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RÉSUMÉ

Le principal objectif de ce mémoire est de traiter les travaux de H. Holm situés dans
son article ”Gorenstein Homological Dimensions”[124], où il a étendu les dimensions
homologiques de Gorenstein, qui étaient restreintes aux anneaux Noethériens, à
n’importe quel anneau en faisant une analogie avec les dimensions homologiques clas-
siques, puis introduire une notion plus forte et une classe intermédiaire de modules
appelés modules fortement projectifs, injectifs et plats de Gorenstein, cette classe de
modules a été introduite par D. Bennis et N. Mahdou dans l’article ”Strongly Goren-
stein projective, injective and flat modules”[39] et finalement présenter quelque pro-
priétés sur les modules fortement projectifs, injectifs et plats de Gorenstein donné par
Y. Xiaoyan et L. Zhongkui dans leur article ”Strongly Gorenstein projective, injec-
tive and flat modules”[226], et donner les relations entre modules fortement Goren-
stein projectifs, injectifs et plats, et nous considérons ces propriétés sous changement
d’anneaux.
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A
Tous les membres de l’équipe de recherche Algèbre Commutative et
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encouragements valorisants, sa direction compétente de ce mémoire, j’ai pu réaliser
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INTRODUCTION

La théorie des dimensions homologiques de Gorenstein des modules remonte aux
années soixante avec les travaux de Auslander [6] sur la G-dimension des modules
de type fini sur des anneaux Noethériens, et puis ses travaux avec Bridger dans [8].
La raison derrière le nom G-dimension se manifeste à travers le résultat suivant:
un anneau Noethérien local est de Gorenstein (i.e., de dimension auto-injective
finie) si et seulement si la G-dimension de tout module de type fini est finie, cf. [6,
Théorème 3, page 64]. Cette caractérisation est analogue à celle connue des anneaux
Noethériens locaux réguliers établie par Auslander, Buchsbaum, et Serre, cf. [9] et
[199]. Aussi il est important de mentionner que cette caractérisation est considérée
comme la raison principale de l’usage des méthodes homologiques dans la théorie
des anneaux. Notamment, lorsqu’elles étaient utilisées avec succès pour répondre
affirmativement à la conjecture : ”les anneaux Noethériens locaux réguliers sont des
domaines factoriels” (voir par exemple [147, 191]). Rappelons que, pour un anneau
Noethérien R, la G-dimension d’un R-module de type fini M , notée G− dimR(M),
est la longueur minimale d’une résolution de M de termes des R-modules de type
fini de G-dimension 0, qui sont définis comme suit: Un R-module de type fini M est
de G-dimension 0, si
• M est réflexif, i.e., l’homomorphisme canonique

M → HomR(HomR(M,R), R)

est un isomorphisme, et
• ExtmR (M,R) = 0 = ExtmR (HomR(M,R), R) pour tout m > 0.
La G-dimension est analogue à la dimension projective. En particulier, elles sont

étroitement liées par le résultat principal suivant: Pour tout module de type fini
M , G− dim(M) ≤ pd(M), avec égalité si pd(M) est finie. La G-dimension est
donc un raffinement de la dimension projective. Néanmoins, cette analogie exige
une extension de la G-dimension aux modules qui ne sont pas nécessairement de
type fini et sur un anneau arbitraire.

Dans les années 1990, Enochs et al. [83, 89, 98] ont réussi à établir cette extension
en définissant les modules projectifs de Gorenstein et la dimension projective de
Gorenstein. En fait, ce sont Avramov, Buchweitz, Martsinkovsky, et Reiten qui ont
prouvé que la dimension projective de Gorenstein des modules de type fini sur un
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INTRODUCTION

anneau Noethérien cöıncide avec la G-dimension d’Auslander, cf. [53, Théorème
4.2.6 et Notes page 99].
En effet, c’est la caracterization suivante d’Auslander des modules de G-dimension
0 qui a permis de fixer l’extension appropriée ([6]). Soient R un anneau Noethérien
et M un R-module de type fini. Alors, les assertions suivantes sont équivalentes:

1. G− dimR(M) = 0,

2. il existe une suite exacte de R-modules libres de type fini

L = · · · −→ L1 −→ L0 −→ L0 −→ L1 −→ · · ·

telle que M = Im(L0 → L0) et telle que la suite HomR(L, R) est exacte.

Dans ce sens, Enochs et al. ont défini le module projective Gorenstein et la dimension
projective de Gorenstein.

Définitions 0.0.1 Soit R un anneau.
• Une suite exacte de R-modules projectifs

P = · · · → P1 → P0 → P 0 → P 1 → · · ·

est dite résolution projective complète, si la suite HomR(P, Q) est exacte pour tout
module projectif Q.
• Un R-module M est dit projectif de Gorenstein (en bref, G-projectif), s’il existe

une résolution projective complète P telle que M ∼= Im(P0 → P 0).
• On dit qu’un R-module M est de dimension projective de Gorenstein au plus n

(pour un entier positif n), et on écrit GpdR(M) ≤ n, s’il existe une suite exacte de
R-modules 0→ Gn → · · · → G0 →M → 0, dans laquelle chaque Gi est projectif de
Gorenstein.

Remarque 0.0.2 Si P est une résolution projective complète, alors par symétrie,
toutes les images, et par suite tous les noyaux et les co-noyaux de P sont projectifs
de Gorenstein. En outre, tout module projectif est projectif de Gorenstein.

Enochs et al. [83, 89, 98] ont aussi défini le module injective Gorenstein et la
dimension injective de Gorenstein comme la notion duale de la dimension projective
de Gorenstein.

Définitions 0.0.3 Soit R un anneau.
• Une suite exacte de R-modules injectifs

I = · · · → I1 → I0 → I0 → I1 → · · ·

est dite résolution injective complète, si la suite HomR(E, I) est exacte pour tout
module injectif E.
• Un R-module M est dit injectif de Gorenstein (en bref, G-injectif), s’il existe

une résolution injective complète I telle que M ∼= Im(I0 → I0).
• On dit qu’un R-module M est de dimension injective de Gorenstein au plus n

(pour un entier positif n), et on écrit GidR(M) ≤ n, s’il existe une suite exacte de
R-modules 0 → M → G0 → · · · → Gn → 0 dans laquelle les Gi sont injectifs de
Gorenstein.

9



INTRODUCTION

Finalement, pour compléter l’analogie avec les dimensions homologiques classiques,
Enochs et al. [94] ont introduit la dimension plate de Gorenstein.

Définitions 0.0.4 Soit R un anneau.
• Une suite exacte de R-modules plats

F = · · · → F1 → F0 → F 0 → F 1 → · · ·

est dite une résolution plate complète, si la suite I⊗RF est exacte pour tout module
à droite injectif I.
• Un R-module M est dit plat de Gorenstein (en bref, G-plat), s’il existe une

résolution plate complète F telle que M ∼= Im(F0 → F 0).
• On dit qu’un R-module M est de dimension plate de Gorenstein au plus n

(pour un entier positif n), et on écrit GfdR(M) ≤ n, s’il existe une suite exacte de
R-modules 0 → Gn → · · · → G0 → M → 0, dans laquelle les Gi sont plats de
Gorenstein.

Les dimensions homologiques de Gorenstein sur des anneaux Noethérien étaient
le sujet de recherche de plusieurs travaux considérables (voir [53, 91]). La majorité
de ces travaux confirment que ces dimensions sont similaires aux dimensions ho-
mologiques classiques. Notamment, elles sont liées par les relations suivantes: Pour
un anneau Noethérien R et un R-module M , on a:
• GpdR(M) ≤ pdR(M) avec égalité si pdR(M) est finie.
• GidR(M) ≤ idR(M) avec égalité si idR(M) est finie.
• GfdR(M) ≤ fdR(M) avec égalité si fdR(M) est finie.

D’autre part, rappelons qu’un anneau R est dit n-Gorenstein, pour un entier positif
n, si R est Noethérien avec idR(R) ≤ n. L’anneau R est dit Iwanaga-Gorenstein, s’il
est n-Gorenstein pour un certain entier positif n ([91, 137]). Rappelons aussi qu’un
anneau Noethérien local R est dit de Gorenstein, si idR(R) est finie. En général,
un anneau Noethérien R est de Gorenstein, si le localisé Rp est de Gorenstein pour
tout idéal premier p de R (voir [26, 147]). Il est montré qu’un anneau est Iwanaga-
Gorenstein si et seulement s’il est de Gorenstein et de dimension de Krull finie.
Notons que les anneaux Iwanaga-Gorenstein locaux cöıncident avec les anneaux de
Gorenstein locaux, ce qui n’est pas vrai en général. Dans ce contexte, les dimensions
homologiques de Gorenstein servent à caractériser les anneaux Iwanaga-Gorenstein
comme suit:

Théorème 0.0.5 ([91], Théorème 12.3.1) Si R est un anneau Noethérien, alors
les assertions suivantes sont équivalentes pour un entier positif n:

1. R est n-Gorenstein;

2. GpdR(M) ≤ n pour tout R-module (à droite et à gauche) M ;

3. GidR(M) ≤ n pour tout R-module (à droite et à gauche) M ;

4. GfdR(M) ≤ n pour tout R-module (à droite et à gauche) M .

Aussi, la dimension plate de Gorenstein sert à caractériser les anneaux n-FC. Ces an-
neaux sont introduits dans [47] comme une généralisation des anneaux n-Gorenstein
de la façon suivante:

10



INTRODUCTION

Définitions 0.0.6 ([47, 117, 205]) Soient R un anneau et n un entier positif.
• On dit qu’un R-module M a une dimension FP -injective (ou pure) inférieure ou

égale à n, notée FP − idR(M) ≤ n, si Extn+1
R (P,M) = 0 pour tout R-module P de

présentation finie.
Les modules de dimension FP -injective 0 sont dits FP -injectifs (ou absolument

purs).
• R est dit n-FC, s’il est cohérent de deux côtés avec FP − idR(R) ≤ n (chaque

fois que R est considéré un R-module à gauche et aussi à droite).

