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Introduction

La notion de dérivation remonte à plusieurs siècles avant, et plus précisément à

l’époque de Newton et Leibniz, c’est une notion qui a trouvé sa voie facilement dans

plusieurs discipline (physique quantique, analyse, ...) mais c’est juste récemment

qu’on a pu entendre cette notion comme un concept algébrique utilisée dans la

théorie de corps et l’algèbre différentiel.

En 1957, Posner a inauguré ce champs en publiant deux grands résultats qui per-

met de liée certains propriétés structurelles d’un anneau premier avec l’existence de

certaines dérivations définies sur cet anneau :

1) Dans un anneau premier de caractéristique différent de 2, si la composition de

deux dérivations est une dérivation, alors l’une de ces deux dérivations est nulle.

2) Un anneau premier ayant une dérivation non nulle centralisante sur l’anneau tout

entier est nécessairement commutatif

En littérature, la notion d’involution a été introduite pour la première fois en 1934

à travers les travaux de A. Albert sur la théorie des algèbres centrales simples à in-

volution dans le but de trouver une solution d’un problème de géométrie algébrique

en se basant sur les algèbres simples.

Après la théorie des algèbres à involution a progressivement évolué puisqu’elle

s’impose comme un champ très fertile qui n’a pas encore été totalement explorer.

Dans ce qui suit, le premier chapitre sera consacré à quelque notion algébrique de

bases avec des exemples de certaines définitions. Le deuxième chapitre est un re-

cueil de plusieurs résultats puissants sur les applications commutantes, avec quelques

extensions dans les algèbres de Banach, et certaine caractérisation spéciale des ap-

plications multiadditive.
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Le troisiéme chapitre se consiste de deux résultats, le premier donne une forme

unifiée à tous les applications centralisées définies sur un anneau premier de caractéristique

différent de 2, grâce à certaines propriétés sur le centroid étendue, le deuxième

résultat caractérise la commutativité d’un anneau premier à travers l’existence

de certaines dérivations vérifiant une identité généralisée de la notion de l’anti-

centralisation.

Le quatrième chapitre est une généralisation d’un résultat de Herstein qui affirme

que sur un anneau premier de caractéristique différent de 2, tout dérivation de Jor-

dan est une dérivation, dans ce chapitre on va voir une classe plus générale, c’est la

classe des semidérivations généralisées de Jordan.

Le cinquième chapitre sera divisé à deux parties, la première comporte certains in-

vestigations qui caractérise la commutativité d′un anneau à involution en la reliant

par l’existence de certaines dérivations, la deuxième partie classifie des dérivations

généralisées spéciales en les unifiant sous une forme bien indiqué.

Le dernier chapitre traite des nouvelles classes de dérivations définies via une in-

volution, qui sont les ∗-semidérivations, on montre que sur un anneau premier de

caractéristique différent de 2, tout ∗-semidérivation est une semidérivation.
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Introduction

Many and diverse are the applications of the notion "derivation", it is known that

Newton and Leibniz were the first to provide a clear definition of this notion.

Quantum physics, Analysis, ... are examples of fields where the notion of derivation

has a crucial effect (if it is not an existential cause, speaking on calculus precisely).

As an algebraic concept, derivations were introduced lately as a valuable tool used

in differential algebra and field theory. Two important results published by Posner

in 1957, can be considered as an important breakthrough, for the simple reason

that they create a link between the global structure of a prime ring, and derivations

defined on that ring, as it is expressed below :

1) On a prime ring of characteristic different from 2, if two derivations d1 and d2 are

such that d1d2 is also a derivation , then either d1 = 0 or d2 = 0.

2) A prime ring admitting a nonzero centralized derivation is a commutative ring.

In literature, the notion of "involution" appeared for the first time in 1934 by

A.Albert’s works on central simple algebra with involution, after the involution

keeps getting more and more used especially in the last decades. Later, a big in-

terest has been accorded to investigate the structure of some noncommutative rings

with involution admitting an automorphism that satisfies some special identities.

In what comes next, the first chapter will be devoted to basic algebraic vocabulary

and definitions with some examples for each of the major notions.

The second chapter shall give a general survey about commuting maps with basic

extensions in Banach algebra and some special characterizations of multiadditive

maps and the traces of multiadditive maps.

The third chapter comes in the form of a two strong results, the first one gives a
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unified form for all centralizing mappings on a prime ring of characteristic different

from 2, simply by using the properties of the extended centroid, the second one

establishes a link between the commutativity of a prime ring and the existence of

some derivations satisfying a special identity.

The fourth chapter is a generalization of Herstein’s result, which proves that every

Jordan derivation on a prime ring of characteristic different from 2, is in fact a

derivation. In this chapter we shall consider a more general class which is the class

of generalized Jordan semiderivations.

The fifth chapter will be divided to two parts, the first part is an entry to investigate

the different results that characterize the commutativity of rings with involution, by

linking it with the existence of derivations satisfying some special identities (these

identities are more tight than the ones of the third chapter), the second part gives

a classification of some special generalized derivations, this classification is made by

giving the exact form of the generalized derivations that are verifying some special

identities.

The sixth chapter treats a new class of derivations which are ∗−semiderivations, we

show that in a 2-torsion free prime ring, ∗−semiderivations are in fact semideriva-

tions.
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Chapter 1

Basics

M. Brešar, Introduction to Non commutative Algebra.

1.1 Rings, prime rings

Definition 1.1.1. Let K be a field, a ring (R,+,×) over K is said to be a K-
algebra, if R is equipped with an external binary operation ” · ” from K ×R into K
with (α, a) 7→ α.a, such that :
i) (R,+, ·) a K-module;
ii) for all x, y ∈ R, and α ∈ K α · (x× y) = (α · x)× y = x× (α · y).

Examples.
1) C is a R-algebra.
2) C ([a, b]) (with a, b ∈ R) is a R-algebra.
C ([a, b]) equipped with the usual addition and multiplication between functions is
a ring, indeed the sum of continuous functions is continuous, same thing for the
product and constant functions, then C ([a, b]) is a ring as a subring of RR = {f :

R −→ R} the ring of all functions.
the same set equipped with the composition of functions instead of the product is not
a ring indeed (f(x) = x2 and g(x) = 1, f(g(x)+g(x)) = 4 6= 2 = f(g(x))+f(g(x))).

3) EndK(M) the set of all K-linear maps from a K−module M into itself, is a
K-algebra.
4) The algebra of quaternions H = {a+ ib+ jc+ kd | a, b, c, d ∈ R} is a R-algebra.

Definition 1.1.2. Let R be a K-algebra, and B a nonzero subset of R, B is said
to be a subalgebra of R if :
i) (B,+,×) is a subring of (R,+,×);

ii) (B,+, ·) is a submodule of the K-module (R,+, ·);
iii) 1R ∈ B.
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Theorem 1.1.1. Let R be a ring and Mn(R) the ring of n×n matrices over R, the
ideals of Mn(R) are of the form Mn(I), with I an ideal of R.

Proof. It is obvious that, if I is an ideal of R then Mn(I) is an ideal of Mn(R),

(just notice that if I is an additive group, thenMn(I) is an additive group, and that
RI ⊂ I induces Mn(R)Mn(I) ⊂Mn(I), (same thing with the left side)).
On the other hand, if J is an ideal of Mn(R), we consider

I := {a ∈ R | a is the (1, 1) entry of a matrice M ∈ J}
we claim that J = Mn(I), indeed, first of all, we have

for all M ∈Mn(R) eijMekl = Mjkeil.

If M ∈ J, e1iMej1 = Mije11 ∈ J, then Mij ∈ I thus J ⊆Mn(I).

Let A ∈ Mn(I) and 1 ≤ i, l ≤ n we choose M ∈ J such that M11 = Ail then
Aileil = M11eil = ei1Me1l ∈ J thus A ∈ J, it follows that J = Mn(I).

Examples.
1) C 1([a, b]) is subalgebra of the R-algebra C ([a, b]).

2) K1R = {α · 1R | α ∈ K} is a subalgebra of the K-algebra R.
3) The center Z(R) of the K-algebra R is a subalgebra of R, which contains K1R.

Definition 1.1.3. An ideal P in a ring R is prime if and only if for all x, y ∈
R xRy ⊆ P =⇒ x ∈ P or y ∈ P.

Examples.
1) The prime ideals of Z are of the form pZ where p is a prime integer.
2) The prime ideals of Mn(Z) are of the form Mn(pZ) where p is a prime integer.
3) Let’s consider

R =

{ (
a b

0 c

)∣∣∣ a, b, c ∈ Z} and P =

{(
a b

0 0

)∣∣∣ a, b ∈ Z} .
R equipped with matrice addition and multiplication, is a subring ofM2(Z), indeed,
let a, b, c, a′, b′, c′ ∈ Z(

a b

0 c

)(
a′ b′

0 c′

)
=

(
aa′ ab′ + bc′

0 cc′

)
∈ R;

then R is stable by matrice multiplication.
On the other hand, let a, b, c, α, β ∈ Z(

a b

0 c

)(
α β

0 0

)
=

(
aα aβ

0 0

)
∈ P ;

then RP ⊆ P , thus P is a left ideal.(
α β

0 0

)(
a b

0 c

)
=

(
αa αb+ βc

0 0

)
∈ P ;
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then PR ⊆ P , thus P is a two-sided ideal.

Let X, Y ∈ R, with X =

(
a b

0 c

)
, Y =

(
a′ b′

0 c′

)
.

For x, y, z ∈ Z, we have

X

(
x y

0 z

)
Y =

(
axa′ axb′ + (ay + bz)c′

0 czc′

)
.

Then

XRY ⊆ P ⇒

(
axa′ axb′ + (ay + bz)c′

0 czc′

)
∈ P for all x, y, z ∈ Z

⇒ czc′ = 0 for all z ∈ Z
⇒ c = 0 or c′ = 0

⇒ X ∈ P or Y ∈ P.

then P is a prime ideal.
4) Let’s consider the following ring of fraction R = { a

2n
| a ∈ Z, n ∈ Z+}

for S = {2n;n ≥ 0} ⊂ Z, then R = S−1Z.
Prime ideals of R are of the form S−1P for some prime ideal P of Z (with P ∩S = ∅),
which means
I = { a

2n
| a ∈ pZ,with p a prime integer, n ∈ Z+}

= { pa
2n
| a ∈ Z,with p a prime integer, n ∈ Z+}.

Proposition 1.1.1. Let R be a ring, and P an ideal of R, the following assertions
are equivalent :
i) P is a prime ideal;
ii) for all I and J ideals of R, IJ ⊆ P implies I ⊆ P or J ⊆ P .

Proof.
⇒) Suppose that I * P, then there exists x ∈ I such that x /∈ P, by assumption
xy ∈ P for all y ∈ J, which yields by the primeness of P, that x ∈ P or y ∈ P, thus
y ∈ P and then J ⊆ P.

⇐) let a, b ∈ R such that aRb ⊆ P, we consider 〈a〉, 〈b〉 be the ideals generated by
a and b respectively, then 〈a〉〈b〉 ⊆ P thus 〈a〉 ⊆ P or 〈b〉 ⊆ P thus a ∈ P or b ∈ P.

Definition 1.1.4. An ideal P in a ring R is semi-prime if and only if for all ideal
J of R, J2 ⊆ P implies J ⊆ P.

Definition 1.1.5. R is prime if the ideal (0) is a prime ideal.

11



Proposition 1.1.2. Let R be a ring, and P an ideal of R, then P is semi-prime if
and only if P =

√
P .

Proof.
⇒) by definition

√
P = {x ∈ R | xn ∈ I for some n ∈ N∗}, then P ⊂

√
P ,

suppose that
√
P\P 6= ∅, then there exist x ∈ R and n > 1 such that xn ∈ P and

x /∈ P. Let’s consider J = 〈x〉 the principal ideal generated by x, then Jn = 〈xn〉, as
xn ∈ P it follows that Jn ⊆ P

if n ∈ 2N : then (J
n
2 )2 ⊆ P, P being semi-prime then J

n
2 ⊆ P,

if n /∈ 2N : Jn ⊆ P implies Jn+1 = J.Jn ⊆ P, with n+ 1 ∈ 2N
we will get by the end J ⊆ P, which is not conforme with the assumption x /∈ P.
Then

√
P\P = ∅, thus

√
P = P.

⇐) Let J be an ideal of R, with J2 ⊆ P, let x ∈ J then x2 ∈ P thus x ∈
√
P (= P )

(by assumption), thus J ⊆ P it follows that P is semi-prime.

Example. The ring R =

{ (
a b

0 c

)∣∣∣ a, b, c ∈ Z} is not prime, indeed(
0 1

0 0

)
R

(
1 0

0 0

)
=

(
0 1

0 0

)(
a b

0 c

)(
1 0

0 0

)

=

(
0 c

0 0

)(
1 0

0 0

)
= 02.

Proposition 1.1.3. Let R be a ring, the following assertions are equivalent:
i) R is prime.
ii) for all I and J ideals of R, IJ = (0) implies I = (0) or J = (0).
iii) for all a, b ∈ R, aRb = (0) implies a = 0 or b = 0.

Proof. [34, Lemma 2.17]

Remark 1.1.1. Let R be a ring
1) R is prime if whenever I1 6= 0 and I2 6= 0 are two ideals of R then I1I2 6= 0.

2) R is prime if and only if the right-annihilator of a non-zero right ideal of R must
be (0).

3) If I 6= (0) is a left ideal, and J 6= (0) a right ideal, in the prime ring R, then
I ∩ J 6= (0).

Lemma 1.1.1. If R is a prime ring with no nonzero nilpotent elements, then R has
no zero divisors.

Proof. Suppose that ab = 0, since (ba)2 = baba = b(ab)a = 0 then by assumption
ba = 0, however, if ab = 0 then (ab)x = a(bx) = 0 for all x ∈ R, hence, by the
above, bxa = 0, thus bRa = 0 and R is prime, it follows that a = 0 or b = 0.
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Lemma 1.1.2. Let A be a multiplicative semi-group with 0, and suppose that A
has no nonzero nilpotent elements. if a1, a2, ..., an ∈ A and a1a2...an = 0 then
ai1ai2 ...ain = 0, where i1, i2, .., in is a permutation of 1, 2, ..., n.

Proof. As in the proof of Lemma 1.1.1, if ab = 0 in A then ba = 0. Hence, if ab = 0

then bax = 0 for any x ∈ A, and so axb = 0.

From a1a2...an = 0, by the above remark we have that ana1a2...an−1 = 0, thus the
cyclic permutation {1, 2, ..., n} is one for which the statement of the lemma is valid.
We claim that if a1a2...an = 0 then a2a1a3...an = 0, indeed, using the property of
the first paragraph successively, we obtain
x1a1x2a2...an−1xnan = 0 for any x1, x2, .., xn ∈ A. Let x1 = a2, x2 = a3...an and
x3 = a1. This gives (a2a1a3...an)2 = 0, hence by hypothesis, a2a1a3...an = 0. Thus
the lemma is valid for the permutation (1 2). Since (1 2) and (1 2...n) generate the
symmetric group of degree n, we have prove the lemma.

Definition 1.1.6. A ring R is called a domain, if it has non zero divisors.

Theorem 1.1.2. Let R be a ring with no nilpotent elements. Then R is a subdirect
product of domains.

Proof. We first show that, if P is a minimal prime ideal of R then R/P is a domain.
Indeed, letM be the complement of P and A the multiplicative semi-group of R gen-
erated byM. We claim that 0 /∈ A. For, if m1m2...mk = 0 where m1,m2, ...,mk ∈ A,
since P is a prime ideal, for some x1, x2, ..., xk−1 ∈ R, m1x1m2x2...mk−1xk−1mk 6= 0.

However, since m1m2...mkx1, x2, ..., xk−1 = 0, using 1.1.2 we would have the contra-
diction m1x1m2x2...mk−1xk−1mk = 0. Thus 0 /∈ A.
Let Q be an ideal of R maximal with respect to exclusion of A. The usual argument
shows Q to be a prime ideal. Moreover, Q ⊂ P. Since P is minimal, we have Q = P,

and so R/P is a domain.
Since R has no nilpotent elements, the intersection of all prime ideals of R is 0.

Hence the intersection ∩P = 0, where P runs over the minimal prime ideals. Since
R is the subdirect product of these R/P ’s and each R/P is a domain, the proof of
the theorem is now complete.

Definition 1.1.7. A nonzero element a in a ring R is said to be regular if it is
neither a left nor right zero-divisor.

Definition 1.1.8. A ring R is called semi-prime if it has no nonzero nilpotent ideals.

Examples.
1) R = Z/6Z =

{
0, 1, 2, 3, 4, 5

}
Let’s consider two ideals I = 〈2〉 and J = 〈2〉, as 2.3 = 0 then IJ = (0) then R is
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not prime, as I 6= (0) and J 6= (0) .
On the other hand aRa = 0⇒ a = 0 ∀a ∈ R thus R is semi-prime.

2) Let’s consider S =

{ (
a 0

0 b

)∣∣∣ a, b ∈ Z}

∀a, b ∈ Z, ∀n ≥ 1

(
a 0

0 b

)n

=

(
an 0

0 bn

)
6= 02

then S is semi-prime, but

∀n ≥ 1

(
a 0

0 0

)(
0 0

0 b

)
= 02

then S is semi-prime but not prime.

Proposition 1.1.4. Let R be a ring, the following assertions are equivalent :
i) R is semi-prime;
ii) ∀ I ideal of R, I2 = (0) implies I = (0);

iii) ∀a ∈ R aRa = {0} implies a = 0;

Proof. [34, Lemma 2.21]

Lemma 1.1.3. A commutative ring R is prime if and only if R is a domain.

Proof. it is enough to observe that ab = 0 implies aRb = 0 if R is commutative.

Lemma 1.1.4. A commutative ring R is semi-prime if and only if R has no nonzero
nilpotent element.

Proof. [34, lemma 2.21]

Lemma 1.1.5. If R is semi-prime and I, J ideals of R such that IJ = (0) then
JI = (0).

Proof. Since IJ = 0, (JI)2 = JIJI = 0, hence JI = 0.

Let r(X) = {y ∈ R | xy = 0 for all x ∈ X} and l(X) = {y ∈ R | yx =

0 for all x ∈ X} be the right and left annihilators, respectively, of a subset X of
R.

Corollary 1.1.1. If R is semi-prime and I is an ideal of R then r(I) = l(I).

Proof. If C = r(I)I, then C is an ideal of R and C2 = r(I)(Ir(I))I = 0, then C = 0.

That is, r(I)I = 0, and so r(I) ⊂ l(I). Similarly l(I) ⊂ r(I). Hence r(I) = l(I).

Corollary 1.1.2. If R is semi-prime and I is an ideal of R then I ∩ r(I) = 0.

14



Proof. I ∩ r(I) is an ideal of R, and (I ∩ r(I))2 ⊂ Ir(I) = 0, then I ∩ r(I) = 0.

Proposition 1.1.5. Suppose that R is semi-prime and that a ∈ R is such that
a(ax− xa) = 0 for all x ∈ R, then a ∈ Z(R).

Proof. If x, r ∈ R then a(a(xr)−(xr)a) = 0, however a(xr)−(xr)a = a(xr)−(xa)r+

x(ar)− (xr)a = (ax−xa)r+x(ar− ra), thus we get a((ax−xa)r+x(ar− ra)) = 0

which means ax(ar − ra) = 0 for all x, r ∈ R, that is, aR(ar − ra) = 0. But this
gives (ar− ra)R(ar− ra) = 0. Since R is semi prime, we conclude that ar− ra = 0

for all r ∈ R, hence a ∈ Z(R).

Corollary 1.1.3. Let R be a semi-prime ring and let I be a right ideal of R. then
Z(I) ⊂ Z(R).

Proof. If a ∈ Z(R) and x ∈ R then, since ax ∈ I, a(ax) = (ax)a, that is a(ax −
xa) = 0. By Proposition 1.1.5 we conclude that a ∈ Z(R).

Corollary 1.1.4. Let R be a semi-prime ring and let I be a right ideal of R. If I
is commutative ring, then I ∈ Z(R). If in addition, R is prime, then R must be
commutative.

Proof. Since I is commutative, by the lemma I = Z(I) ⊂ Z(R). If x, y ∈ R, a ∈ I
then ax ∈ I hence ax ∈ Z(R); thus (ax)y = y(ax) = ayx since a ∈ I ⊂ Z(R).

This yields I(xy− yx) = 0. Therfore, if R is prime, since I 6= 0 is annihilated by all
xy − yx from the right, xy − yx = 0. Hence R is commutative.

Definition 1.1.9. Let X a non-empty subset of R, then the centralizer of X in R,
is defined by CR(X) = {a ∈ R | xa = ax for all x ∈ X}, if a ∈ CR(X) we say
that a centralizes X.

Proposition 1.1.6. Let R be a prime ring, and suppose that a ∈ R centralizes a
non-zero right ideal of R. Then a ∈ Z(R).

Proof. Suppose that a centralizes the non-zero right ideal I of R. if x ∈ R, r ∈ I
then rx ∈ I hence a(rx) = (rx)a. But ar = ra; we thus get that r(ax − xa) = 0,

which is to say I(ax−xa) = 0 for all x ∈ R. Since R is prime and I 6= 0, we conclude
that ax = xa for all x ∈ R, hence a ∈ Z(R).

1.2 Simple rings, Jacobson radical

Definition 1.2.1. R is a n−torsion free ring, (with n ∈ N), if na = 0, with a ∈ R
implies a = 0.
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Definition 1.2.2. A ring R is said to be simple, if R2 6= 0 (means of characteristic
6= 2), and (0), R are the only ideals of R. Moreover an R-module M is said to
be simple if RM 6= 0 and its only submodules are 0 and M, it is also said to be
semi-simple if M is the direct sum of a family of simple submodules.

Examples.
1) R,C are simple rings (every division ring is simple).
2) Let’s consider a simple ring R, then R × R is not simple, because {0} × R and
R× {0} are proper ideals of R.
On the other hand, R×R is semi-simple, indeed, let (x, y) ∈ R×R,

(x, y) = (x, 0) + (0, y) ∈ (R× {0}) + ({0} ×R)

(R× {0}), ({0} ×R) being simple rings, then R×R is semi-simple.

The following corollary is immediate from Theorem 1.1.1

Corollary 1.2.1. R is simple if and only if Mn(R) is simple.

Definition 1.2.3.
The annihilator of an R-module M is annR(M) = {r ∈ R | rM = 0}.

Definition 1.2.4.
A module M over a unital ring R is said to be faithful module, if annR(M) = (0).

Examples.
1) Any torsion-free module is faithful (a torsion-free module is a module over a ring
such that zero is the only element annihilated by a regular element of the ring).
2) It follows from the previous example that Q is faithful as a Z-module, and the
Z-modules Z/nZ are not faithful, as they are annihilated by n.

Definition 1.2.5.
A ring R is said to be primitive, if it has a faithful simple module.

Examples. Simple rings are primitive rings (if we consider the simple rings as
modules over them selves).

Definition 1.2.6.
An ideal P of a ring R is said to be a primitive ideal, if P is the annihilator of a
simple R-module.

Definition 1.2.7. [34, Definition 5.44].
The Jacobson radical of a ring R, is defined by rad(R) = ∩{Ann(M), M is a simple
left R−module}.
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Definition 1.2.8.
Let R be a ring, the Jacobson radical of an R-module M , is the intersection of all
submodules N of M such that M/N is simple
rad(M) = {∩N | N submodule of M such that M/N is simple }.

Remark 1.2.1. If K is the center of a simple ring R, then R is both a vector space
over K and a ring, which means R is a K-algebra, then the concepts of simple
algebra and simple rings are equivalent.

Proposition 1.2.1. R simple =⇒ R primitive =⇒ R prime.

Proof.
⇒) Let’s consider a simple ring R, and show that R admits a faithful simple module
M 6= 0, indeed let’s consider M = R/I such that I is a maximal left ideal, we have
AnnR(M) = I, R being simple then the only ideals of R are 0 and R, as M 6= 0

then I = 0 thus M is faithful, on the other hand M = R, then M is simple.
⇒) Let M be a faithful simple R−module. For any nonzero ideal H in R HM = M

(cause M is a left R−module), thus (HJ)M = H(JM) = HM = M hence HJ is
non zero then HJ = 0 implies that H = 0 or J = 0, thus R is a prime ring.

Proposition 1.2.2. If P is a primitive ideal then R/P is a primitive ring.

Proof. [34, Lemma 5.36].

1.3 Derivations, centralizing mappings

In what follows, [x, y] will denotes the commutator xy − yx, we remark that

[a, bc] = [a, b]c+ b[a, c] and [ab, c] = [a, c]b+ a[b, c].

The symbol x ◦ y stands for the anticommutator xy + yx, called also the Jordan
product.

Definition 1.3.1. Let R be a ring and S a subset of R. A mapping F : R −→ R is
said to be centralizing on S, if [F (s), s] ∈ Z(R) for all s ∈ S.
In particular, if [F (s), s] = 0 ∀s ∈ S, then F is said to be commuting on S.

Example.
1) Every map having its range in the center of R, is commuting.
2) The sum and the product of commuting maps are again commuting maps.
3) Let f(x) = λ0(x)xn+λ1(x)xn−1 + ...+λn−1(x)x+λn(x), where λi : R −→ Z(R).

Then f is commuting for any choice of central maps λi.
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Definition 1.3.2.
An additive map d : R −→ R is called a derivation if d(xy) = d(x)y+xd(y) for all
x, y ∈ R.

Examples.

1) Let’s consider R =

{ (
a 0

b c

)
| a, b, c ∈ Z

}
and define d : R −→ R by setting

d

((
a 0

b c

))
=

(
0 0

b 0

)
, We claim that d is a derivation, indeed

d

((
a 0

b c

)(
a′ 0

b′ c′

))
=

(
0 0

ba′ + cb′ 0

)
=

(
0 0

b 0

)(
a′ 0

b′ c′

)
+

(
a 0

b c

)(
0 0

b′ 0

)

= d

((
a 0

b c

))(
a′ 0

b′ c′

)
+

(
a 0

b c

)
d

((
a′ 0

b′ c′

))
.

