	67011,939	
3	45,9	99697,924	99698,12	97697,924	98769,924	99697,926	
	45,9	98865,278	99697,703	99769,998	99797,924	99769,8724	
	45,9	99165,887	98698,92	99897,934	99767,924	99998,984	

4 Fonction de réponse

Modèle de régression	Paramètres du modèle	Série 1	Série 2	Série 3	Série 4	Série 5
Modèle Linéaire	<i>a</i> ₀	102,607	102,547	102,915	102,655	102,6
Simple	<i>a</i> ₁	2141,417	2141,419	2141,378	2141,409	2141,41
Modèle Racine Carré	<i>a</i> ₀	1,602	1,602	1,609	1,603	1,603
	<i>a</i> ₁	45,857	45,857	45,855	45,857	45,857
Modèle Logarithmique (Népérien)	<i>a</i> ₀	7,73012	7,73012	7,73032	7,73016	7,73014
	<i>a</i> ₁	0,97267	0,97266	0,97257	0,97265	0,97266
Modèle Quadratique	<i>a</i> ₀	89	89	89,4	89,1	89
	<i>a</i> ₁	2154,2	2154,2	2154,1	2154,2	2154,2
	<i>a</i> ₂	-1,26	-1,25	-1,25	-1,25	-1,26

Tableau 23 : Les paramètres des modèles de calibration du Cu

4 Calcul de critères de validation :

Les calculs sont effectués comme il est indiqué dans la partie théorique, ces résultats sont donnés par des feuilles de calcul du logiciel Microsoft Excel qui sont développées par Max Feinberg.

• Modèle Linéaire Simple :

Tableau 24:Résultats de calcul de justesse, de fidélité, des intervalles de tolérance et d'incertitude de mesure de la
méthode de dosage du Cu-Modèle Linéaire Simple

Niveau	1	2	3
Valeur de référence	25,5	31,9	45,9
Moyenne niveau	25,5	31,3	46,37
Biais absolu	0	-0,6	0,47
Biais relatif (%)	0,01	-1,89	1,02
Taux de recouvrement (%)	100,01	98,11	101,02
Écart-type de répétabilité (S _r)	0	0,16	0,32
Coefficient de variation de répétabilité CV _r (%)	0,01	0,51	0,7
Écart-type de fidélité (S _{FI})	0	0,16	0,32
Coefficient de variation de fidélité CV _{FI} (%)	0,02	0,51	0,7
Valeur basse intervalle tolérance	25,5	31,07	45,92
Valeur haute intervalle tolérance	25,51	31,52	46,82
Limite basse tolérance (%)	99,98	97,41	100,04
Limite haute tolérance (%)	100,04	98,8	102
Limite d'acceptabilité basse	90	90	90
Limite d'acceptabilité haute	110	110	110
Incertitude-type composée	0,005	0,166	0,334
Incertitude relative (%)	0,041	1,04	1,457

• Modèle Racine Carrée

Tableau 25: Résultats de calcul de justesse, de fidélité, des intervalles de tolérance et d'incertitude de mesure de la méthode de dosage du Cu- Modèle Racine Carrée.

Niveau	1	2	3
Valeur de référence	25,5	31,9	45,9
Moyenne niveau	25,66	31,52	46,79
Biais absolu	0,16	-0,38	0,89
Biais relatif (%)	0,64	-1,18	1,94
Taux de recouvrement (%)	100,64	98,82	101,94
Écart-type de répétabilité (S _r)	0	0,16	0,33
Coefficient de variation de répétabilité CV _r (%)	0,01	0,52	0,7
Écart-type de fidélité (S _{FI})	0	0,16	0,33
Coefficient de variation de fidélité CV _{FI} (%)	0,02	0,52	0,7
Écart-type du IT (S _{IT})	0,01	0,17	0,34
Valeur basse intervalle tolérance	25,66	31,3	46,33
Valeur haute intervalle tolérance	25,67	31,75	47,25
Limite basse tolérance (%)	100,62	98,11	100,95
Limite haute tolérance (%)	100,67	99,53	102,93
Limite d'acceptabilité basse	90	90	90
Limite d'acceptabilité haute	110	110	110
Incertitude-type composée	0,005	0,168	0,339
Incertitude relative (%)	0,04	1,053	1,476

Tableau 26 : Résultats de calcul de la justesse, la fidélité, les intervalles de tolérance et l'incertitude de mesurede la méthode de dosage du Cu- Modèle Logarithmique (Népérien).