Il est évident que, sur un anneau Noethérien, la dimension FP -injective cöıncide
avec la dimension injective classique. Ainsi, pour un entier positif n, un anneau
Noethérien est n-FC si et seulement s’il est n-Gorenstein. Comme conséquence, le
résultat suivant généralise l’équivalence (1)⇔ (4) du Théorème 0.0.5.

Théorème 0.0.7 ([47], Théorème 7) Pour un anneau cohérent de deux côtés R,
les assertions suivantes sont équivalentes:

1. R est n-FC.

2. GfdR(M) ≤ n pour tout R-module (à droite et à gauche) M ;

3. GpdR(M) ≤ n pour tout R-module (à droite et à gauche) M de présentation
finie.

Dans les dernières années, la théorie des dimensions homologiques de Gorenstein a
connu une nouvelle phase. En fait, avec les travaux de Avramov, Christensen, Ding,
Enochs, Esmkhani, Foxby, Jenda, Jørgensen, Frankild, Holm, Huang, Li, Luo, Mao,
Sather-Wagstaff, Şega, Tousi, Yassemi, et d’autres (voir [53, 57, 58, 124]), cette
théorie s’est développée sur des anneaux non-nécessairement Noethériens. L’étude
des dimensions de Gorenstein est maintenant tracée comme algèbre homologique de
Gorenstein.

Ainsi, ce mémoire est composé de quatre chapitres:

Le premier chapitre:

Ce chapitre est consacré à quelques rudiments d’algèbre homologique et quelques
notions essentielles pour les autre chapitres. Ainsi les résultats sont donnés
sans démonstration mais avec des références précises.

Le deuxième chapitre:

Dans ce chapitre qui l’un des objectifs principaux de ce mémoire, nous traitons
le travaille de H. Holm sur les dimensions homologique de Gorenstein, dans leur
article “Gorenstein Homological Dimensions ”[124]. Ce chapitre se compose
de deux sections: Dans la première, nous exposons la dimension projective
de Gorenstein et la dimension injective de Gorenstein. Dans la deuxième, la
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dimension plate de Gorenstein.

Le troisième chapitre:

Pour ce chapitre, nous introduisons un cas particulier de modules projectifs,
injectifs et plats de Gorenstein, que nous appelons respectivement modules
fortement projectifs, injectifs et plats de Gorenstein, d’après les travaux de
D. Bennis and N. Mahdou situé dans leur article intitulé “Strongly Gorenstein
projective, injective, and flat modules ”[39]. Ces trois classes nous donnent une
nouvelle caractérisation des premiers modules, et confirment qu’il existe une
analogie entre la notion “des modules projectifs, injectifs et plats de Goren-
stein ”et “des modules projectifs, injectifs et plats ”.

Le quatrième chapitre:

Dans ce chapitre, nous donnons quelques propriétés des modules fortement
projectifs, injectifs et plats de Gorenstein, et nous discutons de quelques con-
nexions entre les modules fortement projectifs, injectifs et plats de Gorenstein
de l’article de Y. Xiaoyan, L. Zhongkui, intitulé “Strongly Gorenstein projec-
tive, injective, and flat modules ”[226], puis nous donnons ces propriétés sous
changement d’anneaux.
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INTRODUCTION

The origin of Gorenstein homological dimensions dates back to the sixties of the
last century when Auslander [6] introduced the G-dimension for finitely generated
modules over a Noetherian ring, and developed it with Bridger in [8]. The reason for
this name (i.e., G-dimension) is accounted for by the following result: Given a local
Noetherian ring R, R is Gorenstein (i.e., of finite self-injective dimension) if and
only if every finitely generated module has a finite G-dimension, cf. [6, Theorem 3,
page 64]. This characterization is reminiscent of the famous one due to Auslander,
Buchsbaum and Serre (see [9] and [199]) of a local Noetherian regular ring R by
the finiteness of its global dimension. It is worth recalling that the heavy use of
homological methods in rings, especially, when they were successfully used to settle
in the affirmative the conjecture that ”every local regular Noetherian ring is a unique
factorization domain” cf. [147, 191].
Recall that, given a Noetherian ring R and a finitely generated R-module M , the
G-dimension of M , G−dimR(M), is defined as the length of the shortest resolution
of M by finitely generated modules of G-dimension 0 which are defined as follows: A
finitely generated R-module M has G-dimension 0, if the following conditions hold:

> M is reflexive, that is, the canonical map

M → HomR(HomR(M,R), R)

is an isomorphism, and

> ExtmR (M,R) = 0 = ExtmR (HomR(M,R), R) for every m > 0.

Also, it is significant to note that the G-dimension is analogous and closely related
in many aspects to the classical projective dimension. Precisely, for a finitely gener-
ated module M , there is the inequality G − dim(M) ≤ pd(M) with equality when
pd(M) is finite. The G-dimension then arises as a refinement of the projective di-
mension. However, to complete the analogy, an extension of the G-dimension to the
non-Noetherian setting was highly needed. In the nineties, Enochs et al. [83, 89, 98]
carried out this extension, and defined what is called Gorenstein projective mod-
ule and Gorenstein projective dimension(see also [91]). In fact, it was Avramov,
Buchweitz, Martsinkovsky, and Reiten who proved that the Gorenstein projective
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dimension of finitely generated modules over Noetherian rings coincides with the
G-dimension, cf. [53, Theorem 4.2.6 and Notes page 99]. Indeed, it was the fol-
lowing Auslander’s characterization of the modules of G-dimension 0 which made it
possible to set the appropriate extension([6]); Let R be a Noetherian ring and let
M be a finitely generated R-module. Then, the following assertions are equivalent:

1. G− dimRM = 0,

2. There exists an exact sequence of finitely generated free R-modules

L = ...→ L1 → L0 → L0 → L1 → ...

such that M = Im(L0 → L0) and such that the sequence HomR(L, R) is exact.

In this vein, Enochs and al. defined the Gorenstein projective module and the
Gorenstein dimension as follows:

Definition 0.0.1
Let R be a ring.
• An exact sequence of projective R-modules

P = ...→ P1 → P0 → P 0 → P 1 → ...

is called a complete projective resolution, if the sequence HomR(P, Q) is exact
whenever Q is a projective R-module.
• An R-module M is called Gorenstein projective. If there exists a complete

projective resolution P such that M ∼= Im(P0 → P 0).
• We say that an R-module M has Gorenstein projective dimension at most n

(for some positive integer n), and we write GpdRM ≤ n, if there exists an exact
sequence of R-modules 0 → Gn → ... → G0 → M → 0 in which each Gi is
Gorenstein projective.

Remark 0.0.2
If P is a complete projective resolution, then by symmetry, all the images, and
hence also all the kernels, and cokernels of P are Gorenstein projective modules.
Furthermore, every projective module is Gorenstein projective.

Enochs et al. [83, 89, 98] also defined the Gorenstein injective module and Gorenstein
injective dimension as dual notions of their respective Gorenstein projective ones.

Definition 0.0.3
Let R be a ring.
• An exact sequence of injective R-modules

I = ...→ I1 → I0 → I0 → I1 → ...

is called a complete injective resolution, if the sequence HomR(E, I) is exact when-
ever E is an injective R-module.
• An R-module M is called Gorenstein injective, if there exists a complete injective

resolution I such that M ∼= Im(I0 → I0).
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• We say that an R-module M has Gorenstein injective dimension at most n (for
some positive integer n), and we write GidRM ≤ n, if there exists an exact sequence
of R-modules 0 → M → G0 → ... → Gn → 0 in which each Gi is Gorenstein
injective.

Finally, to complete the analogy with the classical homological dimensions, Enochs
et al. [94] introduced the Gorenstein flat modules and the Gorenstein flat dimension.

Definition 0.0.4
Let R be a ring.
• An exact sequence of flat R-modules

F = ...→ F1 → F0 → F 0 → F 1 → ...

is called a complete flat resolution, if the sequence I ⊗R F is exact whenever I is a
right injective R-module.
• An R-module M is called Gorenstein flat, if there exists a complete flat resolution

F such that M ∼= Im(F0 → F 0).
• We say that an R-module M has Gorenstein flat dimension at most n (for some

positive integer n), and we write GfdRM ≤ n, if there exists an exact sequence of
R-modules 0→ Gn → ...→ G0 →M → 0 in which each Gi is Gorenstein flat.

Gorenstein dimensions over two-sided Noetherian rings have been subject to an
extensive study (see [53, 91]). It turned out ultimately that they are similar to (and
refinements of) the classical homological dimensions, i.e., projective, injective, and
flat dimensions, respectively. In this regard, when R is a two-sided Noetherian ring
and M is an R-module, the following statements hold:
• GpdR(M) ≤ pdR(M) with equality when pdR(M) is finite.
• GidR(M) ≤ idR(M) with equality when idR(M) is finite.
• GfdR(M) ≤ fdR(M) with equality when fdR(M) is finite.

On the other hand, recall that a ring R is said to be n-Gorenstein, for a positive
integer n, if it is two-sided Noetherian with idR(R) ≤ n, and R is said to be Iwanaga-
Gorenstein, if it is n-Gorenstein for some positive integer n (see [91, 137]). Also from
[137], a two-sided Noetherian local ring R is called Gorenstein, if idR(R) is finite.
In general, a two-sided Noetherian ring R is Gorenstein, if the localization Rp is
Gorenstein for every prime ideal p of R [26] (see also [147]). It is proved that a
ring is Iwanaga-Gorenstein if and only if it is Gorenstein with finite Krull dimension
[26]. Notice that the two notions of Gorenstein ring and of Iwanaga-Gorenstein ring
coincide when considering local rings. However, it is not the case in general. In
this context, the Gorenstein homological dimensions serve to totally characterize
the Iwanaga-Gorenstein rings as follows:

Theorem 0.0.5 ([91], Theorem 12.3.1)
If R is a two-sided Noetherian ring, then the following are equivalent for a positive
integer n:

1. R is n-Gorenstein.

2. GpdR(M) ≤ n for all (left and right) R-modules M .
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3. GidR(M) ≤ n for all (left and right) R-modules M .