2) In a similar way, if R =

{(
a b

0 c

)
| a, b, c ∈ Z

}
, we prove that

d :

(
a b

0 c

)
7→

(
0 b

0 0

)
is a derivation.

3) Let a be a fixed element in R, the map

da : R −→ R

x 7→ da(x) = [a, x]

is a derivation called inner derivation induced by a.
4) Let K be a field and R = K[x]/〈x2〉 = 〈1, x〉, we want to characterize the
general form of derivations on R (the conditions that linear maps should verify to
be derivations).
Let f : R −→ R be a linear map, f is completely determined by its values in the
elements of the basis {1, x}.{

f(1) = a+ bx

f(x) = c+ dx for some a, b, c, d ∈ K.

Suppose f is a derivation, then f(1) = 0. Thus a = b = 0, on the other hand
f(0) = 0, then

x2 = 0⇒ f(x2) = 0⇒ 0 = f(xx) = f(x)x+ xf(x)

= (c+ dx)x+ x(c+ dx)

= cx+ dx2 + xc+ xdx

= 2cx
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(we have assumed that char(K) 6= 2 and that R is commutative in order to eliminate
nonzero inner derivations, cause they are already characterized da(x) = ax−xa = 0)

R being an integral domain then c = 0, thus f(x) = dx

f being a derivation then

f(xy) = f(x)y + xf(y) =⇒ dxy = dxy + xdy

=⇒ dxy = 2dxy

=⇒ dxy = 0

=⇒ char(K) = d.

Conclusion : derivations of R are of the form f(x) = dx with char(K) = d.

5) Let’s consider a derivation d on a ring R, we can extend d to a derivation on the
ring R×R0, simply by considering the mapping

D : R×R0 −→ R×R0

(x, y) 7→ (d(x), d(y))

D((x, y) + (x′, y′)) = (d(x+ x′), d(y + y′)) = (d(x) + d(x′), d(y) + d(y′))

= D(x, y) +D(x′, y′).

Then D is an additive map.

D((x, y)(x′, y′)) = (d(xx′), d(y′y)) = (d(x)x′ + xd(x′), d(y′)y + y′d(y))

= D(x, y)(x′, y′) + (x, y)D(x′, y′)

Thus D is a derivation.
Note that this extension is not unique, there exist other derivations on R × R like
(x, y) 7→ (d(x), 0) and (x, y) 7→ (0, d(y)) that can be used as extensions of d.

Definition 1.3.3.
An additive map F : R −→ R is called a generalized derivation if there exists a
derivation d of R such that

F (xy) = F (x)y + xd(y) holds for all x, y ∈ R.

Examples.
1) Let’s consider a derivation d of R, the mapping F = d + ϕ (with ϕ : x 7→ αx,

α ∈ R) is a generalized derivation associated with d.
First of all, F is an additive map
F (x+ y) = d(x) + d(y) + αx+ αy = F (x) + F (y).
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On the other hand
F (xy) = d(x)y + xd(y) + αxy = (d(x) + αx)y + xd(y) = F (x)y + xd(y).

2) Every derivation is a generalized derivation associated with itself, the converse is
not generally true, let’s consider some a, b ∈ Z(R) the following map

Fa,b : R −→ R

x 7→ ax+ xb is called generalized inner derivation.

It is obvious that Fa,b is an additive map, but we can easily notice that as

Fa,b(xy) = a(xy) + (xy)b

= (ax)y + (xb)y

= (ax+ xb)y = Fa,b(x)y

then Fa,b is not a derivation. On the other hand, as b ∈ Z(R)⇒ db(x) = xb−bx = 0

then Fa,b(xy) = Fa,b(x)y + xdb(y), thus Fa,b is a generalized derivation associated
with db.

3) Let’s consider the ring R =

{(
x y

0 z

)∣∣∣ x, y, z ∈ Z} and α ∈ Z, we prove

that the mapping Fα : R −→ R such that Fα

((
x y

0 z

))
=

(
0 x+ αy

0 0

)
is

a generalized derivation associated with dα :

(
x y

0 z

)
7→

(
0 αy

0 0

)
, indeed, let

X, Y ∈ R, with X =

(
x y

0 z

)
, Y =

(
x′ y′

0 z′

)
,

dα(X + Y ) =

(
0 α(y + y′)

0 0

)
= dα(X) + dα(Y ), then dα is additive.

dα(XY ) =

(
0 αy

0 0

)(
x′ y′

0 z′

)
+

(
x y

0 z

)(
0 αy′

0 0

)
= dα(X)Y+Xdα(Y )

then dα is a derivation.

Fα(X+Y ) =

(
0 x+ x′ + α(y + y′)

0 0

)
=

(
0 x+ αy

0 0

)
+

(
0 x′ + αy′

0 0

)
= Fα(X)+Fα(Y )

then Fα is additive.
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Fα(XY ) =

(
0 xx′ + α(xy′ + yz′)

0 0

)
6=

(
0 xx′ + α(y′x+ yz′) + z′x

0 0

)

=

(
0 z′(x+ αy)

0 0

)
+

(
0 xx′ + αxy′

0 0

)
= Fα(X)Y +XFα(Y )

then Fα is not a derivation.

Fα(XY ) =

(
0 xx′ + αxy′

0 0

)
+

(
0 αyz′

0 0

)
=

(
x y

0 z

)(
0 x′ + αy′

0 0

)
+

(
0 αy

0 0

)(
x′ y′

0 z′

)
= XFα(Y ) + dα(X)Y

then Fα is a generalized derivation associated with dα.

Definition 1.3.4.
The additive mapping d on R is called a Jordan derivation if

d(x2) = d(x)x+ xd(x) for all x ∈ R.

Examples.
1) Let Tn(R) denotes the set of all upper triangular matrices over a 2-torsion free
ring R, and S a subring of Mn(R) that contains Tn(R).

Assume that R is a commutative ring with identity and let I be a nonzero ideal of R
such that I2 = 0, let’s consider also the mapping f : I −→ R defined by f(x) = x.

For
S =

(
R R

I R

)
the mapping δ : S −→ S defined by{

δ(xe21) = f(x)e12

δ(xeij) = 0 ∀eij 6= e21

is a Jordan derivation,
(with eij stands for the matrix whose i, j entry is 1 and all other entries are 0),
indeed

Let M =

(
x y

a z

)
∈ S where a ∈ I, and x, y, z ∈ R
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δ(M) = δ

((
x 0

0 0

)
+

(
0 y

0 0

)
+

(
0 0

a 0

)
+

(
0 0

0 z

))
= δ(xe11 + ye12 + ae21 + ze22)

= f(a)e12 = ae12 =

(
0 a

0 0

)
.

It is obvious that δ is an additive map, on the other hand, we have

δ(M2) =

(
0 ax+ za

0 0

)
=

(
0 za

0 0

)
+

(
0 xa

0 0

)

=

(
a2 za

0 0

)
+

(
0 xa

0 a2

)
(notice that I2 = 0 by assumption)

= δ(M)M +Mδ(M)

then δ is a Jordan derivation.

But for N =

(
x′ y′

a′ z′

)
∈ S where a′ ∈ I, and x′, y′, z′ ∈ R

δ(MN) =

(
0 ax′ + za′

0 0

)
=

(
0 x′a

0 0

)
+

(
0 za′

0 0

)

=

(
0 x′a

0 a′a

)
+

(
aa′ a′z

0 0

)
(I2 = 0)

= Nδ(M) + δ(N)M 6= δ(M)N +Mδ(N)

then δ is not a derivation, (it is called antiderivation).
But if R is a prime ring, then every Jordan derivation on S is a derivation ([46],
Corollary 1).
2) Let R[x, y] be the polynomial ring in x, y over R, where R is again a commutative
ring with identity. Let I be its ideal generated by {x2, y2, 2xy} and R′ = R[x, y]/I,
assume that I ′ is the ideal of R′ generated by {x+ I, y + I}, and

S =

(
R′ R′

I ′ R′

)

Let’s also consider f : I ′ −→ R′ defined by f(x′) = x′.

By a similar way (the one adopted in the previous example), we prove that δ : S −→
S is a Jordan derivation but not a derivation, nor an antiderivation (we just need
to notice that f(I ′2) 6= 0, as f((x + I)(y + I)) = xy + I 6= 0, which means the
antiderivation identity doesn’t hold anymore).
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Definition 1.3.5.
The additive mapping F is called a generalized Jordan derivation if there exists a
Jordan derivation d such that

F (x2) = F (x)x+ xd(x) for all x ∈ R.

Of course any generalized derivation is a generalized Jordan derivation.

Examples.
1) Let’s consider M2(C) the algebra of n× n complex matrices, and

δ : Gn(C) −→ Gn(C)

M 7→M2

with Gn(C) = S ∩Dn(C) ∩ In(C) such that :
Dn(C) denotes the set of all diagonal n× n complex matrices .
In(C) denotes the set of all idempotent n× n complex matrices .

S =

(
R R

I R

)

δ is a generalized Jordan derivation associated to the Jordan derivation τ : S −→ S

defined by {
τ(xe21) = f(x)e12

τ(xeij) = 0 ∀eij 6= e21

It is obvious that δ is an additive map.

Let P =

(
x 0

0 z

)
∈ Gn(C), we have τ(P ) = 02

δ(P 2) = δ(P ) =

(
x 0

0 z

)
=

(
x2 0

0 z2

)

=

(
x 0

0 z

)(
x 0

0 z

)
+

(
x 0

0 z

)(
0 0

0 0

)
= δ(P )P + Pτ(P )

τ being a generalized derivation then it is a derivation, thus δ is a generalized Jordan
derivation.

Definition 1.3.6.
Let g be an endomorphism of R. An additive mapping d of R into itself is called a
semiderivation (associated with g) if, for all x, y ∈ R

d(xy) = d(x)y + g(x)d(y) d(g(x)) = g(d(x)).
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Example.
1) Let’s consider a prime ring R, (it is obvious that M2(R) is prime), and

g : D2(R) −→ D2(R)

A 7→ A2

D2(R) denotes the set of all diagonal 2× 2 matrices, and
d : D2(R) −→ D2(R)

A 7→ (Id2 − g)(A)

Let M,N ∈ D2(R) | M =

(
a 0

0 b

)
and N =

(
a′ 0

0 b′

)

d(MN) =

(
aa′ − (aa′)2 0

0 bb′ − (bb′)2

)

=

(
aa′ − a2a′ + a2a′ − (aa′)2 0

0 bb′ − b2b′ + b2b′ − (bb′)2

)

=

(
a− a2 0

0 b− b2

)(
a′ 0

0 b′

)
+

(
a2 0

0 b2

)(
a′ − a′2 0

0 b′ − b′2

)
= d(M)N + g(M)d(N)

then d is a semiderivation but not a derivation (cause generally g(A) 6= A).

Definition 1.3.7.
Let d be the semiderivation of R associated with endomorphism g, an additive map
F on R is a generalized semiderivation of R (associated with d and g), if for all
x, y ∈ R

F (xy) = F (x)y + g(x)d(y) F (g(x)) = g(F (x)).

Examples.
1) Let’s consider

F : D2(R) −→ D2(R)

A 7→ (d+ Id2)(A)

such that d is the semiderivation of the last example
d : D2(R) −→ D2(R)

A 7→ (Id2 − g)(A)

F is a generalized semiderivation, indeed Let M,N ∈ D2(R)
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F (MN) = d(MN) +MN = d(M)N + g(M)d(N) +MN

= (d(M) +M)N + g(M)d(N)

= (d+ Id2)(M)N + g(M)d(N) = F (M)N + g(M)d(N)

then F is a generalized semiderivation, F is not generally a semiderivation, (cause
F (N) = d(N) +N 6= d(N)).

2) Generally F : A 7→ (d+αId2)(A) such that α 6= 0 is a generalized semiderivation.

Definition 1.3.8.
Let R be a ring and let g be an endomorphism of R. An additive mapping d : R −→ R

is called a Jordan semiderivation of R, associated with g, if

d(x2) = d(x)x+ g(x)d(x) and d(g(x)) = g(d(x)) for all x ∈ R.

Example.
We pick the same example used for definition 1.3.4, δ being a Jordan derivation then
it is in fact a Jordan semiderivation. Let’s verify whether or not δ is a semiderivation.
As we have already shown, δ is an antiderivation, which means δ(MN) = δ(N)M +

Nδ(M), then δ is not a semiderivation.

Definition 1.3.9.
An additive mapping F : R −→ R is called a generalized Jordan semiderivation of
R associated with the Jordan semiderivation d and the endomorphism g, if

F (x2) = F (x)x+ g(x)d(x) and F (g(x)) = g(F (x)) for all x ∈ R.

1.4 Involution

Definition 1.4.1. An additive mapping ∗ : R −→ R is called an involution, if ∗ is
an anti-automorphism of order 2; that is (x∗)∗ = x for all x ∈ R.

Remark 1.4.1. ∗ being an anti-automorphism it follows that, for all a, b ∈ R
i) (a+ b)∗ = a∗ + b∗;

ii) (ab)∗ = b∗a∗;

iii)((a)∗)∗ = a.

Examples.
1) An involution ∗ on Z must verify the three assertions above, in particular
1∗ = (1)∗.1 = (1.(1)∗)∗ = ((1)∗)∗ = 1 then (1)∗ = 1, thus for all n ∈ Z
(n+ 1)∗ = n∗ + 1∗ = n∗ + 1 and n∗ + (−n)∗ = (n− n)∗ = 0∗ = 0.

By induction, we prove that n∗ = n, then the only involution on Z is the identity
map.
2) We can extend the previous result even more, by considering the field of rationals
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Q = {p
q

∣∣∣ p ∈ Z, q ∈ Z∗}, for p ∈ Z

{
1 = (pp−1)∗ = (p−1)∗p∗

1 = (p−1p)∗ = p∗(p−1)∗

then (p∗)−1 = (p−1)∗, hence (pq−1)∗ = (q−1)∗p∗ = (q∗)−1p∗ = q−1p

thus for all r ∈ Q r∗ = r, which means that the only involution on Q is the identity
map.
3) Let’s consider the map

T : M2(R) −→M2(R)

A 7→ At

for M,N ∈M2(R) we can easily verify that
T (M +N) = T (M) + T (N).

T (MN) = T (N)T (M).

T (T (M)) = M.

Then T is an involution.
4) Let’s consider H = {a + ib + jc + kd | a, b, c, d ∈ R} the ring of quaternions,
the map ϕ : H −→ H such that ϕ(a+ ib+ jc+ kd) = a− ib− jc− kd

Let x, y ∈ H |

{
x = a+ ib+ jc+ kd

y = a′ + ib′ + jc′ + kd′

ϕ(x+ y) = ϕ((a+ a′) + i(b+ b′) + j(c+ c′) + k(d+ d′))

= (a+ a′)− i(b+ b′)− j(c+ c′)− k(d+ d′)

= ϕ(x) + ϕ(y),

ϕ(xy) = ϕ(aa′ + iab′ + jac′ + kad′ + iba′ + ibib′ + ibjc′ + ibkd′

+ jca′ + jcib′ + jcjc′ + jckd′ + kda′ + kdib′ + kdjc′ + kdkd′)

= ϕ([aa′ − bb′ − cc′ − dd′] + i[ab′ + ba′ + cd′ − dc′]
+ j[ac′ − bd′ + ca′ + db′] + k[ad′ + bc′ − cb′ + da′])

= (a′ − ib′ − jc′ − kd′)(a− ib− jc− kd)

= ϕ(y)ϕ(x),

ϕ(ϕ(x)) = x,

then ϕ is an involution.
5) From the previous example, it could come to one’s mind the conjugate property
on C the field of complex numbers

ϕ : C −→ C

z 7→ ϕ(z) = z = a+ ib = a− ib.
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6) Let’s consider the map

ϕ : D2(C) −→ D2(C)

A 7→ A =

(
a 0

0 b

)

let M,N ∈ D2(C) | M =

(
a 0

0 b

)
and N =

(
a′ 0

0 b′

)

ϕ(M +N) =

(
a+ a′ 0

0 b+ b′

)
=

(
a+ a′ 0

0 b+ b′

)
= ϕ(M) + ϕ(N),

ϕ(MN) =

(
aa′ 0

0 bb′

)
=

(
a′ a 0

0 b′ b

)
= ϕ(N)ϕ(M),

ϕ(ϕ(M)) = M,

then ϕ is an involution.
It is now obvious that every involution ∗ on a ringR, can be extended to an involution
on D2(C) ∗A : M = (mij)1≤i,j≤n 7→ (m∗ij)1≤i,j≤n.

7) Let’s consider a ring R, the opposite ring of R, noted R0 is another ring (with
the same elements) equipped with the multiplication ab = ba, the following map

∗ex : R×R0 −→ R×R0

(x, y) 7→ ∗ex(x, y) = (y, x)

is an involution called the exchange involution, indeed let (a, b), (a′, b′) ∈ R×R0

∗ex ((a, b) + (a′, b′)) = (b+ b′, a+ a′) = ∗ex(a, b) + ∗ex(a′, b′);
∗ex
(
(a, b).(a′, b′)

)
= (b.b′, a.a′) = ∗ex(a, b). ∗ex (a′, b′);

∗ex (∗ex(a, b)) = ∗ex(b, a) = (a, b).

Definition 1.4.2. The involution is said to be of the first kind if it leaves invariant
every element in Z(R)

(
i.e z∗ = z for all z ∈ Z(R)

)
, otherwise it is said to be of the

second kind.

Examples.
1) the conjugate of a complex number is an involution of the second kind, cause
Z(C) = C and generally z 6= z.

2) Similarly for ϕ : H −→ H with ϕ(a + ib + jc + kd) = a − ib − jc − kd is an
involution of the second kind.
3)
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T : M2(R) −→M2(R)

A 7→ At

as Dt = D, for all D ∈ Z(M2(R)), with Z(M2(R)) = {aI2 | a ∈ R}, (I2 denotes the
identity matrice), then T is an involution of the first kind.

Definition 1.4.3. An element x in a ring with involution (R, ∗) is said to be her-
mitian if x∗ = x and skew-hermitian if x∗ = −x (the set of all hermitian and
skew-hermitian elements of R will be denoted H(R) and S(R), respectively).

Definition 1.4.4. An element x is normal if xx∗ = x∗x, moreover If all element of
R are normal, then R is called a normal ring (or equivalently, ∗ is commuting).

Example.
M2(C) provided with the involution ∗ = t, is not a normal ring, indeed

let A ∈M2(C) such that A =

(
a b

c d

)

AAt =

(
a2 + b2 ac+ bd

ca+ db c2 + d2

)
6=

(
a2 + c2 ab+ cd

ba+ dc b2 + d2

)
= AtA.

Definition 1.4.5. Let R be a ring, and I1, I2, ... be an arbitrary chain of ideals in
R, such that I1 ⊇ I2 ⊇ ..., if there exists an N ∈ N such that In = IN ∀n ≥ N, then
R is said to satisfy the descending chain condition.

Definition 1.4.6. A left (resp. right) Artinian ring is a ring that satisfies the
descending chain condition on left (resp. right) ideals.

Examples.
1) Z is not Artinian, indeed, it is obvious that

bZ ⊆ aZ if and only if a/b
using this property and the fact that the integers are infinite, we will be able to
construct a chain without bottom, then Z doesn’t verify the descending chain con-
dition, thus Z is not Artinian.
2) Q being a field, then the only ideals of Q are {0} and Q, then Q satisfies the
descending chain condition, thus Q is an Artinian ring.
3) Consider the ring R = Q n Q the trivial extension endowed with the simple
addition, and the multiplication defined by (a, b)(c, d) = (ac, ad+ bc)

dimQR = 2, R is certainly Artinian ( R has only two proper ideals {0} × Q and
Q× {0}).
4) Let’s consider I = {0} ×Q the ideal of R in the last example.
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Let a, b ∈ Q, we have for every (0, a); (0, b) ∈ I (0, a)(0, b) = (0, 0) then I2 = 0.

On the other hand I is a ring such that every additive subgroup is an ideal, as Q has
infinitely ascending and descending subgroups then I doesn’t verify the descending
chain condition, then I is not Artinian.
5) Let’s consider the ring

R =

{(
a b

0 c

)∣∣∣ a ∈ Q; b, c ∈ R

}

Let’s also consider the subset of R

J =

{(
0 b

0 c

)∣∣∣ b, c ∈ R}

We claim that J is an ideal of R, indeed let x ∈ Q; y, z, b, c ∈ R(
x y

0 z

)(
0 b

0 c

)
=

(
0 xb+ yc

0 zc

)
∈ J ;

then RJ ⊆ J , thus J is a left ideal.(
0 b

0 c

)(
x y

0 z

)
=

(
0 zb

0 zc

)
∈ J ;

then JR ⊆ J , thus J is a two-sided ideal.
Let’s consider the following map ϕ : R −→ Q defined by{

ϕ(xe12) = x

ϕ(xeij) = 0 ∀eij 6= e12

(with eij stands for the matrix whose i, j entry is 1 and all other entries are 0).
Let M ∈ R, (ϕ(M) = 0⇒M ∈ J) then Ker(ϕ) = J.

On the other hand, let M,N ∈ R, with M =

(
a b

0 c

)
, N =

(
a′ b′

0 c′

)
.

For x, y, z ∈ Z, we have

ϕ(M +N) = a+ a′ = ϕ(M) + ϕ(N)

ϕ(MN) = aa′ = ϕ(M)ϕ(N)

ϕ(I2) = 1

ϕ being an R−morphism, then ϕ is an homomorphism, it follows by the first
theorem of isomorphism that R/J ∼= Q (note that for all q ∈ Q there exists
M ∈ R | Me12 = q).
Q being Artinian then R/J is also an Artinian ring.
But R is not Artinian, indeed, let’s pick any infinite descending chain of Q con-
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stituted with submodules Mi of R, we have Ki =

{(
0 b

0 c

)∣∣∣ b, c ∈Mi

}
form an

infinite chain of right ideals.

Proposition 1.4.1. A simple Artinian ring is an Artinian ring which has no two-
sided ideals other than itself and the zero ideal.

Lemma 1.4.1. Let R be a simple ring with unit element Suppose that R has a
minimal right ideal. then R is an Artinian ring.

Proof. Let I 6= 0 be a minimal right ideal of R. If x ∈ R, then it is immediate that
xI = 0 or xI is again a minimal right ideal of R. Since Ri 6= 0 is an ideal of R,
RI = R. Thus R is the sum of minimal right ideals Ii, where Ii = xiI for some
xi ∈ R. Since 1 ∈ R, 1 ∈ I1 + ... + In for some n; this yields that R = I1 + ... + In.

So R is the sum of a finite number of minimal right ideals, each of which is an
irreducible right R−module. Thus R, as an R−module, Thus R, as an R−module,
has a composition series. This proves that R is Artinian.

Lemma 1.4.2. If I is a minimal right ideal of a ring R, then either I2 = 0 or
I = eR (with e2 = e ∈ R).

Proof. Suppose I2 6= 0, and let a ∈ I such that aI 6= 0. As 0 6= aI ⊆ I and by using
the assumption of minimality of I, we then got aI = I. Then there exists an e ∈ I,
so that ae = a, as ae2 = (ae)e = ae = a then a(e2 − e) = 0. Let’s now consider
J := {i ∈ I | ai = 0}. J is a right ideal of R strictly contained by I (cause aI 6= 0),
the fact that I is a minimal right ideal forces J = 0. In particular e2 = e ∈ I. As
a 6= 0, we have e 6= 0 and 0 6= eR ⊆ I, which proves that eR = I.

Theorem 1.4.1. If R is a left (resp. right) Artinian ring, then rad(R) is the biggest
nilpotent left ideal (resp. the biggest nilpotent right ideal).

Proof. It is obvious that every nilpotent ideal is contained in rad(R), then we need
only to prove that rad(R) is nilpotent if R is an Artinian ring, indeed let J = rad(R).

by the DDC, there exists l ∈ N such that J l = J l+1 = ..., let’s show that J l = 0, if
J l 6= 0, let P be an ideal such that J lP 6= 0 and P is minimal.
Let a ∈ P such that J la 6= 0. then J l(J la) = J2la = J la 6= 0.

P being minimal then J la = P. In particular there exists y ∈ J l ⊆ rad(R) such
that a = ya. But as (1 − y) is invertible, then a = 0, contradiction, then rad(R) is
nilpotent.

Theorem 1.4.2. R is semi-simple if and only if R is a right (resp. left) Artinian
ring and rad(R) = {0} (i.e R is a right Artinian ring and semi-primitif).
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Proof.
⇒) Suppose that R is semi-simple, then R can be written as a sum of simple right
submodules of R, (i.e minimal right ideals) R = ⊕k∈KIk. As 1R ∈ R, it is obvious
that this is a finite sum RR = ⊕nk=1Ik. We are now dealing with the following
inclusions {0} ⊆ I1 ⊆ I1 ⊕ I2 ⊆ .... ⊆ R, then R is a right Artinian and Notherian
ring. By Theorem 1.4.1, J = rad(R) is nilpotent, R being semi-simple, then there
exists J ′ a right ideal such that R = J ⊕ J ′, then there exist u ∈ J and v ∈ J ′ that
verify 1 = u + v then u2 = u(1 − v) = u − vu but vu ∈ J ∩ J ′ = {0} then u2 = u.

J being nilpotent, we then conclude that u = 0 thus 1 = v ∈ J ′, hence J ′ = R and
J = 0.