Niveau	1	2	3
Valeur de référence	25,5	31,9	45,9
Moyenne niveau	26,29	32,43	48,57
Biais absolu	0,79	0,53	2,67
Biais relatif (%)	3,1	1,68	5,81
Taux de recouvrement (%)	103,1	101,68	105,81
Écart-type de répétabilité (S _r)	0	0,17	0,35
Coefficient de variation de répétabilité CV_r (%)	0,01	0,53	0,72
Écart-type de fidélité (S _{FI})	0	0,17	0,35
Coefficient de variation de fidélité CV _{FI} (%)	0,02	0,53	0,72
Écart-type du IT (S _{IT})	0,01	0,18	0,36
Valeur basse intervalle tolérance	26,28	32,2	48,08
Valeur haute intervalle tolérance	26,3	32,67	49,05
Limite basse tolérance (%)	103,07	100,93	104,76
Limite haute tolérance (%)	103,12	102,42	106,87
Limite d'acceptabilité basse	90	90	90
Limite d'acceptabilité haute	110	110	110
Incertitude-type composée	0,005	0,176	0,36
Incertitude relative (%)	0,04	1,107	1,567

• Modèle Quadratique

Tableau 27 : Résultats de calcul de justesse, de fidélité, des intervalles de tolérance et d'incertitude de mesure de laméthode de dosage du Cu- Modèle Quadratique.

Niveau	1	2	3
Valeur de référence	25,5	31,9	45,9
Moyenne niveau	25,74	31,7	47,41
Biais absolu	0,24	-0,2	1,51
Biais relatif (%)	0,96	-0,62	3,29
Taux de recouvrement (%)	100,96	99,38	103,29
Écart-type de répétabilité (S _r)	0	0,17	0,34
Coefficient de variation de répétabilité CV _r (%)	0,01	0,52	0,72
Écart-type de fidélité (S _{FI})	0	0,17	0,34
Coefficient de variation de fidélité CV _{FI} (%)	0,02	0,52	0,72
Écart-type du IT (S _{IT})	0,01	0,17	0,35
Valeur basse intervalle tolérance	25,74	31,47	46,94
Valeur haute intervalle tolérance	25,75	31,93	47,88
Limite basse tolérance (%)	100,93	98,65	102,26
Limite haute tolérance (%)	100,99	100,1	104,32
Limite d'acceptabilité basse	90	90	90
Limite d'acceptabilité haute	110	110	110
Incertitude-type composée	0,005	0,171	0,352
Incertitude relative (%)	0,041	1,074	1,532

Annexe VI : Validation du Zn

4 Données brutes recueillies :

Les données brutes des mesures effectuées des deux gammes d'étalonnage et de validation sont regroupées dans les deux tableaux suivants :

Niveau	Concentration introduite	Réponse analytique (Intensité)				
	(ppm)	Série n°1	Série n°2	Série n°3	Série n°4	Série n°5
1	0,25	395,70	395,81	396,40	395,60	395,90
1	0,25	395,73	395,79	396,43	395,43	395,70
2	0,50	785,85	786,08	786,15	786,85	785,55
2	0,50	785,88	785,90	785,86	785,90	785,80
2	2,50	3691,90	3692,11	3692,32	3693,21	3692,16
3	2,50	3692,06	3692,24	3691,10	3693,54	3691,89
Λ	5,00	7544,26	7545,00	7544,26	7541,98	7544,67
4	5,00	7544,26	7545,32	7544,26	7542,34	7544,10
5	10,00	14612,83	14615,20	14614,78	14613,20	14612,66
	10,00	14612,87	14614,66	14612,88	14613,83	14612,80

Tableau 28:Les données de standards d'étalonnage du Zn.