4. GfdR(M) ≤ n for all (left and right) R-modules M .

Moreover, the Gorenstein flat dimension is used to characterize n-FC rings, where
n is a positive integer. The n-FC rings are introduced in [47] as a generalization of
n-Gorenstein rings as follows:

Definition 0.0.6 ([47], [117] and [205])
Let R be a ring and let n be a positive integer.
• We say that an R-module M has FP -injective (or pure) dimension at most n,

and we write FP − idR(M) ≤ n, if Extn+1
R (P,M) = 0 for all finitely presented

R-modules P . The modules of FP -injective dimension 0 are called FP -injective (or
absolutely pure).
• R is said to be n-FC, if it is two-sided coherent with FP − idR(R) ≤ n (R is
considered as a left and a right R-module).

Obviously, over Noetherian rings, the FP -injective dimension coincides with the
classical injective dimension. Thus, the Noetherian n-FC rings and n-Gorenstein
rings turn out to be identical. In view of this, the following theorem extends the
equivalence (1)⇔ (4) of Theorem 0.0.5.

Theorem 0.0.7 ([47], Theorem 7)
For a two-sided coherent ring R, the following conditions are equivalent :

1. R is n-FC.

2. GfdR(M) ≤ n for all (left and right) R-modules M .

3. GpdR(M) ≤ n for all finitely presented (left and right) R-modules M .

In the last years, the Gorenstein homological dimensions theory witnessed a new
impetus, namely with the works of Avramov, Christensen, Ding, Enochs, Esmkhani,
Foxby, Jenda, Jørgensen, Frankild, Holm, Huang, Li, Luo, Mao, Sather-Wagstaff,
Şega, Tousi, White, Yassemi, among others (see [53, 57, 58, 124] and their refer-
ences). They developed the Gorenstein homological dimensions theory over not
necessarily Noetherian rings. The study of Gorenstein dimensions is known now as
Gorenstein homological algebra.
Thus, this memory is made up of four chapters:

The first chapter:

This chapter is devoted to some rudiments of algebra homological and some
essential notions for the other chapters. Thus, the results are exposed without
demonstration but with precise references.

The second chapter:
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In this chapter, which is one of the main objective of this memory, we deal
with the work of H. Holm on the Gorenstein homological dimensions, located
in his article called “Gorenstein Homological Dimensions ”[124]. This chapter
consists of two sections: In the first, we expose the Gorenstein projective
dimension and the Gorenstein injective dimension. In the second, Gorenstein
flat dimension.

The third chapter:

For this chapter, we introduce particular case of Gorenstein projective, injec-
tive, and flat modules, which we call, respectively, strongly Gorenstein projec-
tive, injective, and flat modules, from the work of D. Bennis and N. Mahdou
located in their article called “Strongly Gorenstein projective, injective, and
flat modules ”[39]. These three classes of modules give us a new characteri-
zation of the first modules, and confirm that there is an analogy between the
notion of ”Gorenstein projective, injective, and flat modules” and the notion
of the usual ”projective, injective, and flat modules”.

The Fourth chapter:

In this chapter we give some properties of strongly Gorenstein projective, in-
jective and flat modules, and we discuss some connections between strongly
Gorenstein projective, injective and flat modules from the article of Y. Xi-
aoyan, L. Zhongkui, called “Strongly Gorenstein projective, injective, and flat
modules ”[226]. then we give these properties under change of rings.

17



CHAPTER 1

PRELIMINARY

1.1 Module category results
In what follows, all rings will be assumed to possess a unit element, and all modules
will be assumed to be unitary.
Recall some of the standard constructions:
Let Ai be a family of left R-module for all i ∈ I, then:∏

i∈I
Ai = AI and ⊕

i∈I
Ai = A(I).

Note that when I is finite, we get: AI = A(I).

Proposition 1.1.1
Suppose B is a left R-module, and Ai is a family of left R-module for all i ∈ J, then:

1. R⊗B ∼= B and HomR(R,M) ∼= M , [191,Theorem 2.4 ]

2. R(J) ⊗RM ∼= M (J) and HomR(Rn,M) ∼= Mn, [191,Theorem 2.6 ]

3. R/I ⊗B ∼= B/BI with I is a right ideal. [183,Proposition 2.2 ]

Theorem 1.1.2
1. HomR(⊕Ai, B) ∼=

∏
HomR(Ai, B), [191,Theorem 2.4 ]

2. HomR(B,∏Ai) ∼=
∏
HomR(B,Ai), [191,Theorem 2.6 ]

3. B ⊗ (⊕Ai) ∼= ⊕(B ⊗ Ai). [191,Theorem 2.8 ]
Note that if R is a commutative ring, A and B are R-modules, then:

A⊗B ∼= B ⊗ A. [191,Theorem 2.11 ]

Theorem 1.1.3 ([191], Theorem 2.11, p. 37)
Let A an R-module, B an (R, S)-bimodule and C an S-module. Then:

HomS(A⊗R B,C) ∼= HomR(A,HomS(B,C)).
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Remark 1.1.4
Let A, B and C be R-modules, if R is a commutative ring, A and B are R-modules,
then:

HomR(B,HomR(A,C)) ∼= HomR(A,HomR(B,C)).

Proposition 1.1.5 ([191], Theorem 2.7 and Exercise 2.22 p. 33)
Let 0 −→ M1

u−→ M
v−→ M2 −→ 0 be a short exact sequence of R-modules.

Then:
1- The following assertions are equivalent:

1. There exists an homomorphism α : M →M1 such that αou = 1M1 ,

2. There exists an homomorphism β : M2 →M such that voβ = 1M2 .

2- Furthermore, if one of (i) and (ii) is true, thus: M ∼= M1 ⊕M2. Then, we say
that the sequence is split.

1.1.1 Diagram commutative
Proposition 1.1.6 ([191], Exercise 2.7, p. 27)
Let

0 → A → B → C
↓ ↓

0 → A′ → B′ → C ′

be a diagram with exact lines such that the right square is commutative. Then,
there exists a unique homomorphism A→ A′ making the diagram commutative.
Similarly, if we consider a diagram with a left square commutative:

A → B → C → 0
↓ ↓
A′ → B′ → C ′ → 0

it will be completed by a unique homomorphism C → C ′ making the diagram
commutative.

Theorem 1.1.7 (Pushouts diagram, [227], p. 9)
Since pullback and pushout diagram are very useful, we briefly discuss them.
Let M , N and L be R-modules. For any linear maps f : M → L and g : N → L,
there is a module P which makes the following diagram commutative, the so-called
pullbach of f and g:

P
u−−−→ M

v

y yf
N

g−−−→ L

such that for every pair of linear maps u′ : X → M and v′ : X → N satisfying
fu′ = gv′, there is a unique linear map h : X → P satisfying u′ = hu and v′ = hv.
Actually the module P can be chosen as the submodule {(x, y) ∈ M ⊕ N |f(x) =
g(y)}. Moreover, if both f and g are surjective, then we have the full commutative
diagram with exact rows and columns:
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0 0
↓ ↓
K == K
↓ ↓

0 → L → P → M → 0
‖ ↓ ↓

0 → L → N → L → 0
↓ ↓
0 0

The diagram constructed in this form is called Pushout diagram, where K = Ker(f)
and L = Ker(g).
Dually, we have the pushout diagram for every pair of linear maps f : L→ M and
g : L→ N .

Remarks 1.1.8 ([191], Exercice 2.30, p.43)
In the pushout diagram, if g is monic (or epic), then u is monic (or epic). Moreover,
parallel arrows have isomorphic cokernels.

1.1.2 Direct limits
Definition 1.1.9
Let I be a direct set (i.e., I is ordered and ∀(i, j) ∈ I2,∃k ∈ I such that i 6 k and
j 6 k), R a ring and (Mi)i∈I a family of R-modules such that ∀(i, j) ∈ I2 when
i 6 j, there is a morphism fij : Mi →Mj.

1. We say that the R-modules Mi and R-morphisms fij make a direct system
M = (Mi, fij) on I, if:

i. fii : Mi →Mi is the identity for every i ∈ I,

ii. fjkofij = fik ∀i 6 j 6 k in I, with Mi
fij−→Mj

fjk−→Mk.

2. Let S = ⊕
i∈IMi and N the submodule of S generated by the elements with

the form xi − fij(xi) when i 6 j and xi ∈Mi. Let’s put M = S/N and

fi : Mi −→ M
xi 7−→ xi = xi +N.

The couple (M, (fi)i∈I) is called direct limit of direct system M = (Mi, fij).
We write M = lim−→Mi.

Theorem 1.1.10 ([191], Example 20 and 20’, p. 40)
Let I be the trivial quasi-order: i ≤ j if and only if i = j. A direct system with
index set I is an indexed modules family {Fi : i ∈ I}.
If I has the trivial quasi-order, then lim−→Fi = ⊕Fi.

Theorem 1.1.11 ([91], Theorem 1.6.3)
The inductive limit of an inductive system of R-modules always exists.
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Theorem 1.1.12 ([91], Theorem 1.6.6)
Let F ′ = ((M ′

i), (f ′ji)), F = ((Mi), (fji)) and F ′′ = ((M ′′
i ), (f ′′ji)) be inductive systems

over I and suppose there are maps F ′ {σi}−→ F {τi}−→ F ′′ such that M ′
i

σi−→Mi
τi−→M ′′

i is
exact for each i ∈ I, that is, F ′ {σi}−→ F {τi}−→ F ′′ is exact, then lim−→M ′

i

lim−→σi

−→ lim−→Mi

lim−→ τi

−→
lim−→M ′′

i is exact.

Theorem 1.1.13 ([91], Theorem 1.6.7)
Let N be a left R-module F = ((Mi), (fji)) be an inductive system of right R-
modules. Then:

lim−→(Mi ⊗R N) ∼= (lim−→Mi)⊗R N.

Before moving to treat some specific modules, in this paragraph, we are going to
introduce the notion of free resolution.

1.2 Free resolution
Definition 1.2.1
Let M be a module. As we know that every module M admits a quotient of a free
R-module. Then we have a short exact sequence:

0→ K1 → L0
σ0−→M → 0

where M ∼= L0/K1, and L0 is a free module.
But K1 is a quotient of a free module say L1. Then we have an exact sequence:

0→ K2 → L1
σ1−→ K1 → 0.