⇐) Suppose that R is Artinian and rad(R) = {0}. By Theorem 1.4.1 R doesn’t
admit a nilpotent right ideal, Lemma 1.4.1 proves that if I is a minimal right ideal
then I2 = 0 or I = eR (with e2 = e ∈ R). We want to show that every right ideal
of R is a sum of minimal right ideals. If it doesn’t hold, then there exists at least
one right ideal of R that is not a sum of minimal right ideals, let S be the set of
such right ideals and 0 6= P ∈ S such that P is minimal in S, let I be a minimal
right ideal of R contained by P. Then I = eR with e2 = e ∈ I. Let I ′ = (1 − e)R
then R = eR⊕ I ′, as I ⊂ P then P = eR⊕ (I ′ ∩ P ). P being minimal forces I ′ ∩ P
to be a sum of minimal right ideals, but as P = I ⊕ (I ′ ∩ P ), then P is also a sum
of minimal right ideals, which is impossible cause P ∈ S, then every right ideal of
R is a sum of minimal right ideals which are simple right submodules, thus R is
semi-simple.

The next Corollary is an immediate result of Lemma 1.4.1.

Corollary 1.4.1. If I is a minimal left ideal of a semi rime ring R, then I = Re

(with e2 = e ∈ R).

Definition 1.4.7. A mapping f : R −→ R is commutativity preserving, if [f(x), f(y)] =

0 whenever [x, y] = 0 for all x, y ∈ R.

Examples.
1) Consider the map

T : M2(R) −→M2(R)

A 7→ At

Let M,N ∈M2(R) | [M,N ] = 0 then
[T (M), T (N)] = M tN t −N tM t

= (NM)t − (MN)t = (NM −MN)t = [N,M ]t = 0
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then [T (M), T (N)] = 0.

Hence T is commutativity preserving. (generally the transposition is commutativity
preserving).
2) Let’s consider the map

P : M2(R) −→M2(R)

A 7→ a1A+ a0I2 a0, a1 ∈ R

Let M,N ∈M2(R) | [M,N ] = 0 then

P (M)P (N) = a21MN + a1a0M + a0a1N + a20I2

= a21NM + a0a1(M +N) + a20I2 = P (N)P (M)

then P is commutativity preserving.
3) In a similar way, we can extend the previous result to any real polynomial map

Pn : M2(R) −→M2(R)

A 7→ anA
n + an−1A

n−1 + ...+ a1A+ a0I2 where a0, a1, ..., an−1, an ∈ R, n ∈ N

Pn is commutativity preserving.
4) Consider the map

ϕ : M2(C) −→M2(C)

A =

(
z1 z2

z3 z4

)
7→ A =

(
z1 z2

z3 z4

)

Let M,N ∈M2(C) | [M,N ] = 0

As for all z1, z2 ∈ C we got z1z2 = z1z2 then MN = MN thus

[ϕ(M), ϕ(N)] = MN −NM = MN −NM = MN −NM = 0

which means that ϕ is commutativity preserving (generally every involution is com-
mutativity preserving).

Definition 1.4.8. A mapping f : R −→ R is strong commutativity preserving
(SCP) on a subset S of R if [f(x), f(y)] = [x, y] for all x, y ∈ S.

Examples.
1) For

ϕ : M2(R) −→M2(R)

A 7→ A+ I2
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Let M,N ∈M2(R)

[ϕ(M), ϕ(N)] = (M + I2)(N + I2)− (N + I2)(M + I2)

= NM +M +N + I2 −NM −N −M − I2 = [M,N ]

then ϕ is strong comutativity preserving.
2)

F : M2(R) −→M2(R)

A 7→ At

F is not strong comutativity preserving.
3) Consider the map Consider the map

ϕ : M2(C) −→M2(C)

A =

(
z1 z2

z3 z4

)
7→ A =

(
z1 z2

z3 z4

)

is not strong comutativity preserving.

1.5 Properties on the extended centroid

We shall give a quick definition to the extended centroid, the next chapter will treat
this notion with more details .
Let R be a prime ring and let M be the set of all pairs (U, f) where U 6= 0 is an
ideal of R and f : U −→ R is a right R−module map of U into R.
We define an equivalence relation on M by declaring (U, f) ∼ (V, g) for (U, f), (V, g)

in M , if f = g on some ideal W 6= 0 of R where W ⊂ U ∩ V. R being a prime ring,
it is then trivial that this defines an equivalence relation on M (the general case
will be treated in what comes next).
Let Q be the set of equivalence classes of M . We denote the equivalence class of
(U, f) as

∼
f. We now propose to make of Q a ring, in fact a ring containing R, with

the next addition and multiplication :
if
∼
f = cl(U, f)

∼
g = cl(V, g) are in Q define

∼
f +

∼
g = cl(U ∩ V, f + g) and

∼
f
∼
g =

cl(V U, fg). It is straight-forward, making use of the primeness of R, to show that
Q is an associative ring with unit element relative to these operations.

Proposition 1.5.1. Let a ∈ R, if ∼a = 0 then aU = 0 for some ideal U 6= 0 of R.

Proof. Define λa : R −→ R by λa(x) = ax, clearly λa is a right R−module map
of R into itself. Let ∼a = cl(R, λa). if

∼
a = 0 then by definition of our equivalence
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relation, aU = 0 for some ideal U 6= 0 of R. By the primeness of R we conclude that
a = 0.

Thus the mapping R −→ Q given by a 7→ ∼
a is one to one. Since, clearly

∼
ab =

∼
a
∼
b,

we have that R is embedded isomorphically in Q. We consider R ⊂ Q.

A very important property that is enjoyed by R relative to Q in this embedding,
and one which falls from the very construction of Q, is :
If q(6= 0) ∈ Q then there exists an ideal U 6= 0 of R such that 0 6= qU ⊂ R.

In fact, since R is prime, if we have q1, ..., qn ∈ Q there is an ideal U 6= 0 of R such
that each 0 6= qiU ⊂ R.

Proposition 1.5.2. Q is prime.

Proof. Indeed if q1Qq2 = 0; q1, q2 ∈ Q then, if q1 6= 0, q2 6= 0, there is an ideal U of
R such that 0 6= q1U ⊂ R and 0 6= q2U ⊂ R. Hence (q1U)R(q2U) ⊂ q1Qq2U = 0.

This contradicts the primeness of R.

Let C = Z(Q), C consists clearly of all pairs cl(U, f) where f is an R−bimodule
map of U into R. Since Q is prime then C must be an integral domain. In fact, a
non-zero element of C cannot be a zero divisor in Q. Also, 1 ∈ C.

Lemma 1.5.1. C is a field.

Proof. Let c 6= 0 be in C, thus there exists an ideal U of R such that 0 6= cU ⊂ R.

However, since c commutes with all elements of Q, and so, with all element of R,
V = cU 6= 0 is an ideal of R. Consider the map f : V −→ R defined by f : cu 7→ u,

clearly f is a right R−module map of V into R. Let d = cl(V, f). By the definition
of d, dc = 1 since f(cu) = u, so (dc− 1)u = 0.

Definition 1.5.1. C is the extended centroid of R and S = RC is the central closure
of R.

It is immediate that S is prime. If R has a unit element, then C = Z(S). If R is
a simple ring with unit element, since the only non-zero ideal of R is R itself, we
quickly can verify that Q = S = R, that is, R is its own central closure.

Lemma 1.5.2. Suppose that ai, bi are non-zero elements in R such that
∑
aixbi = 0

for all x ∈ R, then the ai’s are linearly dependent over C, and the bi’s are linearly
dependent over C.

Proof. We show that the ai’s are linearly dependent over C. If not, there is a minimal
number n of elements a1, ..., an ∈ R that are linearly independent over C such that∑n

i=1 aixbi = 0 for all x ∈ R, where the bi’s are non-zero elements of R. Since R is
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prime, n > 1.

Suppose that xj, yj ∈ R are such that
∑n

i=1 xjbiyj = 0. If r ∈ R then

0 =
∑
j

a1rxjb1yj = −
n∑
i=2

air(
∑

xjbiyj)

since
∑n

i=1 airxjbi = 0. Since we have a shorter relation than n, we have that∑
xjbiyj = 0 for all i. Hence the map ϕi : Rb1R −→ R defined by ϕi(

∑
j xjb1yj) =∑

j xjbiyj is well-defined. It is trivial that ϕi is a module map of the ideal Rb1R
into R, hence ϕi gives us an element denoted also by ϕi in Q, it is trivial to verify
that ϕi is in fact in C. Moreover by its definition, ϕib1 = bi. Thus 0 =

∑
aixbi =∑

aixϕib1 = (
∑
ϕiai)xb1. By the primeness of S we get that

∑
ϕiai = 0; since the

ai are linearly independent over C, we must have ϕi = 0. But then, by the definition
of ϕi, RbiR = 0, giving us the contradiction bi = 0. This proves the lemma.

A very special case of the Lemma 1.5.2

Corollary 1.5.1. If a, b ∈ R, are such that axb = bxa for all x ∈ R, and a 6= 0,

then b = λa for some λ ∈ C.

Hint: For I = {1, 2} we got a1xb1 = −a2xb2,

we put

{
a1 = a ; a2 = −b
b1 = b ; b2 = a

then the identity axb = bxa verify the Lemma 1.5.2’s

assumptions, thus a1 and a2 are linearly dependent over C, and b1, b2 also, which
lead to b = λa for some λ ∈ C.

Theorem 1.5.1. Suppose that R is a prime ring and that a 6= 0 in R is such that
axaya = ayaxa for all x, y ∈ R. Then S = RC is a primitive ring with minimal
right ideal, and the commuting ring of S on this right ideal is merely C itself.

Proof. Fixing x in the relation (axa)ya − ayaxa = 0, applying the Corollary 1.5.1,
we obtain that axa = λ(x)a where λ(x) ∈ C, for every x ∈ R. Since S = RC, we
also have aya = λ(y)a for every y ∈ S, that is, aSa ⊂ Ca. Since S is prime, ay0a 6= 0

for some y0 ∈ S, thus ay0a = λa where λ 6= 0. if x0 = λ−1y0, then ax0a = a, hence
e = ax0 is an idempotent. Moreover, eSe = ax0Sax0 ⊂ Cax0 = Ce thus, by Lemma
1.5.1, eS is a minimal right ideal of S, and Ce is the commuting ring of S on eS,
because S is prime and has a minimal right ideal, S is primitive .

Corollary 1.5.2. Let R be a simple ring with unit, and suppose that for some a 6= 0

in R we have axaya = ayaxa for all x, y ∈ R. Then R is isomorphic to the ring of
all n× n matrices over a field.

Proof. As noted earlier, R = S since R is simple and has a unit element. By the
Theorem 1.5.1, R has a minimal right ideal; thus R is simple Artinian. Also, by
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the Theorem 1.5.1, the commuting ring of R on an irreducible module is C = Z(R)

itself, thus by Wedderburn’s Theorem, R is the ring of all n × n matrices over the
field C.
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Chapter 2

Commuting Maps

M. Brešar, Commuting Maps : A survey, Taiwanese Journal Of Mathematics,
September 2004.
M. Brešar, Introduction to Non commutative Algebra.

2.1 Introduction

The first important result on commuting maps is Posner’s theorem [30] from 1957.
This Theorem says that the existence of a nonzero commuting derivation on a prime
ring A implies that A is commutative. Considering this Theorem from some dis-
tance it is not entirely clear to us what was Posner’s motivation for proving it and
for which reasons he was able to conjecture that the theorem is true. In Section 2.3
we shall consider commuting derivations, (i.e the topic arising directly from Posner’s
Theorem).
In spite of the purley algebraic nature of the present topic, a part of the Section
2.3, will be devoted to derivations on Banach algebras, since this may give a better
insight on the meaning of the notion of a commuting map.
Already in [86] Singer and Wermer conjectured that the assumption of continuity is
superfluous in their Theorem. This became known as the Singer-Wermer conjecture
and it stood open for over thirty years till it was finally confirmed by Thomas [88].
A natural conjecture that now appears is that Sinclair’s theorem also holds with-
out assuming continuity, that is, that every (possibly discontinuous) derivation on
a Banach algebra A leaves primitive ideals of A invariant. This is usually called the
noncommutative Singer-Wermer conjecture in the literature. A number of mathe-
maticians have tried to prove it, but without success so far. It is known that for
every derivation d there can be only finitely many primitive ideals which are not
invariant under d, and each of them has finite codimension [87]. But it is not known
whether such ideals actually exist. The conjecture that Theorem 2.3.2 holds without
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assuming the continuity of d is equivalent to the noncommutative Singer-Wermer
conjecture. For details we refer the reader to Mathieu’s Survey Article [77] where
in particular one can find other different versions of this conjecture (see also [36] for
some new results). Various partial answers to this conjecture have been obtained.
For example, Mathieu and Runde [76] proved that every centralizing derivation of a
Banach algebra A has its range in rad(A). We shall prove this only for commuting
derivations; the argument in this particular case is somewhat different and more
direct.
More recently it has been found out that it is possible to characterize a commuting
map f without assuming how f acts on the product of elements (as in the case of
derivations), but assuming only the additivity of f (the theme of the Subsection
2.3.2). The initial results on such maps were obtained in the begining of the 90’s by
Brešar. Since then there has been a lot of activity on this subject. Important contri-
butions have been made by Ara, Banning, Beidar, Chebotar, Fong, P.-H. Lee, T.-K
Lee,Lin,Martindale, Mathieu, Miers, Mikhalev, Villena, Wang, Wong, and others.
The main reason for describing commuting traces of multiadditive maps is a wide
variety of applications. One of them is the solution of a long-standing open problem
by Herstein on Lie isomorphisms of associative rings (Subsection 2.3.4). Most of
them are connected with nonassociative (especially Lie) algebras. Commuting maps
also naturally appear in some linear preserver problems. This is another relevant
area of applications. We shall also briefly discuss various extensions of the notion of
a commuting map. The most general and important one among them is the notion
of a functional identity. An introductory account on functional identities is given
in [31], which however does not cover the most recent developments of this theory,
especially the powerful theory of d-free sets by Beidar and Chebotar [12, 13].
The concepts of a commuting map and a functional identity are intimately con-
nected. The theory of functional identities originated from the results on commut-
ing maps, and from another point of view, commuting maps give rise to the most
basic and important examples of functional identities. A similar interaction holds
with regard to applications : various problems can be solved at some basic level of
generality by using results on commuting maps, while in order to solve some more
sophisticated versions of these problems one has to apply deeper results on func-
tional identities.
The functional identities will not be examined in greater detail, in order to keep the
exposition at an introductory level and accessible to a wider audience.
In the next section, we shall introduce a new useful concept which is "The Extended
Centroid"
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2.2 Extended Centroid

Definition 2.2.1.
1) A nonzero unital ring R in which every nonzero element is invertible is called a
division ring.
2) a domain is a non zero ring in which ab = 0 implies a = 0 or b = 0,(Equivalently,
a domain is a ring in which 0 is the only left (or right) zero divisor).

Constructing the ring of central quotients QZ(R) :
We assume that R is any ring such that its center Z is nonzero and all elements in
Z\{0} are regular. In particular, Z is a commutative domain. We claim that the
relation ∼ on the set R× Z\{0} defined by

(r, z) ∼ (r′, z′) ⇐⇒ rz′ = r′z

is an equivalence relation. Only the transitivity is not entirely obvious. Thus,
assume that (r, z) ∼ (r′, z′) and (r′, z′) ∼ (r”, z”), i.e rz′ = r′z and r′z′′ = r”z′.
Then (rz” − r”z)z′ = r′zz” − r′z”z = 0, and so (r, z) ∼ (r”, z”) follows from the
regularity of z′. Let rz−1 denote the equivalence class of (r, z). Thus, rz−1 = r′z′−1

if and only if rz′ = r′z; in particular, rz(zw)−1 = rw−1. Let QZ(R) denote the set
of all equivalence classes, equipped with addition and multiplication defined by

rz−1 + sw−1 : = (rw + sz)(zw)−1

rz−1.sw−1 : = rs(zw)−1

To prove that these operations are well-defined, we must show that (r, z) ∼ (r′, z′)

and (s, w) ∼ (s′, w′) imply (rw + sz, zw) ∼ (r′w′ + s′z′, z′w′) and (rs, zw) ∼
(r′s′, z′w′). But this is straightforward. As one would expect, QZ(R) equipped
with these operations is a ring.

Definition 2.2.2. The ring QZ(R) is called the ring of central quotients of R.

Theorem 2.2.1. Let R be a ring such that its center Z is nonzero and all elements
in Z\{0} are regular. The ring QZ(R) has the following properties :
1) QZ(R) is a unital ring containing R as a subring.
2) Every element in Z\{0} is invertible in QZ(R).
3) Every element in QZ(R) is of the form rz−1, where r ∈ R and z ∈ Z\{0} .

Examples. If the center of a unital ring R is a field, then QZ(R) = R.
If R is a commutative domain, then QZ(R) is the field of quotients of R.

Definition 2.2.3. Let R be a ring and S be the set of all regular element in R.
A ring Q is called a Right classical ring of quotients of R if it has the following
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properties :
1) Q is a unital ring containing R as a subring.
2) Every element in S is invertible in Q.
3) Every element in Q is of the form rs−1, where r ∈ R and s ∈ S.

Example. Let R be any ring, for example a commutative domain,Mn(Z),

(
Z 2Z
Z Z

)
.

It is easy to verify that the ring of central quotients QZ(R) is also a right classical
ring of quotients of R. If every regular element in R is already invertible, then R is
its own right classical ring of quotients. Every finite dimensional unital algebra thus
has this property

Constructing the right Martindale ring of quotients Qr(R) :
Let R 6= 0 be a prime ring. The set J of all nonzero ideals of R is closed under
products, and hence also under finite intersections. We endow the set of all pairs
(f, I), where I ∈ J and f : I −→ R is a right R-module homomorphism, by the
following relation, which is readily seen to be equivalence: (f, I) ∼ (g, J) if f and
g coincide on some K ∈ J such that K ⊆ I ∩ J . Write [f, I] for the equivalence
class determined by (f, I), and denote by Qr(R) the set of all equivalence classes,
equipped with addition and multiplication

[f1, I1] + [f2, I2] = [f1 + f2, I1 ∩ I2], [f1, I1][f2, I2] = [f1f2, I2I1].

(Note that f1f2 is indeed defined on I2I1 since f2(I2I1) = f2(I2)I1 ⊆ I1 and then
f1f2(I2I1) = f1(f2(I2I1)) which makes sense). It is easy to verify that these opera-
tions are well-defined. Indeed, assume that (f1, I1) ∼ (g1, J1) and (f2, I2) ∼ (g2, J2),
i.e., there exist Ki ∈ J such that Ki ⊆ Ii ∩ Ji and fi = gi on Ki, i = 1, 2. Then
f1 + f2 = g1 + g2 on K1 ∩K2 ∈J and f1f2 = g1g2 on K2K1 ∈J .
Thus, ( f1 + f2, I1 ∩ I2) ∼ (g1 + g2, J1 ∩ J2) and (f1f2, I2I1) ∼ (g1g2, J2J1). One
immediately checks that Qr(R) is a ring with zero element [0, R] and unity [idR, R].

Definition 2.2.4. The ring Qr(R) is called the right Martindale ring of quotients
of R.
The Left Martindale ring of quotients Ql(R) is constructed analogously through the
left R-module homomorphisms. In general, Qr(R) � Ql(R).

Theorem 2.2.2. Let R 6= 0 be a prime ring, and let J be the set of all nonzero
ideals of R. The ring Qr(R) has the following properties :
1) Qr(R) is a unital ring containing R as a subring.
2) For every q ∈ Qr(R) there exists I ∈J such that qI ⊆ R.
3) For every q ∈ Qr(R) and I ∈J , qI = 0 implies q = 0.
4) If I ∈J and f : I −→ R is a right R-module homomorphism, then there exists
q ∈ Qr(R) such that f(x) = qx for all x ∈ I.
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2.2.1 The Extended Centroid

Throughout this section we assume that R is a nonzero prime ring.

Definition 2.2.5. The center of Qr(R) is called the extended centroid of R.

The extended centroid of R will be denoted by C. As usual, Z will stand for the
center of R, and, J will be the set of all nonzero ideals of R. We will continuously
refer to properties (1)-(4) of Theorem 2.2.2.

Lemma 2.2.1. If q ∈ Qr(R) is such that qr = rq for all r ∈ R, then q ∈ C.
Accordingly, Z is a subring of C.

Proof. Pick q′ ∈ Qr(R). We must show that [q, q′] = 0. By (2) there exists I ∈J

such that q′I ⊆ R. Take x ∈ I. Since q commutes with x and q′x, we have
qq′x = q′xq = q′qx. Thus, [q, q′]I = 0, and hence [q, q′] = 0 by (3).

If elements in Qr(R) correspond to right R-module homomorphisms, then elements
in C correspond to R-bimodule homomorphisms (these are maps that are both left
and right R-module homomorphisms).

Lemma 2.2.2. If f : I −→ R, where I ∈ J , is an R-bimodule homomorphism,
then there exists λ ∈ C such that f(x) = λx for all x ∈ I.

Proof. Since f is, in particular, a right R-module homomorphism, by (4) there exists
q ∈ Qr(R) such that f(x) = qx, x ∈ I. On the other hand, since f is also a left
R-module homomorphism it follows that q(rx) = r(qx) for all r ∈ R and x ∈ I.
That is, [q, r]I = 0, and so [q, r] = 0 by (3). Therefore λ := q ∈ C by Lemma
2.2.1.

Conversely, if λ ∈ C and I ∈ J are such that λI ⊆ R, then x 7→ λx is an R-
bimodule homomorphism from I into R. The extended centroid, although defined
through the right Martindale ring of quotients, is thus a left-right symmetric notion.

Remark 2.2.1. Suppose R is an algebra over a field F . Every α ∈ F gives rise
to the R-bimodule homomorphism x 7−→ αx from R into R. Using Lemma 2.2.2
one therefore easily infers that F embeds canonically in C. Accordingly, F can be
considered as a subfield of C.

2.3 Commuting maps

2.3.1 Commuting derivations

We start with some general remarks and assumptions.
By a noncommutative ring we mean an (associative) ring in which the multiplication
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is not commutative
We are primarily interested in noncommutative rings, usually the noncommutativity
will not be assumed, but most of our results are trivial in the commutative case.
Further, the existence of unity is not assumed in advance, so the assumption that
a ring is unital shall be explicitly mentioned. When speaking about a derivation of
an algebra we assume additionally that d is linear. A simple example is of course
the usual derivative on various algebras consisting of differentiable functions. Basic
examples in noncommutative rings are quite different. Noting that

[a, xy] = [a, x]y + x[a, y] for all a, x, y ∈ A
we see that for every fixed a ∈ A, the map d : x 7−→ [a, x] is a derivation. Such
maps are called inner derivations. In some rings and algebras the inner derivations
are in fact the only derivations.

Posner’s Theorem and its generalizations

We restate Posner’s Theorem already mentioned above as follows

Theorem 2.3.1. If d is a commuting derivation on a noncommutative prime ring,
then d = 0.

It should be mentioned that Posner in fact proved this theorem under the more
general condition that d satisfies [d(x), x] ∈ ZA, for every x ∈ A. Maps satisfying
this condition are usually called centralizing in the literature. It has turned out that
under rather mild assumptions a centralizing map is necessarily commuting (see for
example [26, Proposition 3.1]).
A typical example of a ring that is not prime is the direct product A = A1 × A2

of two nonzero rings A1 and A2. If A1 is a commutative ring having a nonzero
derivation d1 and A2 is a noncommutative ring, then A is a noncommutative ring
and d : (x1, x2) 7−→ (d1(x1), 0) is a nonzero commuting derivation on A. This is a
trivial example, but it explains well why the assumption of primeness is natural in
Theorem 2.3.1.

Proof. Linearizing [d(x), x] = 0 (i.e. replacing x by x+ y in this identity) we get
[d(x), y] = [x, d(y)] for all x, y ∈ A (2.1)

In particular
[d(x), yx] = [x, d(yx)] = [x, d(y)x+ yd(x)] for all x, y ∈ A. (2.2)

Since d(x) and x commute we have [d(x), yx] = [d(x), y]x. By (2.1) it follows that
[d(x), yx] = [x, d(y)]x, which is further equal to [x, d(y)x]. Therefore (2.2) reduces to
[x, yd(x)] = 0 for all x, y ∈ A . This can be rewritten as [x, y]d(x) = 0. Substituting
zy for y and using [x, zy] = [x, z]y + z[x, y] we then get [x, z]yd(x) = 0 for all
x, y, z ∈ A. Since A is prime it follows that for every x ∈ A we have either x ∈ ZA
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or d(x) = 0. In other words, A is the set-theoretic union of its additive subgroups
ZA and the kernel of d. However, since a group cannot be the union of its two proper
subgroups, and since A 6= ZA by assumption, it follows that d = 0.

Posner’s Theorem has been generalized by a number of authors in several ways. Let
us briefly describe some of them :
1) Derivations that are commuting on some additive subgroups of semi-prime
rings : Typical subgroups that one studies in this context are ideals, Lie ideals, one-
sided ideals, and the sets of all symmetric elements {x ∈ A | x? = x} and all skew
elements {x ∈ A | x? = −x}, (in the case the ring is equipped with an involution ?
[8, 21, 60, 65, 63]). The usual conclusion is that Posner’s Theorem remains true in
these more general situations, unless the ring is very special (say, its characteristic
is 2 or it satisfies some special polynomial identity).
2) Commuting automorphisms : In 1970 one of Divinsky’s results [43] has been
extended by Luh [67], by proving an analogue of Theorem 2.3.1 for automorphisms:
If α is a commuting automorphism on a noncommutative prime ring, then α = id.
We might think that treating a commuting automorphism α must be quite different
than treating a commuting derivation. However, note that ∆ = α − id is also
commuting and satisfies a condition similar to the derivation law :

∆(xy) = ∆(x)y + α(x)∆(y) = ∆(x)α(y) + x∆(y).

So in fact the treatment is quite similar and in particular the result of Luh can be
proved by just modifying the proof of Theorem 2.3.1.