Tableau 29 : Les données de standards de validation du Zn

Niveau	Concentration	Concentration mesurée (ppm)				
	introduite (ppm)	Série n°1	Série n°2	Série n°3	Série n°4	Série n°5
1	53	76830,12	76820,67	76020,08	76546,45	76345,1
	53	76822,89	76880,45	76530,93	75935,89	76999,56
	53	77037,99	76990,98	76720,8	76720,41	76120,89
2	63	95764,67	93764,36	95064,34	95760,23	95664,56
	63	94764,01	93767,84	94764,8	95764,89	95644,88
	63	95764,19	93320,9	95164,76	95759,12	95454,04
3	93	128690,45	127612,23	126697,45	127623,12	128690,34
	93	128697,92	127219,78	126623,87	127697,99	128327,94
	93	128690,94	127897,21	126321,09	127690,2	128692,21

4 Fonction de réponse

Modèle de régression	Paramètres du modèle	Série 1	Série 2	Série 3	Série 4	Série 5
Modèle Linéaire	<i>a</i> ₀	72,5	72,4	72,6	72,6	72,5
Simple	<i>a</i> ₁	1461,27	1461,48	1461,33	1461,26	1461,27
Modèle Racine Carré	<i>a</i> ₀	1,038	1,038	1,048	1,041	1,038
	<i>a</i> ₁	38,018	38,021	38,015	38,017	38,018
Modèle Logarithmique	<i>a</i> ₀	7,338	7,33815	7,33859	7,33805	7,338
(Népérien)	<i>a</i> ₁	0,97844	0,97842	0,97807	0,97845	0,97843

Tableau 30 : Les paramètres des modèles de calibration du Zn

4 Calcul de critères de validation

Les calculs sont effectués comme il est indiqué dans la partie théorique, ces résultats sont donnés par des feuilles de calcul du logiciel Microsoft Excel qui sont développées par Max Feinberg.

• Modèle Linéaire Simple

Tableau 31:Résultats de calcul de justesse, fidélité, des intervalles de tolérance et d'incertitude de mesure de la
méthode de dosage du Zn-Modèle Linéaire Simple

Niveau	1	2	3
Valeur de référence	53	63	93
Moyenne niveau	52,38	65,01	87,41
Biais absolu	-0,62	2,01	-5,59
Biais relatif (%)	-1,16	3,2	-6,01
Taux de recouvrement (%)	98,84	103,2	93,99
Écart-type de répétabilité (S _r)	0,22	0,21	0,14
Coefficient de variation de répétabilité CV _r (%)	0,43	0,32	0,16
Écart-type de fidélité (S _{FI})	0,25	0,62	0,61
Coefficient de variation de fidélité CV _{FI} (%)	0,48	0,95	0,7
Écart-type du IT (S _{IT})	0,26	0,67	0,66
Valeur basse intervalle tolérance	52,03	64,01	86,41
Valeur haute intervalle tolérance	52,74	66,02	88,42
Limite basse tolérance (%)	98,17	101,6	92,91
Limite haute tolérance (%)	99,51	104,8	95,08
Limite d'acceptabilité basse	90	90	90
Limite d'acceptabilité haute	110	110	110
Incertitude-type composée	0,262	0,674	0,664
Incertitude relative (%)	0,989	2,14	1,428

• Modèle Racine Carrée

 Tableau 32 : Résultats de calcul de justesse, de fidélité, des intervalles de tolérance et d'incertitude de mesure de la méthode de dosage du Zn- Modèle Racine Carrée.

Niveau	1	2	3
Valeur de référence	53	63	93
Moyenne niveau	52,61	65,34	87,92
Biais absolu	-0,39	2,34	-5,08
Biais relatif (%)	-0,73	3,71	-5,47
Taux de recouvrement (%)	99,27	103,71	94,53
Écart-type de répétabilité (S _r)	0,22	0,21	0,14
Coefficient de variation de répétabilité CV _r (%)	0,43	0,32	0,16
Écart-type de fidélité (S _{FI})	0,25	0,62	0,61
Coefficient de variation de fidélité CV _{FI} (%)	0,48	0,96	0,69
Écart-type du IT (S _{IT})	0,26	0,68	0,66
Valeur basse intervalle tolérance	52,26	64,32	86,91
Valeur haute intervalle tolérance	52,97	66,36	88,92
Limite basse tolérance (%)	98,6	102,1	93,45
Limite haute tolérance (%)	99,94	105,33	95,62
Limite d'acceptabilité basse	90	90	90
Limite d'acceptabilité haute	110	110	110
Incertitude-type composée	0,263	0,68	0,664
Incertitude relative (%)	0,991	2,158	1,429

Annexes

Tableau 33 : résultats de calcul de la justesse, la fidélité, les intervalles de tolérance et l'incertitude de mesurede la méthode de dosage du Zn-Modèle Logarithmique (Népérien).