Now, we get 0→ K2 → L1
σ1−→ L0

σ0−→M → 0 with Imσ1 = K1 = Kerσ0.
Now repeat to get an exact sequence:

...→ Ln → Ln−1 → ...→ L0 →M → 0

with Ln is a free R-module for all n ≥ 0. This is called a free resolution of M .

Theorem 1.2.2 ([191], Theorem 3.8, p. 60)
Every module M admits a free resolution.

Definition 1.2.3
1. Let M be a module. A presentation of M (with lenght 1) is an exact sequence:

L1 → L0 →M → 0

with L0 and L1 are a free modules. Every module admits a presentation.

2. A module M is finitely presented, if M admits a presentation:

L1 → L0 →M → 0

with L0 and L1 are a free modules.

21



1.3. PROJECTIVE MODULE

Theorem 1.2.4
1. Every module finitely presented is finitely generated.

2. A module is finitely presented if and only if it is isomorphic to the quotient of
a finished basic free module by a submodule finitely generated.

Remark 1.2.5
If an R-module M is finitely presented, then there is an exact sequence:

0 −−−→ Kn −−−→ Ln−1
dn−1−−−→ · · · d2−−−→ L1

d1−−−→ L0
d0−−−→ M −−−→ 0,

such that Li are a free R-modules, and Kn = Ker(dn−1) is finitely generated.

Definition 1.2.6 (Torsion-free)
An R-module M is said to be torsion-free, if given any non-zero element r ∈ R, the
multiplication by r on M is a monomorphism. We will let T (M) denote the torsion
submodule of M that is T (M) = {x ∈ M/rx = 0 for some r ∈ R, (r 6= 0)}, M is
said torsion-free if and only if T (M) = 0.
We will say that M is a torsion module if M = T (M).

Remark 1.2.7 ([53], Remark 1.1.6)
Free modules are torsion-free, and submodules of torsion-free modules are obviously
torsion-free.

Lemma 1.2.8 ([89], Lemma 1.1.8)
Let M be a finite R-module and consider the following three conditions:

1- The biduality map δM is injective,

2- M can be embedded in a finite free module,

3- M is a torsion-free.

Conditions (1) and (2) are equivalent and imply (3), furthermore, the three condi-
tions are equivalent if R is a domain.

We mention that for an R-module M , the biduality map is the canonical map
δM : M → HomR(HomR(M,R), R) defined by δM(x)(ψ) = ψ(x) for ψ ∈ HomR(M,R)
and x ∈M . It is an homomorphism of R-modules and natural in M .

1.3 Projective module
Definition 1.3.1
A module P is projective if for all diagram of modules:

P
h

��
f
��

A
g // B // 0,

where the line is exact, then there exists h ∈ Hom(P,A), such that the diagram is
commutative, i.e., goh = f.
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Theorem 1.3.2 ([191], Theorem 3.11, p. 62)
A module P is projective if and only if Hom(P, ) is exact.

Theorem 1.3.3 ([191], Theorem 3.12, p. 62)
If P is projective and β : B −→ P is epic, then B = Kerβ ⊕ P ′ where P ′ ∼= P.

Corollary 1.3.4 ([191], Corollary 3.13, p. 62)
Every short exact sequence 0→ A→ B → P → 0, with P is projective, is split.

Theorem 1.3.5 ([191], Theorem 3.14, p. 62)
A module P is projective if and only if it is a summand of a free module. Moreover,
every summand of a projective modules is projective.

Theorem 1.3.6 (Projective Basis, [191], Theorem 3.15, p. 64)
A module A is projective if and only if there exists an element {ak; k ∈ K} ⊂ A and
R-maps {ϕk : A→ R; k ∈ K} such that:

1- If x ∈ A, then almost all ϕkx = 0,

2- If x ∈ A, then x = ∑
k∈K(ϕkx)ak.

Moreover, A is then generated by {ak; k ∈ K}.

Theorem 1.3.7 (Shanuel’s lemma, [191], Theorem 3.62, p. 92)
Let 0→ K → P →M → 0 and 0→ K ′ → P ′ →M → 0 two exact sequences, with
P and P ′ are projectives. Then:

K ⊕ P ′ ∼= K ′ ⊕ P.

Proposition 1.3.8 ([191], p. 64)
Every projective module finitely generated is finitely presented.

Theorem 1.3.9 ([191], Lemma 3.59, p. 91)
Let A be a left R-module, B an (R, S)-bimodule and C a right S-module. If A is a
finitely generated projective R-module, then there is an isomorphism:

HomS(B,C)⊗R A ∼= HomS(HomR(A,B), C).

Theorem 1.3.10 ([1], Proposition 20.11)
Let P a right R-module, U a (T,R)-bimodule and N a left T -module there is an
homomorphism natural in P , U and N ,

ν : P ⊗R HomT (U,N)→ HomT (HomR(P,U), N)

defined via

ν(p⊗R γ) : δ → γ(δ(p)).

If P is a right R-module finitely generated and projective then ν is an isomorphism.

Theorem 1.3.11 ([1], Exercise 8)
For each left R-module M , let M∗ = HomR(M,R), Then if M is finitely generated
and projective then so is M∗.
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1.4 Injective module
Definition 1.4.1
A module E is injective if for all diagram of modules:

0 // A
g //

f
��

B

h~~
E

where the line is exact, then there exists h ∈ Hom(B,E), such that the diagram is
commutative, i.e., hog = f.
In other words, E is injective if for all submodule A of B, any map f : A −→ E can
be extended to B. This is the dual concept of the notion of projective module.

Theorem 1.4.2 ([191], Theorem 3.16, p. 64)
A module E is injective if and only if the functor Hom( , E) is exact.

Proposition 1.4.3 ([183], Proposition 2.9, p. 28)
Suppose Ai a left R-module. Then ∏

Ai is injective if and only if Ai is injective for
all i ∈ I.

We have already see that if I is fini then ∏
i∈I
Ai = ⊕

i∈I
Ai. So ⊕

fini
Ai is injective if and

only if Ai is injective for all i ∈ I.

Theorem 1.4.4 ([191], Theorem 3.19, p.68)
A module E is injective if and only if every short exact sequence 0 → E → B →
C → 0 is split. In particular, E is a summand of B.

Theorem 1.4.5 (Baer Criterion, [191], Theorem 3.20, p.68)
An R-module E is injective if and only if every map f : I −→ E, where I is a left
ideal of R, can be extended to R.

Theorem 1.4.6
Let 0→ A→ B → C → 0 be a short exact sequence such that A is injective. Then
B is injective if and only if C is injective.

Theorem 1.4.7 ([117], Theorem 2.1.5)
Let R be a ring and let M be a finitely presented R-module, then:

1- For every family ofR-module {Fα}α∈S we have: M⊗R(∏
α Fα) ∼=

∏
α(M⊗RFα).

2- For every directed system of R-modules {Gα}α∈S we have:

lim−→HomR(M,Gα) ∼= HomR(M, lim−→Gα).

3- For every directed system of R-modules {Gα}α∈S the natural map:
ξm : lim−→ExtnR(M,Gα) → ExtnR(M, lim−→Gα) is injective for all n ≥ 1, and is
an isomorphism whenever Gα are submodule of a module G, for all α and
{Gα}α∈S is ordered by inclusion.
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Theorem 1.4.8 ([191], Theorem 3.27)
Every left R-module M can be embedded in an injective module.

Definition 1.4.9
An injective resolution of a module M is an exact sequence 0 → M → E0 → ... →
En → ... in which each En is injective.

Theorem 1.4.10 ([191], Theorem 3.28, p. 71)
Every module M has an injective resolution.

To prove the existence of injective resolutions, we need to give the definition of
faithfully injectives (it could be called also universal or cogenerator injective), extract
from the books [117, Theorem 1.1.9], [44, §1, N o8] and [1, Proposition 1.8.14]:

Theorem and Definition 1.4.11
An R-module E is faithfully injective if one of the following assertions equivalent is
verified:

1- E is injective, and for everyR-moduleM , thenM = 0 if and only ifHom(M,E) = 0,

2- For a sequence A → B → C be exact, it is necessary and sufficient that
Hom(C,E)→ Hom(B,E)→ Hom(A,E) be exact,

3- E is injective and the canonical homomorphism σ : M −→ Hom(Hom(M,E), E)
m 7−→ σ(m) : f 7→ f(m)

is injective for every R-module.

Example 1.4.12 ([44], p. 14)
The R-module ER = HomZ(R,Q/Z) is faithfully injective.

The important role of this notion is make a connection between the flatness and
injectivity, which is justify with this Theorem 1.5.2 and the following remark:

Remark 1.4.13
Let M be an R-module and let’s put M˘ = HomR(M,ER), then:

M˘= HomR(M,HomZ(R,Q/Z)) ∼= HomZ(M⊗RR,Q/Z) ∼= HomZ(M,Q/Z) = M+.

Proposition 1.4.14 ([191], Lemma 3.51, p. 87)
The sequence A → B → C is exact if and only if the sequence A+ → B+ → C+ is
exact.

Theorem and Definition 1.4.15 ([44], §3, N o 4)
Let M be an R-module, and let’s put I0(M) = (ER)Hom(M,ER) (direct copy prod-
uct of ER), and let the homomorphism e0 : M → I0(M) such that e0(m) =
(ϕ(m))ϕ∈Hom(M,ER) for every m ∈ M . By using the definition 1.4.11, e0 is injec-
tive. Then the short exact sequence:

0 −→M
e0−→ I0(M) p0−→M0 −→ 0
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where M0 = Coker e0 and p0 the canonical surjection. Forthermore: Every module
is injected into an injective module. The same things for M0, let’s put I1(M) =
(ER)Hom(M0,ER), we also get:

0 −→M0
e1−→ I1(M) p1−→M1 −→ 0.

Thus, we get an exact sequence with the form 0 −→ M −→ I0(M) −→ I1(M) −→
I2(M) −→ ..., which called the canonical injective resolution of M . Hence, every
module admits an injective resolution.

We may also define a projective resolution of a module M in the obvious way, since
free modules are projective. Therefore, every module has projective resolution.

Definition 1.4.16
If M is a submodule of an injective R-module E, then M ⊂ E is called an injective
extension of M . It follows that every R-module has an injective extension.