Commuting Derivations in Banach Algebras

By a Banach algebra we shall mean a complex normed algebra A whose underlying
vector space is a Banach space. By rad(A) we denote the Jacobson radical of A.
It is easy to find examples of nonzero derivations on commutative rings and algebras.
Say, just take the usual derivative on the polynomial algebra C[X]. In the Banach
algebra context the situation is quite different. In 1955 Singer and Wermer proved
that every continuous derivation on a commutative Banach algebra A has its range
in rad(A). So in particular, it must be 0 when A is semisimple (i.e. when rad(A) =

0). Of course the same result does not hold in noncommutative Banach algebras
(because of inner derivations).
A non commutative extension of the Singer-Wermer Theorem proved by Sinclair
[85] :"Every continous derivation of a Banach algebra A leaves primitive ideals of A
invariant", (i.e d(P ) ⊆ P such that : P is a primitive ideal of A, and d a continous
derivation of A).
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Theorem 2.3.2. Let d be a continuous derivation of a Banach algebra A. If
[d(x), x] ∈ rad(A) for all x ∈ A, then d maps A into rad(A).

Proof. Let’s consider a primitive ideal P of A, by Sinclair’s Theorem d leaves prim-
itive ideals of A invariant (means d(P ) ⊆ P ) d induces a derivation

dp : A/P → A/P

x+ P 7→ dp(x+ P ) = d(x) + P .

First of all dp is well-defined, indeed
x = y ⇒ x− y = 0

⇒ x− y ∈ P
⇒ d(x− y) ∈ P
⇒ d(x− y) = 0

⇒ d(x− y) + P = 0

⇒ dp(x− y) = 0

⇒ dp(x) = dp(y)

dp is additive

dp(x+ y) = dp(x+ y) = d(x+ y) = d(x) + d(y) = dp(x) + dp(y).

Moreover

dp(x× y) = dp(x× y) = d(x× y) = d(x)× y + x× d(y) = dp(x)× y + x× dp(y).

Then dp is a derivation. Note that dp is commuting, indeed

dp(x)x = d(x)x = d(x)x = xd(x) = xd(x) = xdp(x).

Since A/P is a primitive and hence a prime algebra, Theorem 2.3.1 tells us that
either dp = 0 or A/P is commutative. However, since C is the only commutative
primitive Banach algebra, dp = 0 in every case then dp = 0 on A/P
⇒ d(x) + P = 0 for all x ∈ A.
⇒ d(A) ⊆ P for every primitive ideal P of A.
⇒ d(A) ⊆ rad(A).

For every subset S of A we let C(S) = {x ∈ A| [s, x] = 0 for every s ∈ S} denote
the centralizer of S in A (in the Banach algebra theory this set is more often called
the commutant). We shall write C(a) for C({a}).

Definition 2.3.1. Let A be a banach algebra, and a an element of A,
σ(a) = {λ ∈ A | a− λe is non invertible}

is the spectrum of a in A.

44



Definition 2.3.2. Let A be a banach algebra
Q = {q ∈ A | σ(q) = {0}}

is the set of all quasinilpotent elements in A, the radical of Jacobson can also be
defined by

rad(A) = {q ∈ A | qA ⊆ Q}

Theorem 2.3.3. Every commuting derivation of a Banach algebra A has its range
in rad(A).

Proof. Let d be a commuting derivation on A and let S be an arbitrary nonempty
subset of A. For every x ∈ C(S) we have

0 = d([s, x]) = d(sx)− d(xs) = d(s)x+ sd(x)− d(x)s− xd(s) = [d(s), x] + [s, d(x)].

On the other hand, from the linearized form of [d(x), x] = 0 we see that [d(s), x] =

[s, d(x)]. Accordingly [s, d(x)] = 0. That is to say, C(S) is invariant under d,
indeed as [s, x] = 0 for all s ∈ S and [s, d(x)] = 0 for all s ∈ S
implies x ∈ C(S) and d(x) ∈ C(S)

implies d(C(S)) ⊆ C(S) such that S is a non empty subset of A
For every a ∈ A, C(a) is a subset of A, (0 ∈ C(a); x, y ∈ C(a) implies x+ y ∈ C(a))
then d(C(C(a))) ⊆ C(C(a))

It is straight forward to verify that C(C(a)) is a commutative Banach algebra (In-
deed, by definition, C(C(a)) is a closed (= f−1({0}) with f : x 7→ [s, x]) commu-
tative subset of a Banach algebra A). Therfore, we can apply Thomas’s Theorem
[86] (mentioned in the first paragraph of the current subsection) for the restric-
tion of d to C(C(a)) and conclude that d(C(C(a))) ⊆ rad(C(C(a)). In particular,
d(C(C(a))) consists of quasinilpotent elements. Since a ∈ C(C(a)) we see that
d(a) is quasinilpotent. Let P be a primitive ideal of A. Since d(A) contains only
quasinilpotent elements in A, d(A)+P contains only quasinilpotent elements in A/P .
Therefore, for every p ∈ P and x ∈ A, we see that (d(p) +P )(x+P ) = d(px) +P is
a quasinilpotent element in A/P . By a well-known characterization of the radical it
follows that d(p) +P ∈ rad(A/P ). However, as a primitive algebra A/P is semisim-
ple, and so it follows that d(p) ∈ P . That is, every primitive ideal is invariant under
d, and now the same argument as in the proof of Theorem 2.3.2 works.

2.3.2 Commuting Additive Maps

Our aim now is to investigate arbitrary additive maps that are commuting. Since
derivations are just very special additive maps, this of course appears to be much
harder than before, which is not true, because the notion of a derivation will also play
an important role in the next. Indeed whenever we consider a condition involving
commutators, we can express it through "inner" derivations.

45



Let A be a ring and let f : A −→ A be an additive commuting map. A lineariza-
tion of [f(x), x] = 0 gives

[f(x), y] = [x, f(y)] for all x, y ∈ A. (2.3)
Hence we see that the map (x, y) 7−→ [f(x), y](= [x, f(y)]) is an inner derivation in
each argument. This gives rise to the following definition :

Definition 2.3.3. a biadditive map ∆ : A2 −→ A is called a biderivation on A if it
is a derivation in each argument, that is, for every y ∈ A the maps x 7−→ ∆(x, y)

and x 7−→ ∆(y, x) are derivations.

For example, for every λ ∈ ZA, (x, y) 7−→ λ[x, y] is a biderivation. We shall call such
maps inner biderivations. It is easy to construct non-inner biderivations on commu-
tative rings. For instance, if d is a nonzero derivation of a commutative domain A,
then ∆ : (x, y) 7−→ d(x)d(y) is a non-inner biderivation. In noncommutative rings,
however, it happens quite often that all biderivations are inner. If A is such a ring,
then every additive commuting map f on A is of the form

f(x) = λx+ µ(x), λ ∈ ZA, µ : A −→ ZA (2.4)
with µ being an additive map. Indeed, since (x, y) 7−→ [f(x), y] is a biderivation
it follows that there is λ ∈ ZA such that [f(x), y] = λ[x, y] for all x, y ∈ A, from
which it clearly follows that µ(x) = f(x) - λx lies in ZA. Thus, in order to show
that every commuting additive map on a ring A is of the form (2.4), it is enough to
show that every biderivation is inner. To establish this the following simple lemma
will be of crucial importance.

Lemma 2.3.1. Let ∆ be a biderivation on a ring A. Then
∆(x, y)z[u, v] = [x, y]z∆(u, v) for all u, v, x, y, z ∈ A. (2.5)

Proof. Consider ∆(xu, yv) for arbitrary u, v, x, y ∈ A. Since ∆ is a derivation in the
first argument, we have ∆(xu, yv) = ∆(x, yv)u + x∆(u, yv), and since it is also a
derivation in the second argument it follows that

∆(xu, yv) = ∆(x, y)vu+ y∆(x, v)u+ x∆(u, y)v + xy∆(u, v).

On the other hand, first using the derivation law in the second and after that in the
first argument we get
∆(xu, yv) = ∆(xu, y)v+y∆(xu, v) = ∆(x, y)uv+x∆(u, y)v+y∆(x, v)u+yx∆(u, v).

Comparing both relations we obtain
∆(x, y)[u, v] = [x, y]∆(u, v) for all u, v, x, y ∈ A.

Replacing v by zv and using [u, zv] = [u, z]v+z[u, v], ∆(u, zv) = ∆(u, z)v+z∆(u, v),
the desired identity follows.

The next result illustrates the utility of this Lemma.
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Theorem 2.3.4. Let A be a unital ring such that the ideal of A generated by all
commutators in A is equal to A. Then every biderivation on A is inner. Accordingly,
every commuting additive map f on A is of the form (2.4).

Proof. By assumption there are ui, vi, wi, zi ∈ A such that Σizi[ui, vi]wi = 1.
Lemma 2.3.1 implies that

∆(x, y) = Σi∆(x, y)zi[ui, vi]wi = Σi[x, y]zi∆(ui, vi)wi.

That is, ∆(x, y) = [x, y]λ for all x, y ∈ A where λ = Σizi∆(ui, vi)wi ∈ A.
We claim that λ ∈ ZA. Indeed, we have
[x, y]zλ+ y[x, z]λ = [x, yz]λ = ∆(x, yz) = ∆(x, y)z + y∆(x, z) = [x, y]λz + y[x, z]λ

showing that [x, y][z, λ] = 0 for all x, y, z ∈ A. Replacing z by zw and using
[zw, λ] = [z, λ]w+z[w, λ] we obtain [A,A]A[λ,A] = 0. Using Σizi[ui, vi]wi = 1 again
it follows that [λ,A] = 0, i.e. λ ∈ ZA.

Corollary 2.3.1. Let A be a simple unital ring. Then every commuting additive
map f on A is of the form (2.4).

The idea to describe commuting additive maps through the commutator ideal was
used for the first time in [26] where the main goal was to show that the conclusion
of Corollary 2.3.1 holds for Von Neumann algebras. Unfortunately, this idea has a
limited applicability, it works only in rather special rings. Before describing a more
common approach we point out the delicate nature of the problem. First of all, the
assumption that A is unital can not be removed in Corollary 2.3.1 Namely, taking
a simple ring A with ZA = 0 we see that, for instance, the identity map is certainly
commuting, but it cannot be expressed by (2.4). But suppose that A is unital, and
even that ZA is a field. Is it possible to prove Corollary 2.3.1 for some more general
classes of rings? The following example shows that even for rings that are close to
simple ones the expected form (2.4) is not entirely sufficient.

Example. Let V be an infinite dimensional vector space over a field E and let F(V )

be the algebra of all finite rank E-linear operators on V . Note that F (V ) is a simple
algebra with ZF(V ) = 0. Let F be a proper subfield of E, and let A be the algebra
over F consisting of all operators of the form u+α where u ∈ F(V ) and α ∈ F (here
elements in F are identified by corresponding scalar operators). Pick λ ∈ E/F and
define f : A −→ A by f(u + α) = λu for all u ∈ F(V ), α ∈ F . Clearly f is an
additive commuting map. However, since ZA = F it is clear that f is not of the
form 2.4. On the other hand, f can be written as f(x) = λx + µ(x) for all x ∈ A
where µ is defined by µ(u + α) = −λα. But here λ and µ(x) do not lie in ZA but
in the field extension E of ZA. Similarly, δ : (x, y) 7→ λ[x, y] is a biderivation on A
which is not inner in the sense defined above.
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We may feel that the map f is essentially of the form (2.4), just formally this is
not true. The example suggests that in order to describe commuting maps it will
sometimes be necessary to deal with some extensions of the center of the ring. In
the context of semi-prime rings, the so-called extended centroid. We shall now recall
just a few facts about it, and refer the reader to [14] for details. Let I be a nonzero
ideal of A. One can regard I and A as (A,A)-bimodules. If f : I −→ A is an
(A,A)-bimodule homomorphism then there exists λ ∈ CA such that f(x) = λx for
all x ∈ I. Conversely, giving λ ∈ CA there is a nonzero ideal I of A such that λI ⊆ A

and so x 7→ λx is a bimodule homomorphism from I into A. It turns out that CA
is a field containing ZA as a subring. In many important instances CA coincides
with ZA. In particular this is true in simple unital rings. Incidentally we mention
that it is also true in various significant Banach algebras (e.g. in unital primitive
Banach algebras and unital prime C?-algebras) which often makes this algebraic
theory applicable in the analytic setting. If ZA is not a field then of course it cannot
coincide with CA. But in such case it sometimes turns out (e.g. in PI prime rings)
that CA is the field of fractions of ZA. In general, however, CA can be larger.
In view of the example and Corollary 2.3.1 it seems natural that

f(x) = λx+ µ(x), λ ∈ CA, µ : A −→ CA (2.6)
is the expected form of a commuting additive map on a prime ring A, to show this
we only need a property of the extended centroid, discovered by Martindale [75] :
Let a, b ∈ A such that

axb = bxa ∀x ∈ A, if a 6= 0 then there exists λ ∈ CA| b = λa (2.7)
The idea of the proof goes back to Amitsur [5, p. 215]. We define ϕ : AaA −→ A

by ϕ(Σixiayi) = Σixibyi and claim that ϕ is an (A,A)-bimodule homomorphism.
First of all let’s show that ϕ is well-defined, assume that Σixiayi = 0 for some xi, yi ∈
A. Multiplying this identity from the left by bx and using the Martindale property
of the extended centroid (2.7), it follows that Σiaxxibyi = 0 for every x ∈ A. That
is, aA(Σixibyi) = 0 and hence, since A is prime ϕ(Σixiayi) = Σixibyi = 0, it follows
that there is λ ∈ CA such that ϕ(u) = λu ∀u ∈ AaA, from which b = λa follows.
Now assume that A is a noncommutative prime ring and ∆ is a biderivation on A.
Picking u, v ∈ A such that [u, v] 6= 0 and applying (2.5) with x = u, y = v, it follows
from what we have just discussed that ∆(u, v) = λ[u, v] for some λ ∈ CA. Again us-
ing (2.5), this time in its full generality, it follows that (∆(x, y)−λ[x, y])A[u, v] = 0.
Consequently, the following is true.

Theorem 2.3.5. Let A be a noncommutative prime ring and let ∆ be a biderivation
on A. Then there exists λ ∈ CA such that ∆(x, y) = λ[x, y] for all x, y ∈ A.

Our interest in biderivations proceeds from their connection with commuting addi-
tive maps. Note that Theorem 2.3.5 yields the following basic result.
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Theorem 2.3.6. Let A be a prime ring. Then every commuting additive map f on
A is of the form (2.6).

The original proof also makes use of derivations [27].
The next example will be used to show that not every additive commuting maps (of
the so-called triangular algebra) is of the form (2.4).
If an additive map f on a semi-prime ring A is commuting (in other words, f(x) ∈
C(x) for every x ∈ A, then f(x) ∈ C(C(x)) for every x ∈ A). Let us show that this
is not true in every ring.

Example. Let T be a ring containing an element a such that the ideal U of T
generated by a is commutative and t1at2 6= t2at1 for some t1, t2 ∈ T , a concrete
example is the ring of all 2× 2 upper triangular matrices over a field and

a =

(
0 1

0 0

)
. Further, let A be the algebra of all matrices of the form

(
u t

0 v

)
,

where u, v ∈ U , and t ∈ T . Define
f : A −→ A(

u t

0 v

)
7−→

(
ta 0

0 at

)

(If one prefers the context of unital rings, then one can adjoin 1 to A and de-
fine f(1) = 0). Note that f is commuting. However, it is not true that f(x) ∈

C(C(x)) for every x ∈ A. Namely, the element x =

(
0 t1

0 0

)
commutes with

y =

(
0 t2

0 0

)
, but f(x) and y do not commute.

2.3.3 Commuting Traces of Multiadditve Maps

Passing from the study of commuting derivations to the study of arbitrary additive
commuting maps has been of course an important step. We shall now take a step
further.
We start with a fundamental topic, treated for the first time in the author’s paper
[15] from 1993.

Definition 2.3.4. A map q from a ring A into itself is said to be the trace of a
biadditive map if there exists a biadditive map B : A× A −→ A such that
q(x) = B(x, x) for all x ∈ A, (another name is a quadratic map).

Theorem 2.3.7. Let A be a prime ring with char(A) 6= 2 and let q : A −→ A be
the trace of a biadditive map. If q is commuting then it is of the form

q(x) = λx2 + µ(x)x+ ν(x), λ ∈ CA, µ, ν : A −→ CA (2.8)
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where µ is an additive map and ν is the trace of a biadditive map into CA.

Proof. There exist many different proof, but we prefer to follow the original one
from [28].
We have assumed that char(A) 6= 2. Using a standard linearization process we see
that [B(x, x), x] = 0, x ∈ A, yields [B(x, y), z] + [B(z, x), y] + [B(y, z), x] = 0 for
all x, y, z ∈ A. So again inner derivations appear, but the situation is much more
unclear than in the case of additive maps when we arrive, after a linearization, at
a rather tractable situation with a biderivation. We have to take a step further
and show that for any fixed z, w ∈ A the map B̃ : A × A −→ A defined by
B̃(x, y) = [B(x, zw), y] + z[y,B(x,w)] + [y,B(x, z)]w satisfies B̃(x, y) = −B̃(y, x)

for all x, y ∈ A. By the definition we see that the map y 7→ B̃(x, y) is the sum of
compositions of inner derivations and multiplications with fixed elements z and w,
and from the last identity we see that the same is true for the map y 7→ B̃(y, x).
This is of course still much more complicated than in the biderivation situation, but
at least there is some similarity. Based on these observations one can after a rather
long computation involving several substitutions derive the crucial identity

([w2, z]y[w, z]− [w, z]y[w2, z])uq(x) = f(w, y, z)ux2 + g(x,w, y, z)ux+ h(x,w, y, z)u

(2.9)
for all u, w, x, y, z ∈ A where f, g, h are certain maps arising from B (we could
express them explicitly but their role is insignificant in the sequel). Now we have to
assume that a = [w2, z]y[w, z] − [w, z]y[w2, z] 6= 0 for some w, y, z ∈ A. Rewriting
(2.9) with w, z, y fixed we have

auq(x) = bux2 + g̃(x)ux+ h̃(x)u for all u, x ∈ A (2.10)

and some g̃, h̃ : A −→ A. So far the assumption on primeness has not been used.
The relation (2.10) makes it possible for us to use it in an efficient way. Again
the clue is Martindale’s result concerning the extended centroid propriety (2.7) .
Making some manipulations with (2.10) one can show that (bva − avb)Aa = 0 for
all v ∈ A, hence bva = avb by the primeness of A, which yields b = λa for some
λ ∈ CA. Accordingly, (2.10) can now be written as au(q(x)−λx2) = g̃(x)ux+ h̃(x)u.
This is the same kind of relation as (2.10), just that the first summand on the right-
hand side is missing. Repeating the same computational tricks one can then easily
complete the proof.

Of course this was done under the additional condition that [w2, z]y[w, z]−[w, z]y[w2, z] 6=
0 for some w, y, z ∈ A. It is known by standard PI theory that this condition is not
fulfilled if and only if A satisfies St4: the Standard polynomial identity of degree 4,
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i.e.

Σσ∈S4 (−1)σxσ(1)xσ(2)xσ(3)xσ(4) = 0 for all x1, x2, x3, x4 ∈ A

Definition 2.3.5. A map t from an additive group X into an additive group Y is
called the trace of an n-additive map if there exists a map M : Xn −→ Y which is
additive in every argument and such that t(x) = M(x, x, ..., x) for all x ∈ X.

Definition 2.3.6. Let A be a ring
1) An element a of A is said to be algebraic of degree m, if it is the root of a
polynomial of degree m.
2) If every element in A is algebraic of degree at most m over CA, then deg(A) ≤ m.

Theorem 2.3.8. Let A be a prime ring, let n be a positive integer, and suppose that
char(A) = 0 or char(A) > n. Let t : A −→ A be the trace of an n-additive map. If
t is commuting then the following holds:
1) For every x ∈ A there exist λi(x) ∈ CA, i = 0, 1, ..., n, such that
t(x) = λ0(x)xn + λ1(x)xn−1 + ...+ λn−1(x)x+ λn(x),

2) If deg(A) � n, then we can choose λi(x) so that λ0 = λ0(x) is independent of x
and for each i = 1, ..., n the map x 7−→ λi(x) is the trace of an i-additive map into
CA.

There has been a considerable interest in commuting traces of multiadditive maps
in rings with involution. The first result in this context was obtained by Beidar,
Martindale and Mikhalev [16], who considered commuting traces of 3-additive maps
on the Lie subring K of skew elements of a (non-GPI and centrally closed) prime
ring with involution.

Theorem 2.3.9. Let A be a prime ring with involution, and let X be either the set
of all symmetric or the set of all skew elements in A. Let n be a positive integer and
suppose that deg(A) � 2(n+ 1) and char(A) = 0 or char(A) > n (and char(A) 6= 2

if n = 1). Let t : X −→ A be the trace of an n-additive map. If t is commuting then
there exist λ0 ∈ CA and traces of i-additive maps λi : X −→ CA, i = 1, ..., n such
that t(x) = λ0(x)xn + λ1(x)xn−1 + ...+ λn−1(x)x+ λn(x) for all x ∈ X.

2.3.4 Applications

The result on commuting traces of biadditive maps, which has been discussed before,
particularly stimulated the further development of the theory because of various
applications that were found already in [28]. Before encountering some specific
topics we point out a different aspect from which the condition treated in this result
may be viewed. Let A be a ring. A biadditive map from A2 into A can be regarded
as another multiplication (x, y) 7−→ x ? y on A under which the additive group of A
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becomes a nonassociative ring. The condition that the trace of this biadditive map
is commuting, i.e.

(x ? x)x = x(x ? x) for all x ∈ A. (2.11)
Thus means that the square (with respect to the new multiplication) of each element
in A commutes (with respect to the original multiplication) with this element. This
point of view indicates why several applications lie in the meeting place of the
associative and the nonassociative algebra.

Lie Isomorphisms

Let A be a ring. If we replace the original product by the Lie product [x, y] = xy−yx,
the additive group of A becomes a Lie ring. If char(A) = 2, then the Lie product
coincides with the Jordan product x ◦ y = xy + yx which makes the treatment of
these notions rather muddled. We shall therefore usually assume that our rings have
characteristic different from 2.

Definition 2.3.7. An additive subgroup of A closed under the Lie product is called
a Lie subring of A.
Let L′ be a Lie subring of the ring A′ and let L be a Lie subring of the ring A. A
bijective additive map θ : L′ −→ L is called a Lie isomorphism if

θ([u, v]) = [θ(u), θ(v)] for all u, v ∈ L′,
that is, θ is an isomorphism between Lie rings L′ and L.

In his 1961 AMS Hour Talk [49] Herstein formulated several conjectures on various
"Lie type" maps in associative rings. he conjectured that these maps arise from
appropriate "associative" maps, so for example that Lie isomorphisms can be ex-
pressed through anti-isomorphisms between A′ and A. There have been numerous
publications by several mathematicians on Herstein’s conjectures, but we mention
Martindale as a major force in this program. Until the 90’s all solutions had been
obtained under the assumption that the rings contain some nontrivial idempotents
(see e.g. Martindale’s survey [69] from 1976). We also mention that similar prob-
lems have also been considered in operator algebras [9, 41] where idempotents also
play an important role. Generally, there are many important rings that contain
nontrivial idempotents, but there are also many that do not (say, domains and in
particular division rings). The problem whether the assumptions on idempotents
can be removed in the results of Martindale and others was open for a long time.
Rather recently it was finally solved by making use of commuting maps and more
general functional identities. The great advantage of this approach is that it is inde-
pendent of some local properties of rings; say, the existence of some special elements
such as idempotents is irrelevant. We first consider the simplest case when L′ = A′

and L = A. Isomorphisms between A′ and A are of course also Lie isomorphisms.
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Other basic examples are maps of the form θ = −ϕ where ϕ is an anti-isomorphism.
Moreover, if a map τ : A′ −→ ZA vanishes on commutators then θ + τ also pre-
serves the Lie product for every Lie isomorphism τ . Thus, a typical example of
a Lie isomorphism θ : A′ −→ ZA is θ = ϕ + τ where ϕ is either an isomorphism
or the negative of an anti-isomorphism and τ is a central additive map such that
τ([A′, A′]) = 0. It has been known for a long time that in the fundamental case
when A′ = A = Mn(F ) with F a field these are also the only possible examples of
Lie isomorphisms.
In 1951 Hua [54] generalized this by proving that the same is true if A′ = A = Mn(D)

where n ≥ 3 and D is a division ring. Herstein [49] conjectured that this should
be true in all simple and perhaps even prime rings. This problem was studied by
Martindale in [70, 72, 71, 68]. The culminating result of this series of papers is that
a Lie isomorphism θ between unital prime rings A′ and A is of the expected form
θ = ϕ + τ , provided, however, that A contains an idempotent e /∈ {0, 1}. Here, τ
does not necessarily map into the center Z(A) but into the extended centroid CA,
and the range of ϕ lies in the so-called central closure AC of A, that is, the subring
of the right (or left, or symmetric) Martindale ring of quotients of A generated by
A and CA. An example in [70] shows that the range of ϕ need not be contained
in A. In fact, it was the Lie isomorphism problem which motivated Martindale to
introduce the concept of the extended centroid.
The next theorem represents a generalization of Martindale’s Theorem, giving the
complete solution of Herstein’s conjecture.

Theorem 2.3.10. Let A′ and A be noncommutative prime rings of characteristic
not 2. Then every Lie isomorphism θ of A′ onto A is of the form θ = ϕ+ τ , where
ϕ is either an isomorphism or the negative of an anti-isomorphism of A′ onto the
subring of AC, and τ is an additive map of A′ into CA sending commutators to 0.

The main idea of the proof can be easily described. Every element commutes with
its square and so θ satisfies [θ(u2), θ(u)] = 0 for every u ∈ A′. Setting x = θ(u) we
can rewrite this as [q(x), x] = 0 for all x ∈ A, where q : x 7→ θ(θ−1(x)2) that is,
q is a commuting map and clearly it is the trace of a biadditive map B : (x, y) 7→
θ(θ−1(x)θ−1(y)). So we are in a position to apply Theorem 3.4.1. Hence there are
λ ∈ CA and µ, ν : A −→ CA with µ additive such that

q(x) = λx2 + µ(x)x+ ν(x) for all x ∈ A.