Niveau	1	2	3
Valeur de référence	53	63	93
Moyenne niveau	54,32	67,73	91,64
Biais absolu	1,32	4,73	-1,36
Biais relatif (%)	2,49	7,51	-1,46
Taux de recouvrement (%)	102,49	107,51	98,54
Écart-type de répétabilité (S _r)	0,24	0,22	0,15
Coefficient de variation de répétabilité CV _r (%)	0,44	0,32	0,16
Écart-type de fidélité (S _{FI})	0,26	0,65	0,62
Coefficient de variation de fidélité CV _{FI} (%)	0,48	0,97	0,67
Écart-type du IT (S _{IT})	0,27	0,71	0,67
Valeur basse intervalle tolérance	53,95	66,66	90,63
Valeur haute intervalle tolérance	54,69	68,8	92,66
Limite basse tolérance (%)	101,8	105,82	97,45
Limite haute tolérance (%)	103,19	109,2	99,64
Limite d'acceptabilité basse	90	90	90
Limite d'acceptabilité haute	110	110	110
Incertitude-type composée	0,272	0,713	0,672
Incertitude relative (%)	1,027	2,262	1,445

Annexe VII : Validation d'Arsenic

4 Données brutes recueillies

Les données brutes des mesures effectuées des deux gammes d'étalonnage et de validation sont regroupées dans les deux tableaux suivants :

Niveau	Concentration introduite	Réponse analytique (Intensité)				
	(ppm)	Série n°1	Série n°2	Série n°3	Série n°4	Série n°5
1	0,25	60,93	60,93	60,94	60,93	60,92
1	0,25	60,94	60,93	60,94	60,93	60,93
2	0,50	114,27	114,27	114,28	114,28	114,27
2	0,50	114,27	114,26	114,27	114,28	114,27
2	2,50	514,67	514,61	514,60	514,76	514,65
3	2,50	514,99	514,64	514,60	514,60	514,70
Λ	5,00	1037,30	1037,31	1037,31	1037,30	1037,35
4	5,00	1037,34	1037,38	1037,30	1037,30	1037,31
E	10,00	2069,45	2069,87	2069,47	2069,42	2069,34
5	10,00	2069,42	2069,67	2069,48	2069,42	2069,56

Tableau 34:Les données de standards d'étalonnage d'As.

Tableau 35:Les données de standards de validation du d'As.

Niveau	Concentration	Concentration mesurée (ppm)					
	introduite (ppm)	Série n°1	Série n°2	Série n°3	Série n°4	Série n°5	
1	10,30	2050,89	2143,45	2067,78	2145,56	2123,23	
	10,30	2054,56	2090,9	2060,89	2151,8	2130,79	
	10,30	2045,67	2140,23	2053,56	2082,12	2130,22	
2	17,2	3493,76	3514,21	3489,34	3520,56	3511,3	
	17,2	3564,8	3587,06	3467,18	3512,76	3499,65	
	17,2	3560,23	3572,1	3467,66	3490,9	3489,99	
3	467	131892,65	132200,23	131893,08	131801,08	131790,65	
	467	131893,56	132793,6	131894,61	131813,05	131793,78	
	467	131892,66	132793,55	131893,65	131899,1	131799,58	

4 Fonction de réponse

Modèle de régression	Paramètres du modèle	Série 1	Série 2	Série 3	Série 4	Série 5
Modèle Linéaire	<i>a</i> ₀	7,32	7,22	7,26	7,28	7,28
Simple	<i>a</i> ₁	206,037	206,075	206,044	206,038	206,042
Madèla Dagina Comé	<i>a</i> ₀	0,612	0,61	0,611	0,612	0,611
Mouele Kacille Carre	<i>a</i> ₁	14,1479	14,1492	14,1479	14,1478	14,1481
Modèle Logarithmique	<i>a</i> ₀	5,40965	5,40957	5,40961	5,4096	5,40955
(Népérien)	<i>a</i> ₁	0,95434	0,95438	0,9543	0,95433	0,95437
Modèle Quadratique	<i>a</i> ₀	10,07	10,06	10,06	10,07	10,05
	<i>a</i> ₁	203,45	203,4	203,4	203,42	203,43