Definition 1.4.17
Let A ⊂ B be R-modules. Then B is said to be an essentiel extension of A if for
each submodule N of B, N ∩ A = 0 implies N = 0. In this case, A is said to be an
essential submodule of B.

Definition 1.4.18
An injective module E which is an essential extension of an R-module M is said to
be an injective envelope of M . Our notation will be E(M) or ER(M).

Theorem 1.4.19 ([155], Theorem 3.64)
Let R be a commutative artinian ring, let Ei = E(Vi) and let M = Ei ⊕ ... ⊕ En.
Then:

1- M is a faithful R-module;

2- M is finitely generated with lengthR(M) = lengthR(R); and

3- For any finitely generated R-module N , E(N) is also finitely generated.

Definition 1.4.20 (Matlis duality)
R will denote a commutative local noetherian ring with maximal ideal m and residue
field k. M v will denote the Matlis dual HomR(M,E(k)) of the R-module M . There
is a natural homomorphism:

ϕ : M →M vv defined by ϕ(x)(f) = f(x) for x ∈M , f ∈M v.

We call this map the canonical homomorphism. We will say that an R-module
M is Matlis reflexive if M ∼= M vv = (M v)v under the canonical homomorphism
M →M vv.

Lemma 1.4.21 ([89], Lemma 4.1)
If M is a Matlis reflexive R-module, then Hom(E(k),M) ∼= Hom(E(k),M vv) ∼=
(E(k)⊗M v)v ∼= (M v)∗. Then, we get Hom(E(k),M) ∼= (M v)∗.
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Theorem 1.4.22 ([91], Theorem 3.4.4)
An R-module M is artinian if and only if it is finitely embedded, that is, M ⊂ E(k)n
for some n ≥ 1.

Now suppose M is artinian and M 6= 0. Then since E(k) is faithfully injective, the
set of nonzero R-homomorphisms from M to E(k) is nonempty. We now consider
the set of all possible maps f : M → E(k)i where i ≥ 1. Since M is artinian, we
can find an f : M → E(k)n with minimal Kernel. We claim that f is one-to-one.

Corollary 1.4.23 ([89], Corollary 4.3)
Every artinian R-module M has an injective cover E(k)n →M for some n.

Corollary 1.4.24 ([91], Corollary 3.4.5)
An R-module M in noetherian if and only if M v is artinian.

Corollary 1.4.25 ([91], Corollary 3.4.6)
If M vis noetherian then M is artinian.

Lemma 1.4.26 ([91], Lemma 3.4.7)
Let R be complete. If an R-module is noetherian or artinian, then M is reflexive.

Proposition 1.4.27 ([89], Proposition 4.4)
Every finitely generated R-module has a projective envelope.

Lemma 1.4.28 ([89], Lemma 4.5)
Let M be an artinian R-module. Then M is h-divisible (An R-module M is said to
be h-divisible if it is an homomorphic image of an injective R-module) if and only
if the Matlis dual of the injective cover of M is a 1-1 projective envelope.

Theorem 1.4.29 ([89], Lemma 4.10)
Every finitely generated h-divisible R-module is of finite length.

1.5 Flat module
Definition 1.5.1
A right R-module B is flat if and only if the functor B⊗R is exact (there is a
similar definition for left R-modules C and ⊗RC).
Since B⊗R is always right exact, a module B is flat if and only if f monic implies
1B ⊗ f is monic.

Theorem 1.5.2 ([117], Theorem 1.2.1, p. 7)
Let R be a ring and let M be an R-module. The following conditions are equivalent:

1- M is a flat R-module,

2- For every finitely generated ideal I of R, I ⊗RM ∼= IM via the map x⊗m→
xm for x ∈ I and m ∈M ,

3- The R-module, M+ = HomZ(M,Q/Z), the so-called character module of M ,
is an injective R-module.
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Theorem 1.5.3 ([191], Theorem 3.43, p. 84)
R is a flat R-module.

Proposition 1.5.4
Let A and M two R-modules and N a submodule of M . Suppose that A is M -flat,
then:

1- A is N -flat,

2- A is M/N -flat.

Theorem 1.5.5 ([191], Theorem 3.44, p.84)
Assume B is a bimodule SBR that is R-flat and C = SC is injective. Then
HomS(B,C) is an injective left R-module.

Remark 1.5.6
Let R → S a homomorphism of rings such that S is a flat R-module. Then, every
injective S-module is an injective R-module.

Corollary 1.5.7 ([191], Theorem 3.46, p. 84)
Every projective module is flat.

It follows that every module A has a flat resolution, i.e., there is an exact sequence
...→ F0 → F1 → A→ 0 in which each Fn is flat.

Proposition 1.5.8 ([191], Theorem 3.47)
The direct limits of flat modules is a flat module.

Theorem 1.5.9
Let M be a flat (resp., projective) module and 0 → A → B → M → 0 be
an exact sequence. Then A is flat (resp., projective) if and only if B is flat (resp.,
projective).

Theorem 1.5.10 ([183], Theorem 4.19)
Let P be a finitely generated left R-module. The following are equivalent:

1- P is projective,

2- P is flat and finitely presentation,

3- The natural map from P ∗ ⊗ P to Hom(P, P ) is an isomorphism,

4- The image of the natural map P ∗ ⊗ P to Hom(P, P ) contains ip.

Theorem 1.5.11 ([191], Theorem 3.45, p. 85)
Let (Mi)i∈I be a family of right R-modules. Then ⊕Mi is flat if and only if each Mi

is flat.

Theorem 1.5.12 ([91], Theorem 3.2.9)
The following are equivalent for an (R, S)-bimodule F :

1- F is a flat left R-module.

28



1.5. FLAT MODULE

2- HomS(F,E) is an injective right R-module for all injective right S-modules
E.

3- HomS(F,E) is an injective right R-module for any injective cogenerator E for
right S-modules.

Theorem 1.5.13 ([91], Theorem 3.2.14)
Let A be a finitely presented left R-module, B and (R, S)-bimodule and C a left
flat S-module. Then the natural map τ : HomR(A,B)⊗S C → HomR(A,B ⊗S C)
defined by τ(f ⊗ c)(a) = f(a)⊗ c is an isomorphism.

We also have an important theorem from [44]:

Theorem 1.5.14 (D. Lazard [44], §1, No 6, Theorem 1)
Let E be an R-module, the following conditions are equivalent:

1- E is flat,

2- For all R-module P which is finitely presented,

HomR(P,R)⊗R E → HomR(P,E)

is surjective,

3- For all R-module P finitely presented and all homomorphism u : P → E, there
exists L a free R-module finitely generated and homomorphisms v : P → L
and w : L→ E such that u = wov,

4- There exists an ordered filtering set J , an inductive system of free modules of
finite type (Lj)j∈J and an isomorphism of E on lim−→Lj.

Theorem 1.5.15 ([91], Exercise 9)
Let M be an (R, S)-bimodule and N be a left S-module. If M is a flat R-module
and N is a flat S-module, then M ⊗S N is a flat R-module.

Proposition 1.5.16 ([201])
Let f : R→ S be a ring homomorphism such that f(1) = 1. Raynaud and Gruson
consider the following conditions:

(Pl) If E ⊗R S is a flat right S-module then RE is a flat right R-module.

(Pr) If S ⊗R E is a flat left S-module then RE is a flat left R-module.

(Ol) If E ⊗R S = 0 then ER = 0.

(Or) If S ⊗R E = 0 then RE = 0.

(O′l) If Hom(RS,RE) = 0 then RE = 0.

(O′r) If Hom(SR, ER) = 0 then ER = 0.
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Definition 1.5.17 (Faithfully flat)
An R-module F is said to be faithfully flat if 0→ AR → BR is an exact sequence of
R-modules if and only if 0→ A⊗R F → B ⊗R F is exact.

Theorem 1.5.18 ([91], Lemma 2.1.13)
The following are equivalent for a left R-module F :

1- F is faithfully flat,

2- F is flat and for any right R-module N, N ⊗ F = 0 implies N = 0,

3- F is flat and mF 6= F for every maximal right ideal m of R.

We denoteM the class of all R-modules and P(R), F(R) and I(R), respectively,
the classes of projectives, flats and injectives.

Definition 1.5.19 (Resolving classes, [124])
Inspired by Auslander-Bridger’s result we define the following terms for any class χ
of R-modules:

1- We call χ-projectively resolving if P(R) ⊆ χ and for every short exact sequence
0→ X ′ → X → X”→ 0 with X” ∈ χ, the conditions X ′ ∈ χ and X ∈ χ are
equivalent,

2- We call χ-injectively resolving if I(R) ⊆ χ and for every short exact sequence
0→ X ′ → X → X”→ 0 with X ′ ∈ χ, the conditions X ∈ χ and X” ∈ χ are
equivalent.

Proposition 1.5.20 (Orthogonal classes, [124])
For any class χ of R-modules, we define the associated left orthogonal, respectively
right orthogonal class by:
⊥χ = {M ∈M(R) | ExtiR(M,X) = 0 for all X ∈ χ and i > 0},
χ⊥ = {N ∈M(R) | ExtiR(X,N) = 0 for all X ∈ χ and i > 0}.

Example 1.5.21
It is well known that P(R) =⊥M(R), and that P(R) and F(R) both are projectively
resolving classes, whereas I(R) =M(R)⊥ is an injectively resolving class.
In general, the class ⊥χ is projectively resolving, and closed under arbitrary direct
sums. Similarly, the class χ⊥ is injectively resolving, and closed under arbitrary
direct products.

Proposition 1.5.22 ([124])
Let X be a class of R-modules which is either projectively resolving or injectively
resolving. If χ is closed under countable direct sums, or closed under countable
direct products, then X is also closed under direct summands.

Example 1.5.23
P(R) and F(R) are closed under direct sums and closed under direct summands.

Definition 1.5.24 (Resolutions, [124])
For any R-module M we define two type of resolutions:
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1- A left χ-resolution of M is an exact sequence X = ...→ X1 → X0 → M → 0
with Xn ∈ χ for all n ≥ 0,

2- A right χ-resolution of M is an exact sequence X = 0→M → X0 → X1 → ...
with Xn ∈ χ for all n ≥ 0.