Setting η = µθ : A′ −→ CA and writing u for θ−1(x) it follows that

θ(u2)− λθ(u)2 − η(u)θ(u) ∈ CA for all u ∈ A′.

So we now have some control concerning the action of θ on squares, and hence
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(linearization) also on the Jordan product; by the initial assumption we know how
θ acts on the Lie product and so it should not be of surprise anymore that we are
able to describe the action of θ on the original product xy = 1

2
([x, y] + x ◦ y). We

have to divide the proof by considering separately two cases, the one that none of A′

and A satisfies St4, and another one when one of them does satisfy St4. In the first
case (cf. [28]) we define ϕ : A′ −→ AC by ϕ(u) = λθ(u) + 1

2
η(u) and then prove that

either λ = 1 and ϕ is an isomorphism or λ = −1 and ϕ is an anti-isomorphism. The
argument in the second case is somewhat shorter (cf. [29]). Assume, for example,
that A satisfies St4, that is, deg(A) ≤ 2. Then for every u ∈ A′ there is ρ ∈ CA such
that θ(u)2 − ρ(u)θ(u) ∈ CA. Moreover, one can show that ρ(u) can be chosen so
that the map u 7→ ρ(u) is additive. Without loss of generality we may assume that
λ = 0. We define ϕ : A′ −→ AC , ϕ(u) = θ(u)− 1

2
(ρ(u)− ν(u)) and then prove that

ϕ is an isomorphism (anti-isomorphisms do not appear in the St4 case, since in this
very special situation they can be expressed by isomorphisms and central maps).
Theorem 2.3.10 settles only the simplest one among Herstein’s conjectures on Lie
isomorphisms between Lie subrings of associative rings. Let us consider another
important case when A′ and A are rings with involution and L′ = K ′ and L = K

are their Lie subrings of skew elements. This problem is considerably more difficult,
in particular since in certain finite dimensional algebras there are counter examples
to the expected and usual conclusion ([73] pp. 942-943). We shall assume that A′

and A are prime rings and that involutions are of the first kind, meaning that they
are linear over the extended centroid (see ([14], Section 9.1) for a more detailed
explanation, we also mention that an involution is said to be of the second kind if it
is not of the first kind). This problem was considered in the 70’s by Martindale for
rings containing idempotents [73, 74]. The approach avoiding idempotents is based
on the observation that the cube of every skew element is skew again, and so a Lie
isomorphism θ : K ′ −→ K satisfies [θ(l3), θ(l)] = 0 for all l ∈ K ′. Note that this can
be interpreted as

[t(k), k] = 0 for all k ∈ K, where t : k 7−→ θ(θ−1(k)3)

thus, t is a commuting trace of a 3-additive map on K, and so Theorem 2.3.9 can
be applied. This approach was used by Beidar, Martindale and Mikhalev in [13].
Actually Theorem 2.3.9 did not yet exist in this form at that time, so they had to
consider commuting traces of 3-additive maps on K first. Their work was continued
in [11] and [40]. In the result that we are now going to state we shall also take into
account a technical improvement of their result obtained by Chebotar [40] who also
gave a shorter proof.

Theorem 2.3.11. Let A′ and A be prime rings with involutions of the first kind and
of characteristic not 2. Let K ′ and K denote respectively the skew elements of A′
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and A. Assume that the dimension of the central closure of A′ over C ′A s different
from 1, 4, 9, 16, 25 and 64. Then any Lie isomorphism θ of K ′ onto K can be
extended uniquely to an associative isomorphism of 〈K ′〉 onto 〈K〉, the associative
subrings generated by K ′ and K respectively.
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Chapter 3

Centralizing mappings and
derivations in prime rings

M. Brešar, Centralizing mappings and derivations in prime rings, J. Algebra 156,
385-394 (1993).

3.1 Introduction

The classical result of Posner [84] states that the existence of a nonzero centralizing
derivation on a prime ring forces the ring to be commutative , Mayne [78] proved the
analogus result for centralizing automorphisms, A number of authors have extended
these Theorems of (Posner and Mayne) in several ways [22, 53, 79, 80].
In this chapter, it has been shown that some concrete additive mappings (such as
derivations, endomorphisms, ... etc) cannot be centralizing on certain subsets of
noncommutative prime (and some other) rings. The main purpose of this paper is
to describe the structure of an arbitrary additive mapping which is centralizing on
a prime ring. The result we shall prove is :

Theorem A.
Let R be a prime ring. Suppose an additive mapping F of R into itself is centralizing
on R, if either R has a characteristic different from 2 or F is commuting on R, then
F is of the form F (x) = λx+ ξ(x), x ∈ R where λ is an element from the extended
centroid C of R and ξ is an additive mapping of R into C.

The proof depends on a result, which gives a description of derivations D, G and H
of a prime ring R, satisfying D(x) = aG(x) +H(x)b, x ∈ R where a and b are some
(fixed) element in R.
Our next aim is to initiate the study of a more general concept than centralizing
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mapping are; that is, we consider the situation when the mapping F and G of a ring
R satisfy F (s)s− sG(s) ∈ Z for all s in some subset S of R.

Definition 3.1.1. A mapping F of a ring R is said to be skew-centralizing on a
subset S of R if F (s)s+ sF (s) ∈ Z for all s ∈ S.

Following the most convenient way in the study of centralizing mappings, we consider
the case when F and G are derivations, The goal of this section is to prove :

Theorem B.
Let R be a prime ring and U be a nonzero left ideal of R. Suppose derivations D and
G of R satisfy D(u)u− uG(u) ∈ Z for all u ∈ U, If D 6= 0 then R is commutative.

Several authors [53, 81] have shown that if a prime ring R admits a nonzero deriva-
tion which is centralizing on some nonzero two-sided ideal U of R, then R is commu-
tative, Bell and Martindale established this result under weaker hypothesis that (U
is one-sided ideal [22, Theorem. 4]), Theorem B is, of course, yet more general, it
generalizes a result in [53] asserting that the existence of a nonzero derivation which
is skew-centralizing on some nonzero two-sided in a prime ring implies that the ring
is commutative.
Theorem B has also been inspired by the following observation :
Let f be a generalized inner derivation of a ring R (i.e f(x) = ax + xb for some
a, b in R), note that the condition that f is centralizing on a subset S of R can be
written in the form [a, s]s− s[s, b] ∈ Z for all s in S. Thus introducing inner deriva-
tions D and G by D(x) = [a, x] and G(x) = [x, b] we obtain the same condition as
in Theorem B, i.e D(s)s − sG(s) ∈ Z for all s ∈ S. Generalized inner derivations
are extensively studied on operator algebras. Therefore, it might be interesting to
investigate these mappings from an algebraical point of view.
We shall make some use of the following well-known results :

Remark 3.1.1. Let R be a prime ring.
1) The nonzero elements from Z are not zero divisors.
2) If D is a nonzero derivation of R then D does not vanish on a nonzero left ideal
of R.
3) If R contains a commutative nonzero left ideal, then R is commutative.
4) Let c and ac be in the center of R, If c is not zero, then a is in the center of R.
5) [52, 1.1] R has no nonzero nil left ideals of bounded index.
6) If a, b ∈ R are such that axb = bxa for all x ∈ R, and if a 6= 0 then b = λa for
some λ in the extended centroid C of R.
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3.2 The Identity d(x) = ag(x) + h(x)b

The main purpose of this section is to prove the following theorem

Theorem 3.2.1. Let R be a prime ring, and let d, g, h be derivations of R. Suppose
there exist a, b ∈ R such that

d(x) = ag(x) + h(x)b, for all x ∈ R. (3.1)
If a /∈ Z and b /∈ Z, then there exists λ ∈ C such that

d(x) = [λab, x], g(x) = [λb, x] and h(x) = [λa, x] for all x ∈ R.
For the proof of Theorem 3.2.1 we need two lemmas which are of independent
interest.

Lemma 3.2.1. Let R be a prime ring, and let d, g be derivations of R. Suppose
that d(x)g(y) = g(x)d(y), for all x, y ∈ R. (3.2)

If d 6= 0 then there exist λ ∈ C such that g(x) = λd(x) for all x ∈ R.

Proof. Replacing y by yz in (3.2), we get
d(x)g(y)z + d(x)yg(z) = g(x)d(y)z + g(x)yd(z) for all x, y, z ∈ R.

According to (3.2) this relation reduces to
d(x)yg(z) = g(x)yd(z) for all x, y, z ∈ R. (3.3)

In particular d(x)yg(x) = g(x)yd(x) for all x, y ∈ R.
Hence if d 6= 0, using Remark 3.1.1, (6). We then have that

g(x) = λ(x)d(x) for some λ(x) ∈ C.
Thus if d(x) 6= 0 and d(z) 6= 0, then it follows from (3.3)

(λ(x)− λ(z))d(x)yd(z) = 0 for all y ∈ R.
Since R is prime this relation implies that λ(x) = λ(z), thus we have proved that
there exist λ ∈ C such that the relation g(x) = λd(x) holds for all x ∈ R with the
property d(x) 6= 0.
On the other hand, if d(x) = 0 then we see from (3.3), since d 6= 0 and R is prime,
that g(x) = 0 as well, thus g(x) = λd(x), for all x ∈ R.

Lemma 3.2.2. Let R be a prime ring, and let d, f, g and h be derivations of R.
Suppose that d(x)g(y) = h(x)f(y) for all x, y ∈ R. (3.4)

If d 6= 0 and f 6= 0, then there exists λ ∈ C such that
g(x) = λf(x) and h(x) = λd(x) for all x, y ∈ R.

Proof. Taking y = zy in (3.4), we obtain
d(x)g(z)y + d(x)zg(y) = h(x)f(z)y + h(x)zf(y).

Applying (3.4), we then get
d(x)zg(y) = h(x)zf(y), for all x, y, z ∈ R. (3.5)

Letting z = zf(w) in (3.5), we get
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d(x)zf(w)g(y)
(F)
= h(x)zf(w)f(y), for all x, y, z ∈ R.

By (3.5), d(x)zg(w) = h(x)zf(w) and so
(F) implies d(x)z[f(w)g(y)− g(w)f(y)] = 0, for all x, y, z ∈ R.
Since d 6= 0 and R is prime,this relation implies

f(w)g(y) = g(w)f(y), for all w, y ∈ R.
Hence it follows from Lemma 3.2.1 that

g(y) = λf(y) for all y ∈ R, where λ ∈ C.
Hence (3.5) becomes d(x)zλf(y) = h(x)zf(y).

Thus (λd(x)− h(x))zf(y) = 0, for all x, y, z ∈ R.
Consequently h(x) = λd(x), for all x ∈ R.

proof of Theorem 3.2.1.
According to (3.1) we have
ag(x)y + h(x)by + xag(y) + xh(y)b = d(x)y + xd(y) = d(xy)

= ag(xy) + h(xy)b

= ag(x)y + axg(y) + h(x)yb+ xh(y)b.

Hence [a, x]g(y) = h(x)[b, y], for all x, y ∈ R.
By Lemma 3.2.2, there exists λ ∈ C such that

h(x) = [λa, x] and g(x) = [λb, x] for all x ∈ R.
Hence (3.1) yields d(x) = [λab, x], for all x ∈ R.

�

In [47], Herstein proved the following result :
If a derivation d 6= 0 of a prime ring R, and an element a /∈ Z are such that

[a, d(x)] = 0 for all x ∈ R.
Then R has a characteristic 2, a2 ∈ Z and

d(x) = [λa, x] where λ ∈ C, for all x ∈ R.
We are now in a position to generalize Herstein’s result

Corollary 3.2.1. Let R be a prime ring, and let g and h be derivations of R.
Supppose there exist a, b ∈ R such that

ag(x) + h(x)b = 0 for all x ∈ R.
If a /∈ Z and b /∈ Z then there exists λ ∈ C such that

g(x) = [λb, x] and h(x) = [λa, x] for all x ∈ R.
Moreover, if g 6= 0 then ab ∈ Z.

Proof. The first part follows immediately from Theorem 3.2.1.
If g 6= 0 then λ 6= 0, and so ag(x) + h(x)b = 0 implies ab ∈ Z.
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3.3 Centralizing Mappings of prime rings

First, we show that under rather weak hypothesis every centralizing mapping is in
fact commuting

Proposition 3.3.1. Let R be a 2-torsion free semi-prime ring and U a Jordan
subring of R, If an additive mapping F of R into itself is centralizing on U , then F
is commuting on U.

Proof. A linearisation of [F (x), x] ∈ Z gives

[F (x), y] + [F (y), x] ∈ Z for all x, y ∈ U.

In particular
[F (x), x2] + [F (x2), x] ∈ Z.

Since [F (x), x] ∈ Z we have

[F (x), x2] = 2[F (x), x]x.

Thus
2[F (x), x]x+ [F (x2), x] ∈ Z for all x ∈ U. (3.6)

By assumption [F (x2), x2] ∈ Z for all x ∈ U . That is

[F (x2), x]x+ x[F (x2), x] ∈ Z for all x ∈ U. (3.7)

Now fix x ∈ U, and let z = [F (x), x] ∈ Z, u = [F (x2), x], we must show that z = 0

(3.6) implies 0 = [F (x), 2zx+ u] = 2z2 + [F (x), u], thus

[F (x), u] = −2z2. (3.8)

According to (3.8) we have

0 = [F (x), ux+ xu] = [F (x), u]x+ u[F (x), x] + [F (x), x]u+ x[F (x), u].

Applying (3.8) we then get
−4z2x+ 2zu = 0.

Thus
zu = 2z2x.

Multiplying (3.8) by z and using the last relation we obtain

−2z3 = [F (x), z2x] = 2z3.

Hence
z3 = 0.

Since the center of a semi-prime ring contains no nonzero nilpotents, we conclude
that z = 0.

This completes the proof.

We come now to the main result of this paper
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Theorem 3.3.1. Let R be a prime ring. If an additive mapping F of R is commuting
on R, then there exist λ ∈ C and an additive mapping ξ : R −→ C such that

F (x) = λx+ ξ(x) for all x ∈ R.
Proof. Linearizing [x, F (x)] = 0, we get

[F (x), y] = [x, F (y)] for all x, y ∈ R.
Hence

[x, F (yz)] = [F (x), yz] = y[F (x), z] + [F (x), y]z = y[x, F (z)] + [x, F (y)]z.

Thus we have

[x, F (yz)] = y[x, F (z)] + [x, F (y)]z for all x, y, z ∈ R. (3.9)

This is the key identity, as we shall see fix y ∈ R. Suppose y /∈ Z. As a special case
of (3.9) we have

[x, F (y2)] = y[x, F (y)] + [x, F (y)]y for all x ∈ R.

Since the mappings x 7→ [x, F (y2)] and x 7→ [x, F (y)] are derivations, Theorem 3.2.1
can be applied. Thus there exists λ(y) ∈ C such that

[x, F (y)] = [x, λ(y)y] for all x ∈ R.

Now, suppose y ∈ Z, From the linearized form of [F (x), x] = 0, we see that F (y) ∈ Z
as well.
It is now clear that for every y ∈ R there exists λ(y) ∈ C such that

[x, F (y)] = [x, λ(y)y] is verified for any x ∈ R.

We want to show that λ(y) is a constant, indeed (3.9) can be written in the form

[x, λ(yz)yz] = y[x, λ(z)z] + [x, λ(y)y]z.

That is
[x, (λ(yz)− λ(y))y]z + y[x, (λ(yz)− λ(z))z] = 0. (3.10)

Take y /∈ Z, z /∈ Z. By (3.10) and Theorem 3.2.1 , it follows that there exists µ ∈ C
such that

[x, (λ(yz)− λ(y))y] = [x, µy] and [x, (λ(yz)− λ(z))z] = [x, µz] for all x ∈ R.

Since y /∈ Z and z /∈ Z, these relations imply that

λ(yz)− λ(y) = µ and λ(yz)− λ(z) = µ.

Consequently λ(y) = λ(z), thus there exists λ ∈ C such that

[x, F (y)] = [x, λy] holds for all x ∈ R and y /∈ Z.

However, since F maps Z into itself, this relation is certainly true if y ∈ Z. Finally,
note that the mapping ξ(y) = F (y)−λy has the desired properties. Which completes
the proof.
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Combining Proposition 3.3.1 and Theorem 3.3.1 we obtain Theorem A.

Remark 3.3.1. In [80], C.R.Miers studied centralizing mappings on C?-algebrea
. He showed, that if A is a C?-algebra, p is a complex polynomial and d is a
derivation of A such that p(d) is commuting on A then p(d) = 0 [80, Theorem 1].
Using Theorem 3.3.1, a similar result can be easily obtained for inner derivations in
semi-prime ring (we remark that Miers has first considered the case where A is a
Von Newman algebra and so d is an inner derivation). Let R be a semi-prime ring,
a be an element in R and da be the inner derivation da(x) = [a, x]. Suppose that
the mapping F : R −→ R

F (x) = c1da(x) + c2d
2
a(x) + ...+ cnd

n
a(x)

(where c1, c2, ..., cn are element in R) is commuting on R. We intend to show that
F = 0. First assume that R is prime. By Theorem 3.3.1 we have F (x) = λx+ ξ(x).
Since F (a) = 0, we then have λa = −ξ(a) from this relation it follows at once that
if λ 6= 0 then a ∈ Z. Therefore we may assume that λ = 0. Note that for every
x ∈ R F (xa) = F (x)a. Since F maps R into C it follows that either a ∈ Z or
F (x) = 0 for all x ∈ R, in any case F = 0. Now let R be semi-prime. Choose an
arbitrary prime ideal P of R. A mapping F may be dropped to a mapping Fp on
R/P . Then Fp is commuting on R/P , and by the above argument Fp = 0. By the
semi-primeness of R, we conclude that F = 0 as well.

3.4 The case d(u)u− ug(u) ∈ Z
Theorem 3.4.1. Let R be a prime ring and U be a nonzero left ideal of R. Suppose
that derivations d and g of R are such that

d(u)u− ug(u) ∈ Z for all u ∈ U.
If d 6= 0 then R is commutative.

If we assume that g 6= 0 instead of d 6= 0 then the result need not be true. Indeed,
let R be any prime ring having nilpotent elements, and let a( 6= 0) ∈ R be such that
a2 = 0, Let U be a left ideal generated by a.
Define the inner derivation g by g(x) = [a, x], then Ug(u) = 0 for all u ∈ U.
For the proof of Theorem 3.4.1, we need the following lemma, which is in fact a
very special case of [22, Theorem 4]. However we present the proof since it is rather
short.

Lemma 3.4.1. Let R be a noncommutative prime ring and U be a nonzero left ideal
of R. If a derivation d of R maps U into the center of R then d = 0.

Proof. Take u, v ∈ U . Then d(u), d(v) and d(uv) are contained in Z. Hence
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0 = [d(uv), u] = [d(v)u+ vd(u), u] = [v, u]d(u).

From Remark 3.1.1 (1), it follows that either d(u) = 0, or u is contained in the
center of U, in other words U is the union of its subsets
G = {u ∈ U | d(u) = 0} and H = {u ∈ U | u is contained in the center of U}

(note that both are additive subgroups of U), but a group cannot be the union of
two proper subgroups. Thus either G = U or H = U .
If H = U then U is commutative which is impossible by Remark 3.1.1 (3), hence
G = U, and using Remark 3.1.1 (2), we obtain the assertion of the Lemma.

proof of Theorem 3.4.1.
A linearization of d(u)u− ug(u) ∈ Z gives

d(u)v + d(v)u− ug(v)− vg(u) ∈ Z for all u, v ∈ U. (3.11)

First assume there exists c(6= 0) ∈ Z ∩ U . Taking v = c in (3.11) we get
c(d(u)− g(u)) + (d(c)− g(c))u ∈ Z for all u ∈ U. (3.12)

Now let v = c2 in (3.11). Then we obtain

c2(d(u)− g(u)) + 2c(d(c)− g(c))u ∈ Z.

That is
c[c(d(u)− g(u)) + (d(c)− g(c))u] + c(d(c)− g(c))u ∈ Z.

Noting that the first summand in Z by (3.12) , we get

c(d(c)− g(c))u ∈ Z for all u ∈ U.

By Remark 3.1.1 (3), there exists u ∈ U which is not contained in Z, hence it follows
from the last relation, Remark 3.1.1 (4) and Remark 3.1.1 (1), that d(c) = g(c). Thus
(3.12) becomes c(d(u)− g(u)) ∈ Z for all u ∈ U and so by Remark 3.1.1 (4)

d(u)− g(u) ∈ Z for all u ∈ U.

In view of Lemma 3.4.1, we are forced to conclude that d = g, Now apply [22,
Lemme 4]. Thus, in case Z ∩ U 6= 0 we have

d(u)u = ug(u) for all u ∈ U.

Now assume Z ∩ U = 0. By assumption d(u)u − ug(u) ∈ Z for all u ∈ U , so this
commutes with any v ∈ U , and shows that vug(u) ∈ U .
A linearization gives

vug(w) + vwg(u) ∈ U.
Replacing w by vu we get

vug(vu) ∈ U.
Choose u ∈ U such that W = Uu 6= 0, for w ∈ W we then have

d(w)w − wg(w) ∈ U ∩ Z = 0.

Thus we have proved that in any case there exists a nonzero left ideal, which we
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denote by W , such that

d(w)w = wg(w) for all w ∈ W.

Linearizing this relation we obtain

d(u)w + d(w)u = ug(w) + wg(u) for all u,w ∈ W. (3.13)

Replace in (3.13) w by wu. The relation which we obtain can be written in the form

(d(u)w + d(w)u− ug(w))u+ w(d(u)u− ug(u)) = uwg(u).

Hence it follows from (3.13) and d(u)u = ug(u) that
wg(u)u = uwg(u) for all u,w ∈ W. (3.14)

Replacing w by vw and applying (3.14) , we then get [v, u]wg(u) = 0. Thus
[W,u]RWg(u) = 0 for all u ∈ W.

Since R is prime for every u ∈ W we have either
[W,u] = 0 or Wg(u) = 0.

The subsets A = {u ∈ W | [W,u] = 0} and B = {u ∈ W | Wg(u) = 0} are additive
subgroups of W and by the above, their union is equal to W . Therefore either

A = W or B = W.

If A = W then R is commutative by Remark 3.1.1 (3).
Hence B = W . in particular

ug(u) = 0 for all u ∈ W.
which yields

d(u)u = 0 for all u ∈ W. (3.15)
Linearizing (3.15) we get

d(u)v + d(v)u = 0 for all u, v ∈ W. (3.16)

Replace v by d(u)v to get

0 = d(u)2v + d2(u)vu+ d(u)d(v)u = d2(u)vu,

since d(u)v = −d(v)u, thus

d2(u)RWu = 0 for all u ∈ W.

Using primeness of R and the fact that a group cannot be the union of two proper
subgroups, it follows that

d2(u) = 0 for all u ∈ W.

According to (3.15) we then have

0 = d(d(u)u) = d2(u)u+ d(u)2.
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Which yields
d(u)d(v) + d(v)d(u) = 0 for all u, v ∈ W.

Note that the last relation implies

d(v)d(W )d(W )v = 0.

and also that
d(u)d(v)d(u) = 0.

In the latter expression, replace v by wv, right multiply by d(w)v and use the last
sentence to conclude that

(d(u)d(w)v)2 = 0.

This means that Wd(u)d(w) is a nil left ideal of index three, which is impossible by
Remark 3.1.1(5). unless Wd(u)d(w) = 0.
Replacing u by uv, one shows that

Wd(u)vd(w) = 0.

Since R is prime, we then have
Wd(W ) = 0.

Next by (3.16) we have
d(u)(uv) + d(uv)u = 0.

Hence d(uv)u = 0 by (3.15), and therefore d(u)vu = 0 since Wd(W ) = 0. Thus

d(u)RWu = 0 for all u ∈ W.

From which one concludes easily that
d(W ) = 0.

But then d = 0 by Remark 3.1.1 (2). The proof of the Theorem is complete. �

We conclude this Chapter with some corollaries of Theorem 3.4.1 , which were
outlined at the begining of this chapter.

Corollary 3.4.1. Let R be a prime ring and U be a nonzero left ideal of R. If there
exists a nonzero derivation of R which is centralizing or skew-centralizing on U ,
then R is commutative.

Corollary 3.4.2. Let R be a noncommutative prime ring and U be a non-zero left
ideal of R. Suppose there exist a, b ∈ R and a derivation d of R such that the
mapping x 7→ d(x)+ax+xb is centralizing on U then d is an inner derivation given
by d(x) = [x, a].

Proof. Observe that the relation [d(u) + au+ ub, u] ∈ Z can be written in the form
(d(u)− [u, a])u− u(d(u)− [b, u]) ∈ Z.

Taking a derivation d in the last corollary to be a zero we get

Corollary 3.4.3. Let R be a prime ring and U be a nonzero left ideal of R.If a, b ∈ R
are such that the mapping x 7→ ax+ xb is centralizing on U then a ∈ Z.
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Chapter 4

Generalized Jordan semiderivations
in prime rings

L. Oukhtite, A. Mamouni and V. DE. Filippis, Generalized Jordan Semiderivations
in Prime Rings, Canadian, Bull. Math. (2015).

In this chapter we prove that if R is a prime ring of characteristic different from
2, g an endomorphism of R, d a Jordan semiderivation associated with g, F a
generalized Jordan semiderivation associated with d and g, then F is a generalized
semiderivation of R and d is a semiderivation of R. Moreover, if R is commutative,
then F = d.

4.1 Introduction

Throughout this chapter, R will be an associative prime ring of characteristic dif-
ferent from 2. A well-known result of Herstein states that every Jordan derivation
on a prime ring of characteristic different from 2, is a derivation [48]. Later Brešar
[35] gives a generalization of Herstein’s result. More precisley, he proves that every
Jordan derivation on a 2-torsion free semi-prime ring is a derivation.
Moreover, the reader can find similar results in literature regarding other types of
additive mappings.
In [56] Jing and Lieu prove that any generalized Jordan derivation on a prime ring
of characteristic different from 2 is a generalized derivation (Theorem 2.5).
In this chapter we will extend previous results to a class of additive mappings whose
concept covers the ones of derivations and generalized derivations.
We prove the following theorem, following the line of investigation of previous cited
results.