Tableau 36 : Les paramètres des modèles de calibration d'As

EL KHATTAB Kaoutar - Master CAC agiq 20-21					Anne	xes
	<i>a</i> ₂	0,254	0,263	0,26	0,257	0,257

4 Calcul de critères de validation

Les calculs sont effectués comme il est indiqué dans la partie théorique, ces résultats sont donnés par des feuilles de calcul du logiciel Microsoft Excel qui sont développées par Max Feinberg.

• Modèle Linéaire Simple

 Tableau 37:Résultats de calcul de la justesse, la fidélité, les intervalles de tolérance et l'incertitude de mesure de la méthode de dosage d'As-Modèle Linéaire Simple

Niveau	1	2	3
Valeur de référence	10,3	17,2	467
Moyenne niveau	10,15	17,03	640,61
Biais absolu	-0,15	-0,17	173,61
Biais relatif (%)	-1,48	-0,99	37,18
Taux de recouvrement (%)	98,52	99,01	137,18
Écart-type de répétabilité (S _r)	0,11	0,13	0,75
Coefficient de variation de répétabilité CVr (%)	1,06	0,76	0,12
Écart-type de fidélité (S _{FI})	0,21	0,19	1,69
Coefficient de variation de fidélité CV _{FI} (%)	2,05	1,12	0,26
Écart-type du IT (S _{IT})	0,23	0,2	1,83
Valeur basse intervalle tolérance	9,82	16,74	637,93
Valeur haute intervalle tolérance	10,47	17,31	643,29
Limite basse tolérance (%)	95,36	97,35	136,6
Limite haute tolérance (%)	101,68	100,67	137,75
Limite d'acceptabilité basse	90	90	90
Limite d'acceptabilité haute	110	110	110
Incertitude-type composée	0,225	0,204	1,829
Incertitude relative (%)	4,37	2,367	0,783

• Modèle Racine Carrée

 Tableau 38 : Résultats de calcul de justesse, fidélité, des intervalles de tolérance et d'incertitude de mesure de la

 méthode de dosage d'As- Modèle Racine Carrée.

Niveau	1	2	3
Valeur de référence	10,3	17,2	467
Moyenne niveau	10,2	17,21	657,23
Biais absolu	-0,1	0,01	190,23
Biais relatif (%)	-0,93	0,03	40,74
Taux de recouvrement (%)	99,07	100,03	140,74
Écart-type de répétabilité (S _r)	0,11	0,13	0,77
Coefficient de variation de répétabilité CV _r (%)	1,07	0,77	0,12
Écart-type de fidélité (S _{FI})	0,21	0,19	1,73
Coefficient de variation de fidélité CV _{FI} (%)	2,08	1,13	0,26
Écart-type du IT (S _{IT})	0,23	0,21	1,88
Valeur basse intervalle tolérance	9,87	16,91	654,48
Valeur haute intervalle tolérance	10,53	17,5	659,99
Limite basse tolérance (%)	95,85	98,34	140,15
Limite haute tolérance (%)	102,28	101,72	141,33
Limite d'acceptabilité basse	90	90	90
Limite d'acceptabilité haute	110	110	110
Incertitude-type composée	0,229	0,207	1,879
Incertitude relative (%)	4,438	2,41	0,805

Tableau 39 : Résultats de calcul de justesse, de fidélité, des intervalles de tolérance et d'incertitude de mesurede la méthode de dosage d'As-Modèle Logarithmique (Népérien).