Let X be any (left or right) χ-resolution of M . We say that X is proper (resp,
co-proper) if the sequence HomR(Y,X) (resp, HomR(X, Y )) is exact for all Y ∈ χ.

Definition 1.5.25
Let R be a ring and let χ be a class of left R-modules.

1- We say that the class χ is closed under extensions, if for every short exact
sequence of left R-modules 0→ A→ B → C → 0, the condition A and C are
in χ implies that B is in χ.

2- We say that the class χ is closed under kernels of epimorphisms, if for every
short exact sequence of left R-modules 0 → A → B → C → 0, the condition
B and C are in χ implies that A is in χ.

Proposition 1.5.26 ([124])
Let χ be a class of R-modules, and let (Mi)i∈I be a family of R-modules. Then the
following hold:

1- If χ is closed under arbitrary direct products, and if each of the modules Mi

admits a (proper) left χ-resolution, then so does the product ∏
Mi,

2- If χ is closed under arbitrary direct sums, and if each of the modules Mi admits
a (co-proper) right χ-resolution, then so does the sum ⊕

Mi.

Lemma 1.5.27 (Horseshoe lemma, [124])
Let χ be a class of R-modules. Assume that χ is closed under finite direct sums,
and consider an exact sequence 0→M ′ →M →M ′′ → 0 of R-modules, such that

0→ Hom(M ′′, Y )→ Hom(M,Y )→ Hom(M ′, Y )→ 0

is exact for every Y ∈ χ. If both M ′ and M ′′ admits co-proper right χ-resolutions,
then so does M .
Proposition 1.5.28 ([124])
Let f : M → M̃ be a homomorphism of modules, and consider the diagram:

0 −−−→ M −−−→ X0 −−−→ X1 −−−→ X2 −−−→ · · ·yf
0 −−−→ M̃ −−−→ X̃0 −−−→ X̃1 −−−→ X̃2 −−−→ · · ·

where the upper row is a co-proper right χ-resolution of M , and the lower is a right
χ-resolution of M̃ . Then f : M → M̃ induces a chain map of complexes:

0 −−−→ X0 −−−→ X1 −−−→ X2 −−−→ · · ·yf0

yf1

yf2

0 −−−→ X̃0 −−−→ X̃1 −−−→ X̃2 −−−→ · · ·
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with the property that the square

M −−−→ X0yf yf0

M̃ −−−→ X̃0

is commutative.

1.6 Tor and Ext functors

1.6.1 Homology functors
Definition 1.6.1
A complex (or chain complex) X is a sequence of modules and maps:

X = · · · · · · −−−→ Xl+1
∂X

l+1−−−→ Xl

∂X
l−−−→ Xl−1 −−−→ · · · · · ·

with ∂Xl ∂
X
l+1 = 0 for all l ∈ Z (i.e., Im∂Xl+1 ⊆ Ker ∂Xl ).

We call:
- The maps ∂Xl the differentations, and we will write X = (X, ∂X),
- The l-chains, the elements of Xl,
- The l-cycles, the elements Zl = Zl(X) = Ker(∂Xl ),
- The l-boundaries, the elements Bl = Bl(X) = Im(∂Xl+1),
- The lth homology module is the module Hl(X) = Zl/Bl = Ker(∂Xl )/Im(∂Xl+1).

Definition 1.6.2
Let X and Y two chain complexes.

1- A morphism α : X −→ Y of complexes is a family α = (αl)l∈Z of homomor-
phisms αl : Xl −→ Yl such that the following diagram:

· · · −−−→ Xl+1
∂X

l+1−−−→ Xl

∂X
l−−−→ Xl−1 −−−→ · · ·yαl+1

yαl

yαl−1

· · · −−−→ Yl+1
∂Y

l+1−−−→ Yl
∂Y

l−−−→ Yl−1 −−−→ · · ·

is commutative (i.e.,αl ∂
X
l+1 = ∂Y

l+1 αl+1 ).

2- If H(α)l is an isomorphism for all l ∈ Z , α is called quasi-isomorphism.

Definition 1.6.3
Let (X i)i∈I be a family of complexes:

1- The direct sum of complexes X i is the complex ⊕
i
X i such that

(⊕
i
X i)l = ⊕

i
(X i)l and ∂⊕X

i

l = ⊕
i
∂X

i

l : (xil) 7−→ (∂Xi

l (xil)) for all l ∈ Z.

2- In the same way, we define direct product of complexes.
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Proposition 1.6.4 ([44], §2, N o2, Proposition 1, X. 28)
Let (X i)i∈I be a family of complexes. Then:

Hn(
⊕

X i) ∼=
⊕
i

Hn(X i) and Hn(
∏
X i) ∼=

∏
i

Hn(X i).

With X i is exact for all i ∈ I if and only if ⊕
X i (resp.,∏X i) is exact.

Theorem 1.6.5 ([191], Theorem 6.7, p. 177)
For all short exact sequence of complexes 0 −→ X

α−→ Y
β−→ Z −→ 0 we obtain

the exact sequence:

· · · → Hn(X)→ Hn(Y )→ Hn(Z)→ Hn−1(X)→ Hn−1(Y )→ · · ·

called long exact sequence of homology.

Corollary 1.6.6 ([44], §2, N o3, Corollary 1, X. 30)
Let 0 −→ X

α−→ Y
β−→ Z −→ 0 be a short exact sequence of complex. Then:

1- If two of three complexes X, Y and Z are exacts then the third also.

2- For α (resp., β) be quasi-isomorphism, it is necessary and sufficient that Z
(resp., X) be exact.

Theorem 1.6.7 ([44], § 2, N o6, X. 37)
Let a morphism of complexes α : X → Y , we can associate a complex, denoted
M(α) and called mapping cone α, defined as following:

� M(α)i = Yi ⊕Xi−1

� ∂M(α)
i : Yi ⊕Xi−1 −→ Yi−1 ⊕Xi−2

(yi , xi−1) 7−→ (∂Yi (yi) + α(Xi−1) , −∂Xi−1(xi−1)).

It has the following properties:

1- M(α) is exact if and only if the morphism α is quasi-isomorphism.

2- For any additive functor T we have : T (M(α)) ∼= M(T (α)).

Theorem 1.6.8 ([191], Exercices 6.3, p. 170)
A complex X is an exact sequence if and only if Hn(X) = 0 for every n ∈ Z.

1.6.2 Tor functor
Let A = (A, d) and B = (B, b) be two projectives (flats) resolution of an R-module
M . For an R-module N , the sequences A⊗N and B⊗N are two complexes verify:

Hn(A⊗N) ∼= Hn(B ⊗N) for all n ≥ 0,
Hn(A⊗N) = 0 if n < 0.

Let’s put:
TorRn (M,N) = Hn(A⊗N).

If there is no ambiguity on the ring, we write Torn(M,N) instead TorRn (M,N).
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Theorem 1.6.9 ([191], Theorem 8.3)
Let’s put the short exact sequence: 0→M ′ →M →M ′′ → 0. There exists, for all
N module, an exact sequence:
...→ Torn(M,N)→ Torn(M ′′, N)→ ...→ Tor1(M ′′, N) → M ′ ⊗N → M ⊗N →
M ′′ ⊗N → 0.
Theorem 1.6.10
Let R be a ring and M an R-module, then the following assertions are equivalent:

1- M is flat;

2- Torn(M,N) = 0 for all R-module N ;

3- Tor1(M,N) = 0 for all R module N ;

4- Tor1(M,R/I) = 0 for all ideal I of R.

Theorem 1.6.11
1- Torn(M,N) ∼= Torn−1(M ′, N).

2- Let B be an R-module and (Ak)k∈K R-modules, then for all integer n

Torn(
⊕
k∈K

Ak, B) ∼=
⊕
k∈K

Torn(Ak, B).

Theorem 1.6.12 ([91], Theorem 3.2.13)
Let R and S be rings. If R is left Noetherian, A a finitely presented left R-module,
B an (R,S)-bimodule, and C an injective right S-module, then:

TorRi (HomS(B,C), A) ∼= HomS(ExtiR(A,B), C)
for all i ≥ 0.

Theorem 1.6.13 ([91], Theorem 3.2.26)
Let R be right coherent, M be a finitely presented right R-module, and (Aλ)Λ be a
family of left R-modules. Then:

TorRn (M,
∏
λAλ) ∼=

∏
λ Tor

R
n (M,Aλ)

for all n ≥ 0.

1.6.3 Ext functor
Let A = (A, d) and B = (B, b) be two projective resolutions of an R-module M .
Hom(A,N) and Hom(B,N) are complexes and verify:

Hn(Hom(A,N)) ∼= Hn(Hom(B,N)) for all n ≥ 0,
Hn(Hom(A,N)) ∼= Hn(Hom(B,N)) = 0 for all n < 0.

Then let’s put:
ExtnR(M,N) = Hn(Hom(A,N)).

Dually, if A = (A, d) and B = (B, b) are two injective resolutions of N , the sequences
Hom(M,A) and Hom(M,B) are complexes verify:

Hn(Hom(M,A)) ∼= Hn(Hom(M,B)) ∼= ExtnR(M,N).

If there is no ambiguity on the ring, we write Extn(M,N) instead of ExtnR(M,N).
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Theorem 1.6.14 ([191], Theorem 7.2, 7.4, p. 194)
Ext0(A, ) is naturally equivalent to Hom(A, ) and Ext0( , B) is equivalent to
Hom( , B).

Theorem 1.6.15 ([191], Theorem 7.3, 7.5, p. 194)
If 0→ B′ → B → B′′ → 0 is an exact sequence, then there is a long exact sequence:

0→ Hom(A,B′)→ Hom(A,B)→ Hom(A,B′′)→ Ext1(A,B′)→ ...

If 0→ A′ → A→ A′′ → 0 is an exact sequence, then there is a long exact sequence:

0→ Hom(A′′, B)→ Hom(A,B)→ Hom(A′, B)→ Ext1(A′′, B)→ ....

Theorem 1.6.16
1. Let P be an R-module, the following assertions are equivalent:

i. P is projective,

ii. Extn(P,N) = 0 for all R-module N and for all integer n > 0,

iii. Ext(P,N) = 0 for all R-module N .