Theorem 4.1.1. Let R be a prime ring of characteristic different from 2, let g be
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an endomorphism of R. Let d be a Jordan semiderivation of R associated with g,
and let F be a generalized Jordan semiderivation associated with d and g, then F

is a generalized semiderivation and d is a semiderivation of R. Moreover, if R is
commutative, then F = d.

4.2 Proof of Theorem

In all that follows we will assume R has characteristic different from 2.

Remark 4.2.1.
In order to prove our result we must show the following identities :

F (xy) = F (x)y + g(x)d(y) for all x, y ∈ R; (4.1)
F (xy) = F (x)g(y) + xd(y) for all x, y ∈ R. (4.2)

Notice that proofs of (4.1) and (4.2) are analogous to each other. Thus, without
loss of generality, we will show only that (4.1) holds.

Remark 4.2.2. We remark that, if g is the identity map on R, then F is a Jordan
generalized derivation of R. In this case by [56, Theorem 2.5], F is an ordinary
generalized derivation of R. In particular F is a generalized semiderivation of R.

Lemma 4.2.1. (F (x)y + g(x)d(y)− F (xy))[x, y] = 0 for all x, y ∈ R.

Proof. Let x, y ∈ R; then by definition of F we have
F
(
(x+ y)2

)
= F (x+ y)(x+ y) + g(x+ y)d(x+ y) (4.3)

= F (x2) + F (y2) + F (x)y + g(x)d(y) + F (y)x+ g(y)d(x).

On the other hand,
F
(
(x+ y)2

)
= F (x2) + F (y2) + F (xy + yx). (4.4)

Using (4.3) and (4.4) we get
F (xy + yx) = F (x)y + g(x)d(y) + F (y)x+ g(y)d(x). (4.5)

If we replace y by xy + yx in (4.5), we have

G(x, y) = F (x(xy + yx) + (xy + yx)x)

= F (x)(xy + yx) + g(x)d(xy + yx) + F (xy + yx)x+ g(xy + yx)d(x)

and using (4.5), we obtain

G(x, y) = F (x)(xy + yx) + g(x)d(x)y + g(x)g(x)d(y) + g(x)d(y)x+ g(x)g(y)d(x)

+ F (x)yx+ g(x)d(y)x+ F (y)x2 + g(y)d(x)x+ g(xy + yx)d(x). (4.6)

Moreover, we can also write
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G(x, y) = F (x2y + yx2) + 2F (xyx),

and using again (4.5), one can verify that

G(x, y) = F (x)xy + g(x)d(x)y + g(x)2d(y) + F (y)x2 + g(y)d(x)x (4.7)

+ g(y)g(x)d(x) + 2F (xyx).

Comparing (4.6) with (4.7) and since char(R) 6= 2, it follows that

F (xyx) = F (x)yx+ g(x)d(y)x+ g(x)g(y)d(x). (4.8)

Now replace x with x+ z in (4.8), for any z ∈ R, so that

F (xyz + zyx) = F (x)yz + g(x)d(y)z + g(x)g(y)d(z) + F (z)yx (4.9)

+ g(z)D(y)x+ g(z)g(y)d(x).

In particular, for z = xy

H(x, y) = F
(
(xy)(xy) + (xy)(yx)

)
,

and using (4.9), we get
H(x, y) = F (x)yxy + g(x)d(y)xy + g(x)g(y)d(xy) + F (xy)yx (4.10)

+ g(xy)d(y)x+ g(xy)g(y)d(x).

On the other hand

H(x, y) = F
(
(xy)2

)
+ F (xy2x) (4.11)

= F (xy)xy + g(xy)d(xy) + g(x)d(y)yx+ F (x)y2x+ g(x)g(y)d(y)x

+ g(x)g(y2)d(x).

Comparing (4.10) with (4.11), one has(
F (x)y + g(x)d(y)− F (xy)

)(
xy − yx

)
= 0 for all x, y ∈ R. (4.12)

Lemma 4.2.2. Assume that R is not commutative, and let x, y ∈ R be such that
[x, y] = 0. Then F (xy) = F (x)y + g(x)d(y).

Proof. We start from (4.12) and replace x with x+ z, for any z ∈ R; then

(F (x)y + g(x)d(y)− F (xy))[z, y] + (F (z)y + g(z)d(y)− F (zy))[x, y] = 0. (4.13)

Analogously, replacing y with y + z in (4.12), it follows that(
F (x)y + g(x)d(y)− F (xy)

)
[x, z] +

(
F (x)z + g(x)d(z)− F (xz)

)
[x, y] = 0. (4.14)

Now let x, y be such that [x, y] = 0; therefore, by (4.13) we have(
F (x)y + g(x)d(y)− F (xy)

)
[z, y] = 0 for all z ∈ R.
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The primeness of R implies easly that if y /∈ Z(R), then
F (x)y + g(x)d(y)− F (xy) = 0,

as required by the conclusion Lemma 4.2.2.
Similarly, by (4.14) and [x, y] = 0, one has

(F (x)y + g(x)d(y)− F (xy))[x, z] = 0 for all z ∈ R.
And if x /∈ Z(R), then F (x)y + g(x)d(y)− F (xy) = 0 follows again.
Thus, we consider the case both x ∈ Z(R) and y ∈ Z(R). Since R is not commuta-
tive, there exists r ∈ R such that r /∈ Z(R).
Hence

x+ r /∈ Z(R) and [y, x+ r] = [y, r] = 0.

By the previous argument, we have that

F (x+ r)y + g(x+ r)d(y)− F ((x+ r)y) = 0

and
F (r)y + g(r)d(y)− F (ry) = 0.

Implying that
F (x)y + g(x)d(y)− F (xy) = 0.

Therefore, in any case

[x, y] = 0 =⇒ F (xy) = F (x)y + g(x)d(y).

Lemma 4.2.3. Assume that R is a not commutative domain. Then

F (xy) = F (x)y + g(x)d(y) for all x, y ∈ R.

Proof. By Lemma 4.2.1, we have that(
F (x)y + g(x)d(y)− F (xy)

)
[x, y] = 0 for all x, y ∈ R.

Since R is a domain, for all x, y ∈ R, either
F (xy) = F (x)y + g(x)d(y) or [x, y] = 0.

But in this last case, F (xy) = F (x)y + g(x)d(y) follows from Lemma 4.2.2, and we
are done.

Convention 4.2.1. In all what follows, if R is not commutative, then we always
assume that R is not a domain.

Lemma 4.2.4. Assume that d is a Jordan semiderivation of R. Then

d(xyx) = d(x)yx+ g(x)d(y)x+ g(x)g(y)d(x) for all x, y ∈ R.
Proof. This follows by (4.8), with F = d.

Lemma 4.2.5. Assume that R is not commutative, and let x, y ∈ R be such that
xy = 0, then

0 = F (xy) = F (x)y + g(x)d(y).
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Proof. In the case where yx = 0, [x, y] = 0, and we conclude by Lemma 4.2.2. Let
yx 6= 0. Right multiplying (4.14) by y, since xy = 0, we have(

F (x)y + g(x)d(y)
)
xzy = 0 for all z ∈ R

and by the primeness of R we have(
F (x)y + g(x)d(y)

)
x = 0.

Replace y with yry, for any r ∈ R, so that(
F (x)yry + g(x)d(yry)

)
x = 0,

and by Remark 4.2.4 we have(
F (x)y + g(x)d(y)

)
ryx = 0 for all r ∈ R.

Once again by the primeness of R we get

F (x)y + g(x)d(y) = 0 = F (xy).

Corollary 4.2.1. Assume that R is not commutative and let x, y ∈ R be such that
xy = 0. Then

F (yx) = F (y)x+ g(y)d(x).

Proof. By Lemma 4.2.5

F (xy) = F (x)y + g(x)d(y) = 0.

On the other hand, by using equation (4.5), we get

F (yx) = F (xy + yx) = F (y)x+ g(y)d(x).

Remark 4.2.3. Assume R is not commutative, let d be a Jordan semiderivation of
R, and let x, y ∈ R be such that xy = 0. Then

0 = d(xy) = d(x)y + g(x)d(y).

Proof. This follows by Lemma 4.2.5 with F = d.

Lemma 4.2.6. Assume R is not commutative, and let x, y ∈ R be such that xy = 0.
Then

F (yxr) = F (yx)r + g(yx)d(r) for all r ∈ R.
Proof. By using equation (4.9), for xy = 0 and for all r ∈ R
F (rxy + yxr) = F (yxr)

= g(r)d(x)y + g(r)g(x)d(y) + F (y)xr + g(y)d(x)r + g(y)g(x)d(r),

and by the last corollary

F (yxr) = g(r)
(
d(x)y + g(x)d(y)

)
+ g(y)g(x)d(r) + F (yx)r.

Hence, applying Remark 4.2.3, we find that d(x)y + g(x)d(y) = 0.

We conclude that F (yxr) = g(y)g(x)d(r) + F (yx)r.
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Remark 4.2.4. Define the following subset of R

S = {a ∈ R | F (ax) = F (a)x+ g(a)d(x) ∀ r ∈ R}.

We remark that by Lemma4.2.5 one has that ab = 0, which implies ba ∈ S.
Here we fix an element b ∈ R, and introduce the following map

ϕb : R −→ R

x 7→ ϕb(x) = F (xb)− F (x)b− g(x)d(b).

We notice that the following hold:

ϕb+c(x) = ϕb(x) + ϕc(x) for all b, c, x ∈ R;

ϕb(c) = −ϕc(b) for all b, c ∈ R.

We need a few lemmas to prove the main theorem. These results are contained in the
classical paper of Herstein [48], but we prefer to state them for sake of completeness.

Lemma 4.2.7. Let t ∈ S, t /∈ Z(R). If y ∈ R such that [t, y] = 0, then y ∈ S.

Proof. The proof is contained in [48, Lemma 3.8].

Lemma 4.2.8. Let x ∈ R such that x2 = 0, then x ∈ S.

Proof. Of course we assume x 6= 0, if not we are done, in particular x /∈ Z(R). Since
x(xr) = 0 for any r ∈ R, then by Lemma 4.2.6

F (xrx) = F (xr)x+ g(xr)d(x) for all x, y ∈ R.
Moreover by Remark 4.2.4, we also have xrx ∈ S. Finally, since x /∈ Z(R), there
exists r ∈ R such that xrx /∈ Z(R). Hence by [xrx, x] = 0 and Lemma 4.2.7, it
follows x ∈ S.

Lemma 4.2.9. Let x, y ∈ S; then ϕb(a)[x, y] = 0 for all a, b ∈ R.

Proof. This is [48, Lemma 3.10]

We are now ready to prove our result.

Theorem 4.2.1. Let R be a prime ring of characteristic different from 2, let g be
an endomorphism of R. let d be a Jordan semiderivation associated with g, and
let F be a generalized Jordan semiderivation of R associated with d and g, then F

is a generalized semiderivation and d is a semiderivation of R. Moreover, if R is
commutative, then F = d.

Proof. Our target is to show that ϕr(s) = 0 for all r, s ∈ R.
First, we consider the case where R is not commutative. In light of Lemma 4.2.3,
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we also assume R is not a domain. Let z ∈ R be such that z2=0. By Lemma 4.2.8 it
follows that z ∈ S. Therefore, for any t ∈ R such that t2 = 0, Lemma 4.2.9 implies

ϕa(b)[z, t] = 0 for all a, b ∈ R.

Right multiplying by z, we get
ϕa(b)ztz = 0 (4.15)

for all a, b ∈ R and for all square-zero elements t, z ∈ R.
Moreover, by Lemma 4.2.1,

ϕy(x)[x, y] = 0 for all x, y ∈ R.

This means that (
[x, y]rϕy(x)

)2
= 0.

So that
[x, y]rϕy(x) ∈ S for all r, x, y ∈ R.

Applying (4.15) yields that, for all a, b, r, s, t, x, y, z ∈ R,

ϕa(b)
(
[x, y]rϕy(x)

)(
[z, t]sϕt(z)

)(
[x, y]rϕy(x)

)
= 0,

that is
ϕt(z)[x, y]rϕy(x)[z, t] R ϕt(z)[x, y]rϕy(x) = (0).

By the primeness of R, either

ϕt(z)[x, y] = 0 or ϕy(x)[z, t] = 0.

In particular, for z = y one has either

0 = ϕt(y)[x, y] = −ϕy(t)[x, y] or ϕy(x)[y, t] = 0.

On the other hand, by (4.13),

ϕy(t)[x, y] + ϕy(x)[t, y] = 0,

and this implies both

ϕy(t)[x, y] = 0 and ϕy(x)[t, y] = 0.

Therefore, in any case

ϕy(x)[t, y] = 0 for all x, y, t ∈ R.

Replacing t by rx, for any r ∈ R, we have ϕy(x)r[x, y] = 0. We recall that, if
[x, y] = 0, then ϕy(x) = 0 follows from Lemma 4.2.2 .
Thus ϕy(x)r[x, y] = 0, and the primeness of R imply

ϕy(x) = 0 for all x, y ∈ R.

Finally we consider the case where R is commutative. We recall that, by Remark
4.2.2, if g is the identity map on R, then we are done. Therefore here we assume
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again g is not the identity map on R.
Since d is a generalized Jordan semiderivation associated with d and g, (4.5) yields

2d(xy) = d(x)y + g(x)d(y) + d(y)x+ g(y)d(x) for all x, y ∈ R.

Replacing y by yz, we get

2d(xyz) = d(x)yz + g(x)d(yz) + d(yz)x+ g(yz)d(x) for all x, y, z ∈ R. (4.16)

On the other hand, (4.9) yields

2d(xyz) = d(x)yz + g(x)d(y)z + g(x)g(y)d(z) + d(x)g(y)g(z) + xd(y)g(z) + xyd(z).

(4.17)
Using (4.16) together with (4.17) we obtain

g(x)d(y)z+g(x)g(y)d(z)+xd(y)g(z)+xyd(z) = g(x)d(yz)+xd(yz) for all x, y, z ∈ R.

So that (
g(x)− x

)(
d(yz)− d(y)z − g(y)d(z)

)
= 0 for all x, y, z ∈ R.

Since R is a domain and g is not the identity map on R, we conclude that

d(yz) = d(y)z + g(y)d(z) for all x, y, z ∈ R.

Now, to prove that F = d, rewriting equation (4.5), we get

2F (xy) = F (x)(y + g(y)) +
(
x+ g(x)

)
d(y).

In particular

2F (x2y) = F (x2)
(
y + g(y)

)
+
(
x2 + g(x2)

)
d(y) (4.18)

=
(
F (x)x+ g(x)d(x)

)(
y + g(y)

)
+
(
x2 + g(x2)

)
d(y).

Moreover, by (4.8), we have

2F (x2y) = 2F (x)yx+ 2g(x)d(y)x+ 2g(x)g(y)d(x). (4.19)

Comparing (4.18) with (4.19) it follows that

F (x)x
(
g(y)− y

)
+ d(x)g(x)

(
y − g(y)

)
+ d(y)

(
x− g(x)

)2
= 0, (4.20)

and for x = y,
(F (x)− d(x))x(g(x)− x) = 0 for all x ∈ R.

Therefore, for any x ∈ R, either F (x) = d(x) or g(x) = x.
Assume that g(x) = x, moreover, since g is not the identity map,there exists y ∈ R
such that g(y) 6= y. Thus by (4.20) we get (F (x)− d(x))x = 0; that is F (x) = d(x)

holds in any case.
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Chapter 5

Commutativity and classification of
some generalized derivations in rings
with involution

B. Nejjar, A. Kacha, A. Mamouni and L. Oukhtite, Commutativity theorems in
rings with involution, Communications in Algebra, 45:2, 698-708, (2017).
M. A. Idrissi and L. Oukhtite, Classification of some special generalized derivations,
International electronic Journal of Algebra, vol. 29, 50-62 (2021).

5.1 Commutativity theorems in rings with involu-
tion

Over the last 30 years, several authors have investigated the relationship between the
commutativity of the ring R, and certain special types of mappings on R. The first
result in this direction is due to Divinsky [43], who proved that the simple artinian
ring is commutative, if it has a commuting derivation on prime ring forces the ring
to be commutative. Over the last few decades, several authors have subsequently
refined and extended these result in various directions [6, 23, 21].
In [24], Bell and Daif investigated the commutativity in rings admitting a deriva-
tion which is SCP (Strong Commutativity Preserving) on nonzero right ideal. In-
deed, they proved that if a semi-prime ring R admits a derivation d satisfying
[d(x), d(y)] = [x, y] for all x, y in a right ideal I of R, then I ⊆ Z(R). In partic-
ular, R is commutative if I = R. Later, Deng and Ashraf [42] proved that if there
exists a derivation d of a semi-prime ring R and a mapping f : I −→ R defined on a
nonzero ideal I of R such that [f(x), d(y)] = [x, y] for all x, y ∈ I, then R contains
a nonzero central ideal. In particular, they showed that R is commutative if I = R.
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Further, Ali and Huang [4] showed that if R is a 2-torsion free semi-prime ring and
d is a derivation of R satisfying [d(x), d(y)] + [x, y] = 0 for all x, y in a nonzero ideal
I of R, then R contains a nonzero central ideal. Many related generalizations of
these results have been made.
Our purpose here is to continue this line of investigation by studying commutativity
criteria for rings with involution admitting derivation satisfying certain algebraic
identities.

5.1.1 Preliminary results

We first fix the following facts which shall be used frequently throughout the text.
Fact 1. Let (R, ∗) be a 2-torsion free prime ring with involution provided by a
derivation d. Then d(h) = 0 for all h ∈ H(R)∩Z(R) implies that d(z) = 0 for all z ∈
Z(R).
Assume that d(h) = 0 for all h ∈ H(R) ∩ Z(R). Then replacing h by k2 where
k ∈ Z(R) ∩ S(R) we get d(k)k = 0. In light of the primeness, this assures that
d(k) = 0 for all k ∈ Z(R) ∩ S(R). Since each element z ∈ Z(R) can be uniquely
represented in the form 2z = h + k, where h ∈ H(R) and k ∈ S(R) then d(z) =

0 for all z ∈ Z(R).

In ([3], Lemma 1) it is proved that if (R, ∗) is a prime ring with involution of the
second kind, then [x, x∗] = 0 for all x ∈ R implies that R is commutative.
In the following lemma, we prove the same result in more general situation.

Lemma 5.1.1. Let R be a prime ring with involution of the second kind. Then ∗ is
centralizing if and only if R is commutative.

Proof. For the non trivial implication assume that
[x, x∗] ∈ Z(R) for all x ∈ R. (5.1)

Linearizing (5.1) we get

[x, y∗] + [y, x∗] ∈ Z(R) for all x, y ∈ R. (5.2)

And therefore
[[x, y], x] + [[y∗, x∗], x] = 0 for all x, y ∈ R. (5.3)

Replacing y by yx in (5.3), we obtain[
[x, y], x

]
x+ x∗

[
[y∗, x∗], x

]
+ [x∗, x][y∗, x∗] = 0 for all x, y ∈ R. (5.4)

Invoking (5.3), Eq (5.4) yields[
[x, y], x

]
x− x∗

[
[y, x], x

]
+ [x∗, x][y∗, x∗] = 0 for all x, y ∈ R. (5.5)

Substituting yx for y in (5.5) one can see that[
[x, y], x

]
x2 − x∗

[
[y, x], x

]
x+ [x∗, x]x∗[y∗, x∗] = 0 for all x, y ∈ R. (5.6)
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In light of (5.5), Eq (5.6) yields

[x∗, x](x∗[y∗, x∗]− [y∗, x∗]x) = 0 for all x, y ∈ R (5.7)

so that
[x, x∗](x[y, x]− [y, x]x∗) = 0 for all x, y ∈ R. (5.8)

Replacing y by yx in the last equation, we obtain

[x, x∗](x[y, x]x− [y, x]xx∗) = 0 for all x, y ∈ R. (5.9)

Using (5.8) together with (5.9), we find that

[x, x∗][y, x](−xx∗ + x∗x) = 0 for all x, y ∈ R (5.10)

in such a way that
[x, x∗]2R[y, x] = {0} for all x, y ∈ R. (5.11)

Hence ∗ is commuting and [3, Lemma 1] implies that R is commutative.

Lemma 5.1.2. Let R be a prime ring with involution of the second kind. Then
x ◦ x∗ ∈ Z(R) for all x ∈ R if and only if R is commutative.

Proof. Assume that
x ◦ x∗ ∈ Z(R) for all x ∈ R. (5.12)

Then a linearisation of (5.12) forces

x ◦ y∗ + y ◦ x∗ ∈ Z(R) for all x, y ∈ R, (5.13)

so that
[x ◦ y, r] + [y∗ ◦ x∗, r] = 0 for all r, x, y ∈ R. (5.14)

Replacing y by x in (5.14), we get

[x2, r] + [(x∗)2, r] = 0 for all r, x ∈ R. (5.15)

Taking y ∈ Z(R)\{0} and x = x2 in (5.14), it is obvious to see that

[x2, r]y + [(x∗)2, r]y∗ = 0 for all r, x ∈ R. (5.16)

Using (5.15) together with (5.16) we get [x2, r](y − y∗) = 0, so that

[x2, r]R(y − y∗) = {0} for all x, r ∈ R. (5.17)

In view of the primeness, we conclude that x2 ∈ Z(R) for all x ∈ R, in which case
R is commutative, or y = y∗. In the later case, (5.13) yields

(x+ x∗)y ∈ Z(R) for all x ∈ R

which because of y 6= 0, forces x + x∗ ∈ Z(R). Therfore [x, x∗] = 0 and R is
commutative by Lemma 5.1.1.
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5.1.2 Main results

Motivated by the notion of the SCP derivation, the authors in [3] initiated the study
of a more general concept by considering the identity [d(x), d(x∗)] = [x, x∗]. More
precisely, they proved in ([3], Theorem 1) that a prime ring (R, ∗) with involution
of the second kind must be commutative if it admits a nonzero derivation d which
satisfies [d(x), d(x∗)] = [x, x∗] for all x ∈ R.
Remark that the hypothesis d 6= 0 is not necessary, indeed, if d = 0, then the
condition [d(x), d(x∗)] = [x, x∗] becomes [x, x∗] = 0, so that R is commutative by
Lemma 5.1.1.
In what comes next, a derivation d which satisfies the previous identity is called a
∗-SCP derivation.
In the following theorem, a more general class of *-SCP derivation will be studied,
by considering the identity [d(x), d(x∗)] − [x, x∗] ∈ Z(R) for all x ∈ R. The next
result is a generalization of both ([3], Theorem 1) and ([2], Theorem 2.6).

Theorem 5.1.1. Let R be a 2-torsion free prime ring with involution ∗ of the second
kind. If d is a derivation of R, then the following assertions are equivalent:
1) [d(x), d(x∗)]− [x, x∗] ∈ Z(R) for all x ∈ R;

2) [d(x), d(x∗)] + [x, x∗] ∈ Z(R) for all x ∈ R;

3) R is commutative.
Moreover, if d 6= 0, then [d(x), d(x∗)] ∈ Z(R) for all x ∈ R, implies that R is
commutative.

Proof. It is obvious that 3) implies both of 1) and 2). So we need to prove that
1)⇒ 3) and 2)⇒ 3).

If d = 0, then [x, x∗] ∈ Z(R), so our theorem follows from Lemma 5.1.1. Accordingly,
one can assume that d 6= 0.

1)⇒ 3) Suppose that

[d(x), d(x∗)]− [x, x∗] ∈ Z(R) for all x ∈ R. (5.18)

Linearizing 5.18, we find that

[d(x), d(y∗)] + [d(y), d(x∗)]− [x, y∗]− [y, x∗] ∈ Z(R) for all x, y ∈ R. (5.19)

Replacing y by yh, where h ∈ Z(R)∩H(R) and using the last equation, we obtain[
[d(x), y∗] + [y, d(x∗)], r

]
d(h) = 0 for all r, x, y ∈ R (5.20)

and thus [
[d(x), y∗] + [y, d(x∗)], r

]
Rd(h) = 0 for all r, x, y ∈ R (5.21)

Since R is prime, then either d(h) = 0 or
[
[d(x), y∗] + [y, d(x∗)], r

]
= 0.

By Fact 1, if d(h) = 0, for all h ∈ Z(R) ∩H(R) we have
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d(z) = 0 for all z ∈ Z(R). (5.22)

Substituting yz for y in (5.19), where z ∈ Z(R), we have

z∗[d(x), d(y∗)] + [d(y), d(x∗)]z − [x, y∗]z∗ + [y, x∗]z ∈ Z(R) for all x, y ∈ R. (5.23)

Invoking (5.19), (5.23) yields[
[d(x), d(y)]− [x, y], r

]
(z∗ − z) = 0 for all r, x, y ∈ R (5.24)

and thus [
[d(x), d(y)]− [x, y], r

]
R(z∗ − z) = 0 for all r, x, y ∈ R. (5.25)

Since the involution is said to be of the second kind and taking y = x2,
then (5.25) becomes [

[d(x2), d(x)], x
]

= 0 for all x ∈ R. (5.26)

([59], Theorem 1.1) gives that R is commutative. If [[d(x), y∗] + [y, d(x∗)], r] =

0 for all r, x, y ∈ R, replacing y by yz where z ∈ Z(R), we get[
[d(x), y∗], r

]
z∗ +

[
[y, d(x∗)], r

]
z = 0 for all r, x, y ∈ R. (5.27)

Then we obtain [
[d(x), y], r

]
(z∗ − z) = 0 for all r, x, y ∈ R. (5.28)

So that [
[d(x), y], r

]
R(z∗ − z) = 0 for all r, x, y ∈ R. (5.29)

Since the involution is said to be of the second kind, then the last equation becomes[
[d(x), y], r

]
= 0 for all r, x, y ∈ R. (5.30)

Replacing y by ry, we obtain

[d(x), r][y, r] = 0 for all r, x, y ∈ R. (5.31)

Now replacing y by yt where t ∈ R, we obtain

[d(x), r]y[t, r] = 0 for all r, t, x, y ∈ R. (5.32)

The primeness of R gives

[d(x), x] = 0 for all x ∈ R. (5.33)

By view of Posner’s Theorem, we conclude that R is commutative.
2)⇒ 3) We are given that

[d(x), d(x∗)] + [x, x∗] ∈ Z(R) for all x ∈ R. (5.34)

Linearizing (5.34), we get

[d(x), d(y∗)] + [d(y), d(x∗)] + [x, y∗] + [y, x∗] ∈ Z(R) for all x, y ∈ R. (5.35)
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Substituting yh for y where h ∈ Z(R)∩H(R) and using the last equation, we obtain[
[d(x), y∗], r

]
+ [y, d(x∗)]d(h) = 0 for all r, x, y ∈ R. (5.36)

Since (5.36) is the same as (5.20), then arguing as above, we conclude that R is
commutative.
If d 6= 0 and [d(x), d(x∗)] ∈ Z(R) for all x ∈ R, we replace x by x+ y we obtain[

[d(x), d(y∗)], r
]

+ [d(y), d(x∗)] ∈ Z(R) for all x, y ∈ R. (5.37)

Substituting yh for y where h ∈ Z(R) ∩H(R) and using (5.37), we have[
[d(x), y∗], r

]
+ [y, d(x∗)]rd(h) = 0 for all r, x, y ∈ R.