Niveau	1	2	3
Valeur de référence	10,3	17,2	467
Moyenne niveau	10,45	17,95	801,31
Biais absolu	0,15	0,75	334,31
Biais relatif (%)	1,43	4,33	71,59
Taux de recouvrement (%)	101,43	104,33	171,59
Écart-type de répétabilité (S _r)	0,12	0,14	0,99
Coefficient de variation de répétabilité CV _r (%)	1,1	0,8	0,12
Écart-type de fidélité (S _{FI})	0,22	0,21	2,19
Coefficient de variation de fidélité CV _{FI} (%)	2,15	1,17	0,27
Écart-type du IT (S _{IT})	0,24	0,22	2,37
Valeur basse intervalle tolérance	10,1	17,63	797,83
Valeur haute intervalle tolérance	10,8	18,26	804,79
Limite basse tolérance (%)	98,03	102,51	170,84
Limite haute tolérance (%)	104,83	106,16	172,33
Limite d'acceptabilité basse	90	90	90
Limite d'acceptabilité haute	110	110	110
Incertitude-type composée	0,242	0,224	2,374
Incertitude relative (%)	4,699	2,604	1,017

• Modèle Quadratique

 Tableau 40 : Résultats de calcul de justesse, de fidélité, des intervalles de tolérance et d'incertitude de mesure de la méthode de dosage d'As- Modèle Quadratique.

Niveau	1	2	3
Valeur de référence	10,3	17,2	467
Moyenne niveau	10,13	16,87	422,4
Biais absolu	-0,17	-0,33	-44,6
Biais relatif (%)	-1,61	-1,9	-9,55
Taux de recouvrement (%)	98,39	98,1	90,45
Écart-type de répétabilité (S _r)	0,11	0,13	0,36
Coefficient de variation de répétabilité CV _r (%)	1,04	0,75	0,09
Écart-type de fidélité (S _{FI})	0,21	0,19	1
Coefficient de variation de fidélité CV _{FI} (%)	2,03	1,1	0,24
Écart-type du IT (S _{IT})	0,22	0,2	1,08
Valeur basse intervalle tolérance	9,81	16,6	420,79
Valeur haute intervalle tolérance	10,46	17,15	424,01
Limite basse tolérance (%)	95,27	96,5	90,11
Limite haute tolérance (%)	101,51	99,71	90,8
Limite d'acceptabilité basse	90	90	90
Limite d'acceptabilité haute	110	110	110
Incertitude-type composée	0,222	0,197	1,083
Incertitude relative (%)	4,313	2,296	0,464

جامعة سيدي محمد بن عبد الله بغاس +،٥٨،٤٤ ٥٤٨٤ ٢٤،٢٢٥،٨ ΘΙ أ٥٨،١٤،٥ ا ٢٠،٥ UNIVERSITÉ SIDI MOHAMED BEN ABDELLAH DE FES

كليــة العلــوم والتقنــيات فـاس +.42Uol+ 1 +CoOol2I Λ +OI2X2+2I - X.O FACULTÉ DES SCIENCES ET TECHNIQUES DE FÈS

Année Universitaire : 2020-2021

Master ST CAC Agiq

Mémoire de fin d'études pour l'obtention du Diplôme de Master Sciences et Techniques Nom et prénom: EL KHATTAB Kaoutar

Année Universitaire : 2020/2021

Titre: Validation analytique par profil d'exactitude de la méthode d'analyse des métaux dans trois minerais de références par l'ICP-OES.

Résumé

Ce mémoire de fin d'étude dévoile l'application de la nouvelle stratégie de l'erreur totale pour la validation de la méthode d'analyse de sept métaux présents dans trois minerais de références par l'ICP-OES. Baptisé profil d'exactitude, cette démarche exploite l'intervalle de tolérance de type β -expectation pour accéder à la performance d'une méthode analytique en réalisant différents modèles de calibration.

En effet, cette étude a montré que la méthode utilisée pour la minéralisation des échantillons est valide dans les domaines de validation fixés à priori et pour tous les métaux ainsi que leurs exactitudes ne dépassent pas les limites d'acceptation de \pm 10% pour une proportion β = 80%. Pour les métaux suivants : Vanadium, Chrome, Cobalt, Cuivre et Zinc, on a montré que le meilleur modèle est celui de la régression linéaire simple, par contre pour le Nickel et l'Arsenic les modèles utilisés pour prédire le plus exactement possible leurs concentrations sont respectivement le modèle racine carré et le modèle quadratique.

Tout aussi important, avec le profil d'exactitude nous avons réussi à estimer l'incertitude de mesure de notre méthode analytique pour tous les métaux traités sans avoir recours à des expériences supplémentaires.

Mots clés: Validation, Erreur Totale, Profil d'Exactitude, ICP-OES, Métaux Lourds.