2. Let E be an A-module, the following assertions are equivalent:

i. E is injective,

ii. Extn(M,E) = 0 for all A-module M and for all integer n > 0,

iii. Ext(M,E) = 0 for all A-module M .

Theorem 1.6.17 ([191], Corollary 7.20, p. 206)
Let A and C two modules. Ext(C,A) = 0 if and only if every short exact sequence
0→ A→ B → C → 0 is split.

Theorem 1.6.18 ([191], Theorem 7.13 and 7.14)
Let R be a ring, B be an R-module, (Ak)k R-modules and n ∈ N . Then:

1- Extn(⊕
k Ak, B) ∼=

∏
k Ext

n(Ak, B),

2- Extn(B,∏k Ak) ∼=
∏
k Ext

n(B,Ak).

Theorem 1.6.19 ([191], Exercises 9.20, p. 258)
Let A be a left R-module, B an (S,R)-bimodule and C a left S-module, with A
projective, then we have the isomorphism:

ExtnS(B ⊗R A,C) ∼= HomR(A,ExtnS(B,C)).

Theorem 1.6.20 ([191], Exercises 9.21, p. 258)
Let A be a left R-module, B an (S,R)-bimodule and C a left S-module, with B
R-projective, then we have the isomorphism:

ExtnS(B ⊗R A,C) ∼= ExtnR(A,HomS(B,C)).
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Theorem 1.6.21 ([91], Theorem 3.2.5)
Let R and S be commutative rings, S be a flat R-algebra, and M , N be R-modules.
If R is Noetherian and M is finitely generated, then:

ExtiR(M,N)⊗R S ∼= ExtiR(M ⊗R S,N ⊗R S)

for all i ≥ 0.

Theorem 1.6.22 ([191], Theorem 11.65 and 11.66, p. 364)
Let R→ S be an homomorphism of ring, M is an R-module and N is an S-module.
Then:

1- If S is a flat R-module, then ExtnS(M ⊗R S,N) ∼= ExtnR(M,N),

2- If S is a projective R-module, then ExtnS(N,HomR(S,M)) ∼= ExtnR(N,M).

Theorem 1.6.23 ([117], Theorem 1.1.8, p. 5)
Let M be an R-module, E is an S-module and N is an (R, S)-bimodule. If E is
injective, then:

HomS(TorRn (M,N), E) ∼= ExtnR(M,HomS(N,E)).

Theorem 1.6.24 ([91], Theorem 3.2.15)
Let R, S, A, B and C be as in Theorem 1.5.13. If R is left Noetherian, then:

ExtiR(A,B)⊗S C ∼= ExtiR(A,B ⊗S C)

for all i ≥ 0.

1.7 Homology dimensions
Definition 1.7.1
Let M be an R-module and n is a positive integer.

1- We say that M has a projective (resp., flat) dimension less or equal to n if
there exists an exact sequence:

0→ Pn → Pn−1 → · · · → P1 → P0 →M → 0

such that the Pi are projective (resp., flat) R-modules; we write pdR(M) ≤ n
(resp., fdR(M) ≤ n), or just pd(M) ≤ n (resp., fd(M) ≤ n).

2- We say that M has a injective dimension less or equal to n if there exists an
exact sequence:

0→M → E0 → E1 → · · · → En−1 → En → 0

such that the Ei are injective R-modules; we write idR(M) ≤ n or just id(M) ≤
n.

We denote by P(R), F(R) and I(R), the classes, respectively, of R-modules with
finite projective, flat and injective dimension.
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Theorem 1.7.2 ([191], Theorem 9.5, p. 234)
Let M be a module. The following assertions are equivalent:

1- pd(M) ≤ n;

2- Exti(M,N) = 0 for all module N and all i ≥ n+ 1;

3- Extn+1(M,N) = 0 for all module N ;

4- If 0 → Kn → Pn−1 → · · · → P1 → P0 → M → 0 is an exact sequence such
that the Pi are projectives, then Kn is projective.

Theorem 1.7.3 ([117], Theorem 1.3.6, p. 18)
Let M be a module. The following assertions are equivalent:

1- id(M) ≤ n,

2- Exti(N,M) = 0 for all module N and all i ≥ n+ 1,

3- Extn+1(N,M) = 0 for all module N ,

4- If 0 → M → E0 → E1 → · · · → En−1 → Ln → 0 is an exact sequence such
that the Ei are injectives, then Ln is injective,

5- Extn+1(R/I,M) = 0 for all ideal I de R.

Theorem 1.7.4 ([117], Theorem 1.3.8, p. 20)
Let M be a module. The following assertions are equivalent:

1- fd(M) ≤ n,

2- Tori(M,N) = 0 for all module N and all i ≥ n+ 1,

3- Torn+1(M,N) = 0 for all module N ,

4- Torn+1(M,R/I) = 0 for all ideal finitely generated I of R,

5- If 0 → Kn → Fn−1 → · · · → F1 → F0 → M → 0 is an exact sequence such
that the Fi are flats, then Kn is flat.

Proposition 1.7.5 ([44], § 8, No 1, Corollaire 2, X. 135)
Let 0→M ′ →M →M ′′ → 0 is a short exact sequence. Then:

1- pd(M) ≤ max{pd(M ′), pd(M ′′)} with equality if pd(M ′′) 6= pd(M ′) + 1.

2- pd(M ′′) ≤ max{pd(M), pd(M ′) + 1} with equality if pd(M) 6= pd(M ′).

3- pd(M ′) ≤ max{pd(M), pd(M ′′)− 1} with equality if pd(M) 6= pd(M ′′).

Especially, if two of three modules M , M ′ and M ′′ have a finite projective dimension,
then so has the third.

Proposition 1.7.6 ([191])
Let (Mi)i∈I a family of modules. Then:
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pd(⊕
i∈I

Mi) = sup{pd(Mi), i ∈ I}, fd(⊕
i∈I

Mi) = sup{fd(Mi), i ∈ I}
and id(∏

i∈I
Mi) = sup{id(Mi), i ∈ I}.

Proposition 1.7.7 ([191])
Let 0→ A→ B → C → 0 is a short exact sequence such that B is projective (resp.,
flat and injective), then, either the two modules A and C are projectives (resp.,
flats and injectives). If it is not: pd(C) = pd(A) + 1 (resp., fd(C) = fd(A) + 1 and
id(A) = id(C) + 1).

Definition 1.7.8
1- The quantity ID(R) = sup{id(M), M ∈ M(R)} is called the global injective

dimension of R.

2- The quantity PD(R) = sup{pd(M), M ∈ M(R)} is called the global projec-
tive dimension of R.

The two quantities are equal, they will be called the global dimension de R and
denoted gldim(R).

Theorem 1.7.9 ([117], Theorem 1.3.7, p. 19)
The following assertions are equivalent:

1- gldim(R) ≤ n,

2- pd(M) ≤ n for all R-module finitely generated M ,

3- Extn+1(M,N) = 0 for all R-module M and N ,

4- pd(R/I) < n for all ideal I of R.

Thus, gldim(R)= sup{pd(R/I)|I the ideal of R},
= sup{pd(M)|M is an R-module finitely generated}.

Definition 1.7.10
For all R-module M , fd(M) ≤ pd(M).
The quantity sup{fd(M), M ∈ M(R)} ≤ gldim(R). They will called the weak
dimension of R and denote wdim(R).

Theorem 1.7.11 ([117], Theorem 1.3.9, p. 20)
The following assertions are equivalent:

1- wdim(R) ≤ n,

2- fd(M) ≤ n for all R-module finitely presented M ,

3- Torn+1(M,N) = 0 for all R-modules M and N ,

4- fd(R/I) ≤ n for all ideal I of R,

5- fd(R/I) ≤ n for all ideal finitely generated I of R.
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Thus, wdim(R)= sup{fd(M)|M R-module finitely presented},
= sup{fd(R/I)|I ideal finitely generated of R },
= sup{fd(R/I)|I ideal of R }.

Definition 1.7.12
The quantity FPD(R) = sup{pd(M), M ∈ P(R)} is called finitistic projective di-
mension of R.
So, it is obvious, if gldim(R) <∞, then FPD(R) = gldim(R).

In the same way, we define finitistic injective dimension and finitistic flat dimension
of a ring.

Theorem 1.7.13 ([219], Theorem 0.13)
If FPD(R) is fini, then all flat module has a finite projective dimension.

1.8 Specific rings

1.8.1 Noetherian and Artinian rings
Definition 1.8.1
A ring R is said to be left (resp., right) noetherian (resp., artinian) if every ascending
(resp., descending) chain of left (resp., right) ideals of R terminates.

Definition 1.8.2
An R-module M is said to be noetherian (resp., artinian) if every ascending (resp.,
descending) chain of submodules of M terminates.

Proposition 1.8.3 ([134], Proposition 11, p. 38)
An R-module M is noetherian if and only if every submodule of M is finitely gen-
erated.
Corollary 1.8.4 ([134], Corollary 1, p. 39)
A ring R is left (resp., right) noetherian if and only if every left (resp., right) ideal
of R is finitely generated.

Proposition 1.8.5 ([134], Proposition 12, p. 39)
A finite direct sum of noetherian (resp., artinian) R-module is also noetherian (resp.,
artinian).

Proposition 1.8.6 ([134], Proposition 13, p. 39)
A finitely generated module over a noetherian (resp., artinian) ring is noetherian
(resp., artinian).

Corollary 1.8.7 ([134], Corollary 2, p. 39)
A ring R is noetherian if and only if every submodule of a finitely generated R-
module is finitely generated.

Proposition 1.8.8 ([191], Lemma 9.20, p. 241)
If R is a noetherian ring, then every module M finitely generated is infinitely pre-
sented.
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Corollary 1.8.9 ([191], Corollary 4.3, p. 108)
If R is left noetherian, every finitely generated flat module is projective.

Proposition 1.8.10 ([191], Proposition 4.10, p. 111)
The following are equivalent for a ring R:

1- R is left noetherian,

2- Every direct limit of injective R-modules is injective,

3- Every sum of injective R-module is injective.