That is just (5.20), so we may argue as before that R is commutative.

Corollary 5.1.1. ([2], Theorem 2.6). Let R be a 2-torsion free prime ring with
involution ∗ of the second kind. if R admits a nonzero derivation d such that
d(x)d(x∗)± xx∗ = 0 for all x ∈ R, then R is commutative.

Corollary 5.1.2. Let R be a 2-torsion free prime ring with involution ∗ of the
second kind. Let d be a derivation of R, then the following assertions are equivalent:
1) [d(x), d(y)]− [x, y] ∈ Z(R) for all x, y ∈ R;

2) [d(x), d(y)] + [x, y] ∈ Z(R) for all x, y ∈ R;

3) R is commutative.
Moreover, if d 6= 0, then [d(x), d(y)] ∈ Z(R) for all x, y ∈ R, implies that R is
commutative.

As an application of Theorem 5.1.1, we get a version of a Herstein’s [50] result for
prime rings with involution.

Corollary 5.1.3. Let R be a 2-torsion free prime ring with involution ∗ of the second
kind. if R admits a nonzero derivation d such that [d(x), d(y)] = 0 for all x, y ∈ R,
then R is commutative.

In ([3], Theorem 2) it is proved that if (R, ∗) is a ring with involution of the second
kind provided with a derivation d which satisfies d(x) ◦ d(x∗) = x ◦ x∗ for all x ∈ R,
then R is commutative. However this result is not true. Indeed, it is proved by
authors that R is commutative and d(x) ◦ d(y) = x ◦ y for all x, y ∈ R. This yields
d(x)d(y) = xy, so replacing y by yz, we get d(x)yd(z) = 0 which, by view of
primeness, gives d = 0, contradiction.
Our aim in the next theorem is to give a suitable condition with anticommutator
that assures the commutativity of R.
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Theorem 5.1.2. Let R be a 2-torsion free prime ring with involution ∗ of the second
kind. If d is a derivation of R, then the following assertions are equivalent:
1) d(x) ◦ d(x∗)− x ◦ x∗ ∈ Z(R) for all x ∈ R;

2) d(x) ◦ d(x∗) + x ◦ x∗ ∈ Z(R) for all x ∈ R;

3) R is commutative.
Moreover, if d 6= 0, then d(x) ◦ d(x∗) ∈ Z(R) for all x ∈ R, implies that R is
commutative.

Proof. It is clear that 3) implies both of 1) and 2). So we need to prove that 1)⇒ 3)

and 2)⇒ 3).

If d = 0, then x◦x∗ ∈ Z(R), using Lemma 5.1.1, we conclude that R is commutative.
Hence, we assume that d 6= 0.

1)⇒ 3) We are given that

d(x) ◦ d(x∗)− x ◦ x∗ ∈ Z(R) for all x ∈ R. (5.38)

Linearizing (5.38), we find that

d(x) ◦ d(y∗) + d(y) ◦ d(x∗)− x ◦ y∗ − y ◦ x∗ ∈ Z(R) for all x, y ∈ R. (5.39)

Replacing y by yh, where h ∈ Z(R)∩H(R) and using the last equation, we obtain

[d(x) ◦ y∗ + y ◦ d(x∗), r]d(h) = 0 for all r, x, y ∈ R (5.40)

and thus
[d(x) ◦ y∗ + y ◦ d(x∗), r]Rd(h) = 0 for all r, x, y ∈ R. (5.41)

By the primeness of R, it follows that either d(h) = 0 or [d(x)◦y∗+y ◦d(x∗), r] = 0.

If d(h) = 0 for all h ∈ Z(R) ∩H(R), by Fact 1,we conclude that

d(z) = 0 for all z ∈ Z(R). (5.42)

Substituting y for yz in (5.39), where z ∈ Z(R), we get

(d(x) ◦ d(y∗)−x ◦ d(y∗))z∗+ (d(y) ◦ d(x∗)− y ◦x∗)z ∈ Z(R) for all x, y ∈ R. (5.43)

Using (5.41) we obtain

[d(x) ◦ d(y)− x ◦ y, r]R(z∗ − z) = 0 for all r, x, y ∈ R. (5.44)

Since the involution is of the second kind, then the last equation becomes

d(x) ◦ d(y)− x ◦ y ∈ Z(R) for all x, y ∈ R. (5.45)

Taking y ∈ Z(R)\{0}, we have

xy ∈ Z(R) for all x ∈ R and y ∈ Z(R), (5.46)

and thus
x ∈ Z(R) for all x ∈ R. (5.47)

So that R is commutative.
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Now suppose that [d(x) ◦ y∗ + y ◦ d(x∗), r] = 0 for all r, x, y ∈ R, replacing y by yz
where z ∈ Z(R) and using the last supposition, we get

[d(x)y + yd(x), r]R(z − z∗) = 0 for all r, x, y ∈ R and z ∈ Z(R). (5.48)

Since R is prime and the involution is of the second kind, then (5.48) implies

[d(x)y, r] + [yd(x), r] = 0 for all r, x, y ∈ R and z ∈ Z(R). (5.49)

Substituting yr for y and using (5.49), we find that[
y[d(x), r], r

]
= 0 for all r, x, y ∈ R. (5.50)

Replacing y by ty where t ∈ R, yields

[t, r]y[d(x), r] = 0 for all r, t, x, y ∈ R. (5.51)

As R is prime, we obtain [d(x), x] = 0 for all x ∈ R. Therefore R is commutative.
2)⇒ 3) We are given that

d(x) ◦ d(x∗) + x ◦ x∗ ∈ Z(R) for all x ∈ R. (5.52)

Linearizing (5.52), we have

d(x) ◦ d(y∗) + d(y) ◦ d(x∗) + x ◦ y∗ + y ◦ x∗ ∈ Z(R) for all x, y ∈ R. (5.53)

Substituting y for yh, where h ∈ Z(R) ∩H(R) and using (5.53) yields[
[d(x) ◦ y∗ + y ◦ d(x∗)], r

]
d(h) = 0 for all r, x, y ∈ R. (5.54)

Since (5.54) is the same as (5.40), then arguing as above, we conclude that R is
commutative.
If d 6= 0 and d(x) ◦ d(x∗) ∈ Z(R) for all x ∈ R, we replace x by x+ y we obtain

d(x) ◦ d(y∗) + d(y) ◦ d(x∗) ∈ Z(R) for all x, y ∈ R. (5.55)

Substituting yh for y where h ∈ Z(R) ∩H(R) and using (5.55), we get[
d(x) ◦ y∗ + y ◦ d(x∗), r

]
d(h) = 0 for all r, x, y ∈ R. (5.56)

Since the equation is the same as (5.40), then reasoning as above, we obtain R is
commutative.

Corollary 5.1.4. Let R be a 2-torsion free prime ring with involution ∗ of the
second kind. Let d be a derivation of R, then the following assertions are equivalent:
1) d(x) ◦ d(y)− x ◦ y ∈ Z(R) for all x, y ∈ R;

2) d(x) ◦ d(y) + x ◦ y ∈ Z(R) for all x ∈ R;

3) R is commutative.
Moreover, if d 6= 0, then d(x) ◦ d(y) ∈ Z(R) for all x, y ∈ R, implies that R is
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commutative.

In ([1], Main Theorem) it is proved that if (R, ∗) is a 2-torsion free prime ring
with involution of the second kind, which admits a nonzero derivation d such that
d(S(R) ∩ Z(R)) 6= {0}, then d is ∗-centralizing implies that R is commutative. In
the following theorem, we establish an improved version of this result.

Theorem 5.1.3. Let (R, ∗) be a 2-torsion free prime ring with involution of the
second kind and let d be a nonzero derivation of R, then the following assertions are
equivalent:
1) d is ∗-centralizing on R;

2) d(x) ◦ x∗ ∈ Z(R) for all x ∈ R;

3) R is commutative.

Proof. It is obvious that 3) implies both of 1) and 2). Now to prove that 1) ⇒ 3)

suppose that
[d(x), x∗] ∈ Z(R) for all x ∈ R. (5.57)

Linearizing (5.57), we find that

[d(x), y∗] + [d(y), x∗] ∈ Z(R) for all x, y ∈ R. (5.58)

Replacing y by yh, where h ∈ Z(R) ∩H(R), yields

[d(x), y∗]h+ [d(y), x∗]h+ [y, x∗]d(h) ∈ Z(R) for all r, x, y ∈ R. (5.59)

Invoking (5.58), (5.59) reduces to [y, x∗]d(h) ∈ Z(R) for all x, y ∈ R.
Hence

[
[y, x∗]d(h), r

]
= 0 for all r ∈ R, so[

[y, x], r
]
Rd(h) = 0. for all r, x, y ∈ R. (5.60)

In light of the primeness, we get d(h) = 0 or [[y, x], r] = 0.

If d(h) = 0, for all h ∈ Z(R) ∩H(R), by Fact 1, we conclude that

d(z) = 0 for all z ∈ Z(R). (5.61)

Substituting yz for y, where z ∈ Z(R) in (5.58), we get

[d(x), y∗]z∗ + [d(y), x∗]z ∈ Z(R) for all x, y ∈ R. (5.62)

Using (5.58), (5.62) yields[
[d(x), d(y)], r

]
(z∗ − z) = 0 for all r, x, y ∈ R. (5.63)

Since the involution is said of the second kind, the last equation becomes[
[d(x), y], r

]
= 0 for all r, x, y ∈ R. (5.64)

Accordingly, [d(x), x] ∈ Z(R) for all x ∈ R, that is, d is centralizing. Applying
Posner’s Theorem, we conclude that R is commutative.
If
[
[y, x], r

]
= 0, then [x, x∗] ∈ Z(R) for all x ∈ R, hence R is commutative by
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Lemma 5.1.1.
2)⇒ 3) By hypothesis, we have

d(x) ◦ x∗ ∈ Z(R) for all x ∈ R. (5.65)

Linearizing (5.65) gives

d(x) ◦ y∗ + d(y) ◦ x∗ ∈ Z(R) for all x, y ∈ R. (5.66)

Accordingly, we get

[d(x) ◦ y∗, r] + [d(y∗) ◦ x∗, r] = 0 for all r, x, y ∈ R. (5.67)

Substituting y for yh, where h ∈ Z(R) ∩H(R) and using (5.67), we obtain

[y∗ ◦ x∗, r]d(h) = 0 for all r, x, y ∈ R. (5.68)

and thus
[y ◦ x, r]Rd(h) = 0 for all r, x, y ∈ R. (5.69)

Since R is a prime, then either d(h) = 0 or [y ◦ x, r] = 0.

Assume d(h) = 0, for all h ∈ Z(R) ∩H(R) and using Fact 1, we conclude that

d(z) = 0 for all z ∈ R. (5.70)

Substituting y for z,in (5.67), we obtain

[d(x), r]z = 0 for all r, x ∈ R and z ∈ Z(R). (5.71)

Taking r = x and using the primeness of R, (5.71) yields

[d(x), x] = 0 for all x ∈ R. (5.72)

By Posner’s Theorem, we conclude that R is commutative.
If [y ◦ x, r] = 0 for all r, x, y ∈ R, then rplacing y by z where z ∈ Z(R)\{0}, we
get [x, r]z = 0 for all r, x ∈ R and z ∈ Z(R)\{0}. Using the primeness of R, we
conclude that [x, r] = 0 for all r, x ∈ R that gives the commutativity of R.

Remark 5.1.1. The result in this paper remain true if we assume that the various
conditions are satisfied on a nonzero ideal rather than on the whole ring R.
In view of this remark, return to the previous example and consider the ideal

I = {

(
0 b

0 0

)
| b ∈ Z} of R, then d satisfies the conditions of Theorem 5.1.3,

however R is not commutative proving the necessity of the condition "∗ is of the
second kind."

The following example proves that the primeness hypothesis of R is necessary in
Theorem 5.1.1, Theorem 5.1.2 and Theorem 5.1.3.

Example. Let R = Q[X]×M2(Z) and set d(P,M) = (P ′, 0). It is obvious that R is
noncommutative ring and d is a derivation of R such that [d(r), s] = 0 for all r, s ∈
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R. Let ∗ex be the exchange involution defined on the ring R = R×R0 by ∗ex(x, y) =

(y, x) for all x, y ∈ R. It is well known that ∗ex is an involution of the second kind.
Now if we define D : R −→ R by D(x, y) = (d(x), 0), then D is a derivation of R

which satisfies the conditions of Theorem 5.1.1, Theorem 5.1.2 and Theorem 5.1.3,
but R is a noncommutative ring.

5.2 Classification of some special generalized deriva-
tions

The purpose of the present chapter is to classify generalized derivations satisfying
more specific algebraic identities in a prime ring with involution of the second kind.
Some well-known results characterizing commutativity of prime rings by derivations
have been generalized by using generalized derivation.
Many results in literature indicate how the global structure of a ring R is often tightly
connected to the behavior of additive mappings defined on R. During the last two
decades, many authors have studied commutativity of prime and semi-prime rings
admitting suitably constrained additive mappings acting on appropriate subsets of
the rings. Moreover, many of obtained results extend other ones previously proven
just for the action of the considered mapping on the whole ring. In this direction,
the recent literature contains numerous results on commutativity in prime and semi-
prime rings admitting suitably constrained derivations and generalized derivations,
and several authors have improved these results by considering rings with involution
(for example, see [1],[2],[66]).
Motivated by the previous results, new classes of generalized derivations will be
considered.

5.2.1 Main Results

Fact. Let (R, ∗) be a 2−torsion free prime ring with involution of the second kind,
then Z(R) ∩H(R) 6= {0}.

Proof. As ∗ is of the second kind, by definition, there exists a nonzero element z in
Z(R) such that z∗ 6= z. Setting h = zz∗, it is clear that h ∈ Z(R)∩H(R). Moreover,
h 6= 0 otherwise 0 = zz∗ so that zRz∗ = {0} and the primeness of R yields z = 0, a
contradiction. Hence Z(R) ∩H(R) 6= {0}.

Lemma 5.2.1. [82, Fact 1] Let (R, ∗) be a 2−torsion free prime ring with involution
and d a derivation on R. Then d(h) = 0 for all h ∈ Z(R) ∩ H(R) implies that
d(z) = 0 for all z ∈ Z(R).
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Lemma 5.2.2. [39, Lemma] Let R be a prime ring. If the functions F : R −→ R

and G : R −→ R are such that F (x)yG(z) = G(x)yF (z) for all x, y, z ∈ R, and
F 6= 0, then there exists λ in the extended centroid of R such that F (x) = λG(x) for
all x ∈ R.

Lemma 5.2.3. Let R be a 2−torsion free prime ring and F : R −→ R a generalized
derivation associated with a derivation d. Then the following assertions are equiva-
lent:
(1) F (x ◦ y) = F (x) ◦ y − d(y) ◦ x for all x, y ∈ R;

(2) F ([x, y]) = [F (x), y]− d(y) ◦ x for all x, y ∈ R;

(3) F ([x, y]) = [F (x), y] + [d(y), x] for all x, y ∈ R;

(4) There exists λ in the extended centroid of R such that F (x) = λx for all x ∈ R
(and therefore d = 0).

Proof. It is enough to prove that each of (1), (2) and (3) implies (4). We first recall
that the generalized derivation F is of the from F (x) = λx+ d(x) for all x ∈ R and
some λ in the maximal left ring of quotients Q(R) of R by [64].
(1)⇒ (4) Using the above form of F in the relation

F (x ◦ y) = F (x) ◦ y − d(y) ◦ x for all x, y ∈ R,

we get λ(x ◦ y) + d(x ◦ y) = (λx) ◦ y + d(x) ◦ y − d(y) ◦ x,
thus λ(xy+ yx) + d(xy) + d(yx) = (λxy+ yλx) + (d(x)y+ yd(x))− (d(y)x+xd(y)),

hence λyx− yλx+ d(x)y + xd(y) + d(y)x+ yd(x) = d(x)y + yd(x)− d(y)x− xd(y),

so [λ, y]x+ x(d(y) + d(y)) + (d(y) + d(y))x = 0

one obtains
([λ, y] + 2d(y))x+ x(2d(y)) = 0.

Then by [38, Lemma 4.5], we get

[λ, y] + 2d(y) = −2d(y) ∈ C

for all y ∈ R, hence we once see that d = 0 and λ ∈ C, and so F (x) = λx for all
x ∈ R.
(2)⇒ (4) Again, we get from the relation

F ([x, y]) = [F (x), y]− d(y) ◦ x
for all x, y ∈ R, that

[λ, y]x+ x(−2d(y)) = 0.

Then by [38, Lemma 4.5], we get
[λ, y] = 2d(y) ∈ C

for all y ∈ R. Hence d = 0, and then it follows that λ ∈ C as we desired.
(3)⇒ (4) Similar to above argument, the relation
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F ([x, y]) = [F (x), y]− [d(y), x]

for all x, y ∈ R, leads us to
([λ, y] + 2d(y))x+ x(−2d(y)) = 0.

Another use of [38, Lemma 4.5] results in
[λ, y] + 2d(y) = 2d(y) ∈ C

for all y ∈ R. Therefore d = 0 and λ ∈ C.

In [7, Theorem 2.9] it is proved that if R is a 2−torsion free semi-prime ring with
a generalized derivation F associated with a derivation d such that F (x ◦ y) =

F (x) ◦ y − d(y) ◦ x for all x, y ∈ I; where I is a nonzero ideal of R, then R contains
a nonzero central ideal.
Motivated by [7], our purpose is to study the same identity on prime rings with
involution. More precisely the following theorem classifies generalized derivations
satisfying such condition.

Theorem 5.2.1. Let (R, ∗) be a 2−torsion free prime ring with involution of the
second kind. If R admits a generalized derivation F associated with a derivation d,
Then the following assertions are equivalent:
(1) F (x ◦ x∗) = F (x) ◦ x∗ − d(x∗) ◦ x for all x ∈ R;

(2) F ([x, x∗]) = [F (x), x∗]− d(x∗) ◦ x for all x ∈ R;

(3) There exists λ in the extended centroid of R such that F (x) = λx for all x ∈ R.

Proof. We need only to prove that (1)⇒ (3) and (2)⇒ (3).

(1)⇒ (3) We are given that

F (x ◦ x∗) = F (x) ◦ x∗ − d(x∗) ◦ x for all x ∈ R. (5.73)

Linearizing the above relation we find that
F (x ◦ y∗) +F (y ◦ x∗) = F (x) ◦ y∗− d(x∗) ◦ y+F (y) ◦ x∗− d(y∗) ◦ x for all x, y ∈ R,
so that

F (x ◦ y) + F (y∗ ◦ x∗) = F (x) ◦ y − d(x∗) ◦ y∗ + F (y∗) ◦ x∗ − d(y) ◦ x. (5.74)

Replacing y by yh in (5.74),where h ∈ Z(R) ∩H(R)\{0}, one can obtain

(x ◦ y)d(h) = 0 for all x, y ∈ R. (5.75)

Since R is prime, then Eq. (5.75) assures that either d(h) = 0 or x ◦ y = 0 which
leads to R = {0}, a contradiction. Therefore we need consider that d(h) = 0 for
all h ∈ Z(R) ∩ H(R). Applying Lemma 5.2.1 one can see that d(s) = 0 for all
s ∈ Z(R) ∩ S(R).

Taking y = ys in (5.74), where s ∈ Z(R) ∩ S(R)\{0}, we have
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F (x ◦ y)− F (y∗ ◦ x∗) = F (x) ◦ y + d(x∗) ◦ y∗ − F (y∗) ◦ x∗ − d(y) ◦ x. (5.76)

From equations (5.74) and (5.76) it follows that

F (x ◦ y) = F (x) ◦ y − d(y) ◦ x for all x, y ∈ R. (5.77)

By view of Lemma 5.2.1, there exists λ in the extended centroid of R such that
F (x) = λx for all x ∈ R.
(2)⇒ (3) Suppose that

F ([x, x∗]) = [F (x), x∗]− d(x∗) ◦ x for all x, y ∈ R.

Replacing x by x+ y, we obtain

F ([x, y∗]) + F ([y, x∗]) = [F (x), y∗] + [F (y), x∗]− d(x∗) ◦ y − d(y∗) ◦ x. (5.78)

thereby obtaining

F ([x, y]) + F ([y∗, x∗]) = [F (x), y] + [F (y∗), x∗]− d(x∗) ◦ y∗ − d(y) ◦ x. (5.79)

Replacing y by yh in (5.79), where h ∈ Z(R) ∩H(R)\{0}, it is obvious to see that

xyd(h) = 0 for all x, y ∈ R.

In light of primeness, it follows that d(h) = 0 for all h ∈ Z(R) ∩H(R).

Substituting ys for y in (5.79), with 0 6= s ∈ Z(R) ∩ S(R), one can obtain

F ([x, y]) + F ([y∗, x∗]) = [F (x), y] + [F (y∗), x∗]− d(x∗) ◦ y∗ − d(y) ◦ x. (5.80)

Comparing (5.79) with (5.80), we find that

F ([x, y]) = [F (x), y]− d(y) ◦ x for all x, y ∈ R. (5.81)

Another use of Lemma 5.2.3, gives the required result.

In [7, Theorem 2.8] it is proved that if R is a 2−torsion free semi-prime ring with a
generalized derivation F associated with a nonzero derivation d such that :

F ([x, y]) = [F (x), y] + [d(y), x] for all x, y ∈ I (�)

where I is a nonzero ideal of R, then R contains a nonzero central ideal.
Our aim in the following theorem is to study the case where the identity (�) is
replaced by a more general algebraic identity. More precisely, we classify the gener-
alized derivation.

Theorem 5.2.2. Let (R, ∗) be a 2−torsion free prime ring with involution of the
second kind and F a generalized derivation associated with a derivation d such that
F ([x, x∗]) = [F (x), x∗] + [d(x∗), x] for all x ∈ R. Then either R is commutative or

87



there exists λ in the extended centroid of R such that F (x) = λx for all x ∈ R.

Proof. Assume that

F ([x, x∗]) = [F (x), x∗] + [d(x∗), x] for all x ∈ R.

By linearization we get

F ([x, y∗]) + F ([y, x∗]) = [F (x), y∗] + [F (y), x∗] + [d(x∗), y] + [d(y∗), x]. (5.82)

Which leads to

F ([x, y]) + F ([y∗, x∗]) = [F (x), y] + [F (y∗), x∗] + [d(x∗), y∗] + [d(y), x]. (5.83)

Taking y = yh in (5.83), where h ∈ Z(R) ∩H(R)\{0}, we obtain

[x, y]d(h) = 0 for all x, y ∈ R

Since R is prime, it follows that either d(h) = 0 or R is commutative.
Assume that d(h) = 0 for all h ∈ Z(R) ∩ H(R); writing ys instead of y in (5.83)
with s ∈ Z(R) ∩ S(R)\{0}, we find that

F ([x, y])− F ([y∗, x∗]) = [F (x), y]− [F (y∗), x∗]− [d(x∗), y∗] + [d(y), x]. (5.84)

Using (5.83) together with (5.84), we find that

F ([x, y]) = [F (x), y] + [d(y), x] for all x, y ∈ R. (5.85)

In view of Lemma 5.2.3, there exists λ in the extended centroid of R such that
F (x) = λx for all x ∈ R.

In [58, Theorem 2.3 and 2.4] it is proved that if R is a 2−torsion free semi-prime ring
admitting a generalized derivation F with associated nonzero derivation d satisfying
any one of the following conditions

i)F ([x, y]) = F (x) ◦ y − d(y) ◦ x, ii)F (x ◦ y) = [F (x), y] + [d(y), x]

for all x, y in a nonzero ideal I of R, then R contains a nonzero central ideal.
Our next purpose in the following theorem is to study generalized derivations F
satisfying the above identities in the case of prime rings with involution. We have
studied this problem and proved that such conditions cannot be considered as com-
mutativity criteria. Moreover we successfully provide a complete description of those
generalized derivations.

Theorem 5.2.3. Let (R, ∗) be a 2−torsion free prime ring with involution of the
second kind. If R admits a generalized derivation F associated with a derivation d,
Then the following assertions are equivalent:
(1) F ([x, x∗]) = F (x) ◦ x∗ − d(x∗) ◦ x for all x ∈ R;
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(2) F (x ◦ x∗) = [F (x), x∗] + [d(x∗), x] for all x ∈ R;

(3) F = 0.

Proof. (1)⇒ (3) By assumption, we have

F ([x, x∗]) = F (x) ◦ x∗ − d(x∗) ◦ x for all x ∈ R. (5.86)

A linearization of (5.86) yields

F ([x, y∗]) +F ([y, x∗]) = F (x) ◦ y∗+F (y) ◦ x∗− d(x∗) ◦ y− d(y∗) ◦ x for all x, y ∈ R,

and thus

F ([x, y]) + F ([y∗, x∗]) = F (x) ◦ y + F (y∗) ◦ x∗ − d(x∗) ◦ y∗ − d(y) ◦ x for all x, y ∈ R.
(5.87)

Replacing y by yh in (5.87), where h ∈ Z(R)∩H(R)\{0}, one can easily verify that

(xy − x∗y∗)d(h) = 0 for all x, y ∈ R. (5.88)

In view of primeness, the above expression yields that either xy − x∗y∗ = 0 or
d(h) = 0.

Suppose that
xy − x∗y∗ = 0 for all x, y ∈ R. (5.89)

If we put y = h, where h ∈ Z(R) ∩H(R)\{0}, we get x− x∗ = 0.

Replacing y by s, where s ∈ Z(R)∩ S(R)\{0}, we obtain x+ x∗ = 0. In such a way
that R = {0}, a contradiction. Accordingly, d(h) = 0 for all h ∈ Z(R) ∩H(R).

Replacing y by ys in (5.87), where s ∈ Z(R) ∩ S(R)\{0}, we have

F ([x, y])− F ([y∗, x∗]) = F (x) ◦ y − F (y∗) ◦ x∗ + d(x∗) ◦ y∗ − d(y) ◦ x. (5.90)

Comparing (5.87) with (5.90), one has

F ([x, y]) = F (x) ◦ y − d(y) ◦ x for all x, y ∈ R. (5.91)

In particular, y = h in (5.91), implies that F = 0.

(2)⇒ (3) We are assuming that

F (x ◦ x∗) = [F (x), x∗] + [d(x∗), x] for all x ∈ R. (5.92)

Linearizing the above relation, one can see that

F (x ◦ y∗) + F (y ◦ x∗) = [F (x), y∗] + [F (y), x∗] + [d(x∗), y] + [d(y∗), x]

and therefore

89



F (x ◦ y) + F (y∗ ◦ x∗) = [F (x), y] + [F (y∗), x∗] + [d(x∗), y∗] + [d(y), x] for all x ∈ R.
(5.93)

Replacing y by yh in (5.93), where h ∈ Z(R) ∩H(R)\{0}, we obtain

(x ◦ y + y∗ ◦ x∗)d(h) = ([y∗, x∗] + [y, x])d(h) for all x, y ∈ R (5.94)

then
(xy + x∗ ◦ y∗)d(h) = 0 for all x, y ∈ R. (5.95)

Arguing as above, equation (5.95) implies that

d(h) = 0 for all h ∈ Z(R) ∩H(R).

Replace y by ys in (5.93), where s ∈ Z(R) ∩ S(R)\{0}, we obtain

F (x ◦ y)− F (y∗ ◦ x∗) = [F (x), y]− [F (y∗), x∗]− [d(x∗), y∗] + [d(y), x]. (5.96)

Adding relations (5.93) and (5.96), we get

F (x ◦ y) = [F (x), y] + [d(y), x] for all x, y ∈ R. (5.97)

Replacing y by h in (5.97), we find that

F (x)h = 0 for all x ∈ R.

Then we conclude that F = 0.

As an application of our result, the following theorem constitute a suitable version
of [58, Theorems 2.3 and 2.4] for the class of prime rings with involution.

Theorem 5.2.4. Let (R, ∗) be a 2−torsion free prime ring with involution of the
second kind. If R admits a generalized derivation F associated with a derivation d,
Then the following assertions are equivalent :
(1) F ([x, y]) = F (x) ◦ y − d(y) ◦ x for all x, y ∈ R;

(2) F (x ◦ y) = [F (x), y] + [d(y), x] for all x, y ∈ R;

(3) F = 0.

The following theorem provides some commutativity criteria for prime rings with in-
volution involving generalized derivations. Furthermore, we classify such generalized
derivation.

Theorem 5.2.5. Let (R, ∗) be a 2−torsion free prime ring with involution of the
second kind. If R admits a nonzero generalized derivation F associated with a deriva-
tion d, satisfying one of the following conditions:
(1) F ([x, x∗]) = [d(x), x∗] + d(x∗) ◦ x for all x ∈ R;
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(2) F ([x, x∗]) = [d(x), x∗]− d(x∗) ◦ x for all x ∈ R;

(3) F ([x, x∗]) = d(x) ◦ x∗ + d(x∗) ◦ x for all x ∈ R;

then R is commutative. Furthermore, there exists λ in the extend centroid of R such
that F (x) = λx for all x ∈ R.

Proof. (1) Suppose that

F ([x, x∗]) = [d(x), x∗] + d(x∗) ◦ x for all x ∈ R. (5.98)

Linearizing (5.98), one can see that

F ([x, y]) + F ([y∗, x∗]) = [d(x), y] + [d(y∗), x∗] + d(x∗) ◦ y∗ + d(y) ◦ x. (5.99)

Replacing y by yh in (5.99), where h ∈ Z(R) ∩H(R)\{0}, we obtain

[x, y]d(h) = (y ◦ x)d(h) for all x, y ∈ R (5.100)

thereby obtaining

yxd(h) = 0 for all x, y ∈ R. (5.101)

In light of primeness, the above expression assures that d(h) = 0.

Substituting ys for y in (5.99), where s ∈ Z(R) ∩ S(R)\{0}, we obtain

F ([x, y])− F ([y∗, x∗]) = [d(x), y]− [d(y∗), x∗]− d(x∗) ◦ y∗ + d(y) ◦ x. (5.102)

Comparing (5.99) with (5.102), one can verify that

F ([x, y]) = [d(x), y] + d(y) ◦ x for all x, y ∈ R. (5.103)

Replacing x by h in (5.103), where h ∈ Z(R) ∩ S(R)\{0}, we obtain

d(y)h = 0 for all y ∈ R, (5.104)

which proves that d = 0. Then our hypothesis reduces to F ([x, x∗]) = 0 for all x ∈ R.
Since F 6= 0, then R is commutative by [55, Theorem 1].
Accordingly, equation (5.103) becomes

F (x)y − F (y)x = 0 for all x, y ∈ R. (5.105)

Replacing y by :yz, we find that

F (x)zy − xzF (y) = 0 for all x, y, z ∈ R.

By view of Lemma 5.2.2, there exists λ in the extended centroid of R such that
f(x) = λx for all x ∈ R.
(2) Suppose that
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F ([x, x∗]) = [d(x), x∗]− d(x∗) ◦ x for all x ∈ R. (5.106)

A linearization of (5.106) leads to

F ([x, y])− F ([y∗, x∗]) = [d(x), y]− [d(y∗), x∗]− d(x∗) ◦ y∗ − d(y) ◦ x. (5.107)

Replacing y by yh in (5.107), where h ∈ Z(R) ∩H(R)\{0}, we obtain

([x, y] + y ◦ x)d(h) = 0 for all x, y ∈ R (5.108)

in such a way that

xyd(h) = 0 for all x, y ∈ R (5.109)

proving that d(h) = 0 for all h ∈ Z(R) ∩H(R).

Replacing y by ys in (5.107), where 0 6= s ∈ Z(R) ∩ S(R), we arrive at

F ([x, y])− F ([y∗, x∗]) = [d(x), y]− [d(y∗), x∗] + d(x∗) ◦ y∗ − d(y) ◦ x. (5.110)

Comparing (5.107) with (5.110), it follows that

F ([x, y]) = [d(x), y]− d(y) ◦ x for all x, y ∈ R. (5.111)

Writting yx instead of y in (5.111), and invoking (5.111), we obtain where s ∈
Z(R) ∩ S(R)\{0}, we obtain xyd(x) = 0 so that d = 0. Therefore our identity
reduces to F [x∗, x∗] = 0 for all x, y ∈ R. Using the same technique as used above we
conclude that R is commutative and d = 0. Finally, there exists λ in the extended
centroid of R such that F (x) = λx for all x ∈ R.
(3) Assume that

F ([x, x∗]) = d(x) ◦ x∗ − d(x∗) ◦ x for all x ∈ R. (5.112)

A linearization of (5.112) implies that

F ([x, y])− F ([y∗, x∗]) = d(x) ◦ y + d(y∗) ◦ x∗ − d(x∗) ◦ y∗ − d(y) ◦ x. (5.113)

Replacing y by yh in (5.113), where h ∈ Z(R) ∩ H(R)\{0}, it is obvious to verify
that

(xy − x∗y∗)d(y) = 0 for all x, y ∈ R. (5.114)

Since equation (5.114) is the same as equation (5.88), arguing as above, we are forced
to conclude d(h) = 0.

Replacing y by ys in (5.113), where s is a nonzero element in Z(R)∩S(R), we have
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F ([x, y])− F ([y∗, x∗]) = d(x) ◦ y − d(y∗) ◦ x∗ + d(x∗) ◦ y∗ − d(y) ◦ x. (5.115)

Combining (5.113) with (5.115), one has

F ([x, y]) = d(x) ◦ y − d(y) ◦ x for all x, y ∈ R. (5.116)

Writing h instead of y in (5.116), it follows that

d(x)h = 0 for all x ∈ R, (5.117)

which proves that d = 0, and (5.112) becomes F ([x, x∗]) = 0 for all x ∈ R. Conse-
quently, d = 0, R is commutative and there exists λ in the extended centroid of R
such that F (x) = λx for all x ∈ R.

As application of Theorem 5.2.5, we have the following result.

Theorem 5.2.6. Let (R, ∗) be a 2−torsion free prime ring with involution of the
second kind. If R admits a generalized derivation F associated with a derivation d,
satisfying one of the following conditions :
(1) F ([x, y]) = [d(x), y] + d(y) ◦ x for all x, y ∈ R,
(2) F ([x, y]) = [d(x), y]− d(y) ◦ x for all x, y ∈ R,
(3) F ([x, y]) = d(x) ◦ y + d(y) ◦ x for all x, y ∈ R,
then R is commutative. Furthermore, there exists λ in the extended centroid of R
such that F (x) = λx for all x ∈ R.

The following example proves that the primeness hypothesis in Theorem 5.2.5 is not
superfluous.

Example. Let us consider R = M2(Z) and define

(
a b

c d

)∗
=

(
d −b
−c a

)
and

F

(
a b

c d

)
=

(
a b

0 0

)
. Then F is a left multiplier and (R, ∗) is a prime ring with

involution of the first kind such that [x, x∗] = 0 ∀x ∈ R.
Set R = R × C, then it is obvious to verify that (R, σ) is a semi-prime ring with
involution of the second kind where σ(r, z) = (r∗, z).

Moreover, if we put
F (r, z) = (F (r), 0)

then F is a left multiplier satisfying the condition of Theorem 5.2.5 but R is not
commutative.

The following example proves that the condition "∗ is of the second kind" is necessary
in Theorem 5.2.5.
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Example. Let’s consider R = M2(Z) and

(
a b

c d

)∗
=

(
d −b
−c a

)
. It is straight-

forward to check that (R, ∗) is prime with involution of the first kind such that

[x, x∗] = 0 for all x ∈ R.
Furthermore, the mapping F : R −→ R defined by

F

(
a b

c d

)
=

(
a b

0 0

)

is a left multiplier that satisfies conditions of Theorem 5.2.5 however R is not com-
mutative.
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Chapter 6

On ∗-semiderivations and
∗-generalized semiderivations

A. Mamouni, L. Oukhtite and B. Nejjar, On ∗-semiderivations and ∗-generalized
semiderivations, Journal of Algebra and Its Applications, vol. 16, No. 4, 1750075
(2017).

Throughout this chapter we aim to give a complete description of ∗-mappings. In-
deed, we define and study a more general class of semiderivations (respectively gen-
eralized semiderivations), that we call ∗-semiderivations (respectively ∗-generalized
semiderivations). In particular, we prove that for the prime rings with involution,
these new definitions coincide with the classical definitions of semiderivations and
generalized semiderivations, respectively.

6.1 Introduction

In what follows R will be a 2−torsion free prime ring . Let σ, τ be two mappings
from R into itself, we set [x, y]σ,τ = xσ(y)− τ(y)x for all x, y ∈ R, and
Cσ,τ = {c ∈ R | cσ(r) = τ(r)c for all r ∈ R}.
Let g be an endomorphism of R. According to Bergen [25], an additive mapping d
of R into itself is called a semiderivation (associated with g) if, for all x, y ∈ R
d(xy) = d(x)y+g(x)d(y) = d(x)g(y)+xd(y) with d(g(x)) = g(d(x)) for all x, y ∈ R.
In case g is the identity map on R, d is a derivation. Moreover, if g is an auto-
morphism of R, d is called skew-derivation (or g-derivation). A map D : R −→ R

defined by D(x) = bx − g(x)b, x ∈ R, is a g-derivation on R and it is called an
inner g-derivation (or an inner skew derivation) induced by b.
Many results in the literature indicate how the global structure of a ring R is of-
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ten tightly connected to the behavior of additive mappings defined on R. Recently,
many authors have studied commutativity of prime and semi-prime rings admitting
suitably constrained additive mappings, as automorphisms, derivations skew deriva-
tions, generalized derivations and semiderivations acting on appropriate subsets of
the rings.
Motivated by the definition of centralizing mapping, the authors in [1] introduce the
notion of ∗-centralizing and ∗-commuting mappings as follows :

Definition 6.1.1. A mapping f : R −→ R is called ∗-centralizing (respectively
∗-commuting) on S if [f(x), x∗] ∈ Z(R) (respectively [f(x), x∗] = 0) for all x ∈ S.

Moreover, they describe the structure of an arbitrary additive mapping which is
∗-centralizing on a prime ring with involution. In [3], the authors initiate the study
of a more general concept than strong commutativity mappings as follows :

Definition 6.1.2. An additive mapping f : R −→ R is said to be ∗-SCP if
[f(x), f(x∗)] = [x, x∗] for all x ∈ R.

Furthermore, they investigate the commutativity of a prime ring with involution
equipped with an ∗-SCP derivation.
Motivated by the results above, here, we initiate a more general class of semideriva-
tions (respectively generalized semiderivations) that we call ∗-semiderivations (re-
spectively ∗-generalized semiderivations) as follows :

Definition 6.1.3.
Let (R, ∗) be a ring with involution and let g be an endomorphism of R.
1) An additive mapping d : R −→ R is called an ∗-semiderivation associated with g
if d(xx∗) = d(x)x∗+g(x)d(x∗) = d(x)g(x∗)+xd(x∗) with d(g(x)) = g(d(x)) for all x ∈
R.

2) Let d be a semiderivation associated with an endomorphism of R. An additive
mapping F : R −→ R is called an ∗-generalized semiderivation if
F (xx∗) = F (x)x∗+g(x)d(x∗) = F (x)g(x∗)+xd(x∗) with F (g(x)) = g(F (x)) for all x ∈ R.

Our goal is to prove the following result :

Main Theorem. Let (R, ∗) be a 2-torsion free prime ring and g an endomorphism
of R. Here, we prove that if F , d : R −→ R are two additive mappings such that:{

F (xx∗) = F (x)x∗ + g(x)d(x∗) = F (x)g(x∗) + xd(x∗) with F (g(x)) = g(F (x))

d(xx∗) = d(x)x∗ + g(x)d(x∗) = d(x)g(x∗) + xd(x∗) with d(g(x)) = g(d(x))

for all x ∈ R, then F is a generalized semiderivation of R and d a semiderivation.
Moreover, if R is commutative, then F = d.
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6.2 Main Results

In the following theorem, we prove that every ∗-semiderivation on a prime ring is a
semiderivation.

Theorem 6.2.1. Let R be a 2-torsion free prime ∗-ring and g an endomorphism of
R. Suppose, there exists an additive mapping d : R −→ R such that

d(xx∗) = d(x)x∗+g(x)d(x∗) = d(x)g(x∗)+xd(x∗) with d(g(x)) = g(d(x)) for all x ∈ R.

Then d is a semiderivation associated with g.

Proof. We might assume that S 6= {0}, (with S the set of all skew-hermitian ele-
ments of R), otherwise x∗ = x for all x ∈ R and there is nothing to prove. We are
given that

d(xx∗) = d(x)x∗ + g(x)d(x∗) for all x, y ∈ R. (6.1)
Replacing x by x+ y in (6.1) where y ∈ R, we obtain

d(xx∗ + xy∗ + yx∗ + yy∗) = d(x)x∗ + d(x)y∗ + d(y)x∗ + g(y)d(x∗) + g(x)d(y∗)

+ g(y)d(y∗) + d(y)y∗ + g(x)d(x∗).

Using (6.1) together with the fact that d is additive, it reduces to

d(xy∗ + yx∗) = d(x)y∗ + d(y)x∗ + g(y)d(x∗) + g(x)d(y∗) for all x ∈ R. (6.2)

Taking x∗ instead of y in (6.2), we get

d
(
x2 + (x∗)2

)
= d(x)x+ d(x∗)x∗ + g(x∗)d(x∗) + g(x)d(x).

and thus

d(x2)− d(x)x− g(x)d(x) + d
(
(x∗)2

)
− d(x∗)x∗ − g(x∗)d(x∗) = 0.

Accordingly, we have
A(x) + A(x∗) = 0 for all x ∈ R. (6.3)

where A(x) = d(x2) − d(x)x − g(x)d(x). Substituting xy∗ + yx∗ for y in (6.2), we
find that

d
(
x(xy∗ + yx∗)∗ + (xy∗ + yx∗)x∗

)
= d(x)(xy∗ + yx∗)∗ + g(x)d

(
(xy∗ + yx∗)∗

)
+ d(xy∗ + yx∗)x∗ + g(xy∗ + yx∗)d(x∗)

and therefore

d(xyx∗ + x2y∗ + xy∗x∗ + y(x∗)2) = d(x)yx∗ + d(x)xy∗ + g(x)d(yx∗ + xy∗)

+ d(xy∗ + yx∗)x∗ + g(xy∗)d(x∗) + g(yx∗)d(x∗).

Using (6.2), we have
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d
(
x(y + y∗)x∗

)
+ d
(
x2y∗ + y(x∗)2

)
= d(y)(x∗)2 + d(x)y∗x∗ + g(y)d(x∗)x∗ + g(x)d(y∗)x∗

+ d(x)yx∗ + d(x)xy∗ + g(xy∗)d(x∗) + g(yx∗)d(x∗)

+ g(x)d(y)x∗ + g(x)d(x)y∗ + g(xy)d(x∗) + g(x2)d(y∗).

Taking x2 instead of x in (6.2), yields that

d(x2y∗ + y(x2)∗) = d(y)(x2)∗ + d(x2)y∗ + g(y)d((x∗)2) + g(x2)d(y∗)

Combining the last two equations, we obtain

d
(
x(y + y∗)x∗

)
= −A(x)y∗ − g(y)A(x∗) + d(x)yx∗ + d(x)y∗x∗ + g(x)d(y∗)x∗

+ g(x)g(y∗)d(x∗) + g(x)d(y)x∗ + g(x)g(y)d(x∗)

and thus

d
(
x(y + y∗)x∗

)
= −A(x)y∗ − g(y)A(x∗) + d(x)(y + y∗)x∗

+ g(x)g(y + y∗)d(x∗) + g(x)d(y + y∗)x∗.

Replacing y by y − y∗ in last expression, we arrive at

−A(x)(y∗ − y)− g(y − y∗)A(x∗) = 0

so
A(x)y∗ − A(x)y + g(y)A(x∗)− g(y∗)A(x∗) = 0

Using (6.3) in the last equation, we get

A(x)y∗ + g(y∗)A(x) = A(x)y + g(y)A(x) for all x, y ∈ R. (6.4)

Writing s instead of y in (6.4), we obtain

−A(x)s− g(s)A(x) = A(x)s+ g(s)A(x)

and so
2(A(x)s+ g(s)A(x)) = 0

Since, R is 2-torsion free ring, yields that

A(x)s+ g(s)A(x) = 0 for all s ∈ S, x ∈ R. (6.5)

Right multiplication of (6.5) by t, where t ∈ S, we find that

A(x)st+ g(s)A(x)t = 0 for all s, t ∈ S, x ∈ R. (6.6)

Using (6.5) and (6.6) becomes

A(x)st− g(s)g(t)A(x) = 0 for all s, t ∈ S, x ∈ R. (6.7)

Accordingly, we have

A(x)st− g(st)A(x) = 0 for all s, t ∈ S, x ∈ R. (6.8)

Therefore
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[A(x), S2]IR,g = 0 for all x ∈ R. (6.9)

Since the mapping y 7→ [A(x), y]IR,g is an (IR, g)−inner derivation and S2 is a Lie
ideal, by [51, Lemma 2.1], then in a view of [57, Lemma 1.1] and applying Eq (6.9)
yields that S2 ⊆ Z(R), in this case [61, Lemma 2] forces that R satisfies S4 and, for
all x ∈ R, A(x) = 0 or A(x) ∈ CIR,g. Then (6.5) gives 2A(x)s = 0 for all s ∈ S,
x ∈ R, so

A(x)s = 0 for all s ∈ S, x ∈ R. (6.10)

Let y ∈ R, since y − y∗ ∈ S, then

A(x)(y − y∗) = 0 for all x, y ∈ R, (6.11)

and therefore
A(x)y = A(x)y∗ for all x, y ∈ R. (6.12)

In view of [89, Lemma 1] together with Equation (6.12), we conclude that A(x) ∈
Z(R) and Equation (6.10) implies that A(x) = 0 for all x ∈ R. Hence d is a Jordan
semiderivation associated with g. Applying [44, Main Theorem], it follows that d is
a semiderivation associated with g.

Our aim in the following theorem is to show that every ∗-generalized semiderivation
of a prime ring is a generalized semiderivation.

Theorem 6.2.2. Let R be a 2-torsion free prime ∗-ring and d a semiderivation
associated with an endomorphism g. If there exists an additive mapping F : R −→ R

such that

F (xx∗) = F (x)x∗+g(x)d(x∗) = F (x)g(x∗)+xd(x∗) and F (g(x)) = g(F (x)) for all x ∈ R.

Then F is a generalized semiderivation associated with d and g. Moreover, if R is
commutative, then F = d.

Proof. Suppose that

F (xx∗) = F (x)x∗ + g(x)d(x∗) for all x ∈ R. (6.13)

A linearization of (6.13) yields that

F (xx∗ + xy∗ + yx∗ + yy∗)

= F (x+ y)(x∗ + y∗) + g(x+ y)d(x∗ + y∗) for all x, y ∈ R. (6.14)

Using the fact that F is an additive mapping together with (6.13), and (6.14) be-
comes

F (xy∗ + yx∗) = F (y)x∗ + F (x)y∗ + g(y)d(x∗) + g(x)d(y∗) for all x, y ∈ R. (6.15)

Substituting x∗ for y in (6.15), we arrive at
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F
(
x2 + (x∗)2

)
= F (x∗)x∗ + F (x)x+ g(x∗)d(x∗) + g(x)d(x) for all x ∈ R (6.16)

and thus

F (x2)− F (x)x− g(x)d(x) + F
(
(x∗)2

)
− F (x∗)x∗ − g(x∗)d(x∗) = 0 for all x ∈ R.

(6.17)

This relation reduces to

B(x) +B(x∗) = 0 for all x ∈ R. (6.18)

where B(x) = F (x2)− F (x)x− g(x)d(x).

Replacing y by xy∗ + yx∗ in (6.15), we obtain

F (x(xy∗ + yx∗)∗ + (xy∗ + yx∗)x∗) = F (xy∗ + yx∗)x∗ + F (x)(xy∗ + yx∗)∗

+ g(xy∗ + yx∗)d(x∗) + g(x)d((xy∗ + yx∗)∗)

and so

F
(
x(yx∗ + xy∗) + (xy∗ + yx∗)x∗

)
= F (xy∗ + yx∗)x∗ + F (x)(yx∗ + xy∗)

+ g(xy∗ + yx∗)d(x∗) + g(x)d
(
(xy∗ + yx∗)∗

)
Using (6.15) and the fact that d is a semiderivation of R associated with g, we get

F
(
xyx∗ + x2y∗ + xy∗x∗ + y(x∗)2

)
= F (y)x∗ + F (x)y∗ + g(y)d(x∗) + g(x)d(y∗))x∗

+ F (x)(yx∗ + xy∗) + g(xy∗ + yx∗)d(x∗) + g(x)(d(y)x∗

+ g(y)d(x∗)) + d(x)y∗ + g(x)d(y∗).

Taking x2 instead of x in (6.15), we find that

F (x2y∗ + y(x2)∗) = F (y)(x2)∗ + F (x2)y∗ + g(y)d((x∗)2) + g(x2)d(y∗).

Combining the last two equations, we arrive at

F (x(y + y∗)x∗) = −F (x2)y∗ + +F (x)y∗x∗ + g(x)d(y∗)x∗

+ F (x)yx∗ + F (x)xy∗ + g(x)g(y∗)d(x∗)

+ g(x)d(y)x∗ + g(x)g(y)d(x∗) + g(x)d(x)y∗

that is

F (x(y + y∗)x∗) = −B(x)y∗ + F (x)(y + y∗)x∗ + g(x)d((y + y∗)x∗)

+ g(x)g(y + y∗)d(x∗) (6.19)

for all x, y ∈ R. Replacing y by y − y∗ in (6.19), we get
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B(x)y = B(x)y∗ for all x ∈ R. (6.20)

In view of [89, Lemma 1], we conclude that B(x) ∈ Z(R) and the last equation
becomes B(x)R(y − y∗) = 0. Using the primeness of R together, with the fact that
S 6= {0}, it follows that B(x) = 0 for all x ∈ R. Therefore F (x2) = F (x)x+g(x)d(x)

proving that F is a generalized Jordan semiderivation so [44, Main Theorem] assures
that F is a generalized semiderivation associated with d and g. Moreover, if R is
commutative, then F = d.
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[26] M. Brešar, Centralizing mappings and derivations in prime rings. J. Algebra
156 (1993), no. 2, 385–394.
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