Definition 1.8.11 (Perfect ring)
A ring R is left perfect if it satisfies descending chain condition on principal right
ideals.

Theorem 1.8.12 ([24], Theorem P and Example 6, p. 476)
For a ring R, the following are equivalent:

1- R is perfect,

2- Every direct limit (with directed index set) of projective R-modules is projec-
tive,

3- R is a finite direct product of local rings, each with T -nilpotent maximal ideal
(i.e., if we pick a sequence a1, a2, ... of elements in the maximal ideal, then for
some index j, a1a2...aj = 0).

Theorem 1.8.13 ([191], Theorem 9.22, p. 241)
If R is a noetherian ring, then for all R-module finitely generated M , we have:
fd(M) = pd(M).
Then: wdim(R) = gldim(R).

Theorem 1.8.14 ([91], Theorem 3.2.16)
Let R be left Noetherian. Then the following are equivalent for an (R, S)-bimodule
E:

1- E is an injective left R-module,

2- HomS(E,E ′) is a flat right R-module for all injective right S-modules E ′,

3- HomS(E,E ′) is a flat right R-module for any injective cogenerator E ′ for right
S-modules,

4- E ⊗S F is an injective left R-module for all flat left S-modules F ,

5- E ⊗S F is an injective left R-module for any faithfully flat left S-module F .

Theorem 1.8.15 ([148], Theorem 6.6.4)
1- The following conditions are equivalent:

i- RR is noetherian.
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ii- Every injective module QR is a direct sum of directly indecomposable sub-
modules.

2- The following conditions are equivalent:

i- RR is artinian.

ii- Every injective module QR is a direct sum of injective hulls of simple R-
modules.

Lemma 1.8.16 ([25], Lemma 1.2)
Let R be a commutative ring, Λ an R-algebra, and S a multiplicatively closed set
in R.

1- If E is a Λs-module, then E is Λ-injective if and only if E is Λs-injective.

2- If Λ is left Noetherian and E is Λ-injective, then Es is both Λ- and Λs- injective.

1.8.2 Quasi-Frobenius rings
Definition 1.8.17
A ring is quasi-Frobenius if it is left and right noetherian and R is an injective left
R-module.
It is also true that quasi-Frobenius rings are left and right artinian.

Theorem 1.8.18 ([191], Theorem 4.35)
If R is a principal ideal domain and I = Ra is a nonzero ideal, then R/I is quasi-
Frobenius.

Theorem 1.8.19 ([182], Theorems 1.50, 7.55, and 7.56)
For a ring R, the following are equivalent:

1- R is quasi-Frobenius,

2- R is Artinian and self-injective,

3- Every projective left R-module is injective,

4- Every injective left R-module is projective,

5- R is noetherian and for every ideal I, Ann(Ann(I)) = I, where Ann(I) denotes
the annihilator of I.

From Theorems 1.8.19 and 1.8.12 above and [182, Lemma 5.64], we may give the
following structural characterization of quasi-Frobenius rings, which will be used
later:
Proposition 1.8.20
A ring R is quasi-Frobenius if and only if R = R1 × · · · × Rn, where each Ri is a
local quasi-Frobenius ring.
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1.8.3 Semisimple rings
Definition 1.8.21
An R-module M is said to be semisimple if it is a direct sum of simple modules (M
is simple if M 6= 0 and M does not contain a propre submodule).
A ring R is semisimple if it is semisimple as an R-module.

Lemma 1.8.22 ([134], Lemma 1, p. 22)
The following are equivalent for semisimple R-module M :

1- M is artinian,

2- M is noetherian,

3- M is direct sum of finitely many simple submodules,

4- M is a finitely generated R-module.

Theorem 1.8.23 ([191], Theorem 4.13, p. 117)
The following are equivalent for a ring R:

1- R is semisimple,

2- Every left R-module is semisimple,

3- Every left R-module is injective,

4- Every left R-module is projective,

5- Every short exact sequence of left R-modules split.

Theorem 1.8.24 ([191])
Let R be a semisimple ring then gldim(R) = 0.

1.8.4 Coherent rings
Definition 1.8.25
A ring R is left coherent if every finitely generated left ideal is finitely related.

Example 1.8.26
Every left noetherian ring is left coherent.

Theorem 1.8.27 ([117], Theorem 2.2.1, p. 41)
Let R be a ring and let 0−→P α−→ N

β−→ M−→0 be an exact sequence of
R-modules. Then:

1- If N is a coherent module and P is a finitely generated module then M is a
coherent module,

2- If any two of the modules are coherent so is the third.

Corollary 1.8.28 ([117], Corollary 2.2.3 and 2.2.5, p. 43)
1- Every finite direct sum of coherent modules is a coherent module,
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2- Let R be a ring and let N and M be coherent modules, then M ⊗R N and
HomR(M,N) are coherent modules.

Proposition 1.8.29 ([227], Lemma 3.1.4, p. 52)
If R is a coherent ring, then every M injective R-module, M+ = HomZ(M,Q/Z) is
a flat R-module.
Theorem 1.8.30 ([191], Theorem A, p. 113)
A ring R is left coherent if and only if every product of flat left R-module is flat.

Proposition 1.8.31 ([219], Proposition 1.11)
If R is coherent such that FPD(R) = 0, then R is Artinian (i.e., Noetherien with
Krull’s dimension 0).

In a noetherian ring, the quantity FPD(R) is only Krull’s dimension.

1.8.5 Von Neumann regular rings
Definition 1.8.32
A ring R is Von Neumann regular if for each a ∈ R, there is an element a′ ∈ R with
aa′a = a.
Lemma 1.8.33 ([191], Lemma 4.15 and 4.16, p. 119)

1- If R is Von Neumann regular, every finitely generated left ideal is principal
generated by idempotent,

2- A ring R is Von Neumann regular if and only if every right R-module is flat.

Theorem 1.8.34 ([191])
Let R be a Von Neumann regular ring then wdim(R) = 0.

1.8.6 Hereditary and Dedekind rings
Definition 1.8.35
A ring R is left hereditary if every left ideal is projective.
A Dedekind ring is a hereditary domain.

Example 1.8.36
Every semisimple ring is left hereditary.

Theorem 1.8.37 ([191], Theorem 4.23, p. 124)
The following are equivalent for a ring R:

1- R is left hereditary,

2- Every submodule of a projective module is projective,

3- Every quotient of an injective module is injective.

Corollary 1.8.38 ([191], Corollary 4.26, p. 126)
Every Dedekind ring is noetherian.

Theorem 1.8.39 ([191])
Let R be a hereditary ring then gldim(R) ≤ 1.
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1.8.7 Semihereditary and Prüfer rings
Definition 1.8.40
A ring R is left semihereditary if every finitely generated left ideal is projective.
A semihereditary domain is called a Püfer ring.

Theorem 1.8.41 ([191])
A ring R is left semihereditary if and only if every finitely generated submodule of
a projective module is projective.

Theorem 1.8.42 ([191], Exercise 9.26)
Let R be an integral domain. The following assertions are equivalent:

1- R is Prüfer;

2- wdim(R) ≤ 1 .

Theorem 1.8.43 ([191], Theorem 9.24)
The following assertions are equivalent:

• wdim(R) ≤ 1 ;

• All ideal of R is flat;

• All submodule of a flat module is flat.

1.8.8 Cohen-Macaulay rings
We need to mention that k, in a local ring (R,m, k), called a residue field which is
the quotient R/m, where m is the only ideal maximal of R, then k = R/m.
Before giving the definition of Cohen-Macaulay ring, we want to give some definitions
of grade and depth as a reminder.

Definition 1.8.44
Let R be a noetherian ring, M a finite R-module, and I an ideal such that IM 6= M .
Then the common length of the maximal M -sequences in I is called the grade of I
on M , denoted by grade(I,M).

Definition 1.8.45 (depth)
Let (R,m, k) be a noetherian ring, M a finite R-module. Then the grade of m on
M , is called the depth of M , denoted depth(M).

Theorem 1.8.46 ([45], Theorem 1.2.8)
Let (R,m, k) be a noetherian local ring, and M a finite non-zero R-module. Then:

depthR(M) = min{i : ExtiR(k,M) 6= 0}.

If M is finite, then depthRM < ∞ and all maximal M -sequences have length
depthRM .
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Definition 1.8.47
Let R be a noetherian local ring. A finite R-module M 6= 0 is Cohen-Macaulay
module if depth(M) = dim(M).
If R itself is a Cohen-Macaulay module, then it is called a Cohen-Macaulay ring.
A maximal Cohen-Macaulay module is a Cohen-Macaulay module M such that
dim(M) = dim(R). In general, if R is an arbitary noetherian ring, then M is a
Cohen-Macaulay module for all maximal ideal n ∈ SuppM . However, for M to be
a maximal Cohen-Macaulay module we require that Mm is such an Rm-module for
each maximal ideal m of R. As the local case, R is a Cohen-Macaulay ring if is a
Cohen-Macaulay module.

Theorem 1.8.48 ([45], Theorem 2.1.5)
Let R be a Cohen-Macaulay ring and M a finite R-module of finite projective di-
mension.

1- If M is perfect, then it is Cohen-Macaulay module.

2- The converse holds when R is local.

Theorem 1.8.49 ([45], Theorem 2.1.7)
Let φ : (R,m) → (S, n) be a homomorphism of noetherian local rings. Suppose
M is a finite R-module and N is an R-flat finite S-module. Then M ⊗R N is a
Cohen-Macaulay S-module if and only if M is Cohen-Macaulay over R and N/mN
is Cohen-Macaulay.

depthSM ⊗R N = depthRM + depthSN/mN .

Definition 1.8.50 (I-adic topology)
Let I be an ideal ofR andM be anR-module. ThenM ⊃ IM ⊃ I2M ⊃ ... and so we
have R-homomorphisms fij : M/IjM →M/I iM defined by fij(x+IjM) = x+I iM
whenever i ≤ j. Thus ((M/I iM), (fij)) is an inverse system over Z+ and so has the
projective limit lim←−M/I iM . We note that:

lim←−M/I iM = {(x1 + IM, ...) : xi + I iM = fi,i+1(xi+1 + I i+1M)}.

The topology generated by {x+ I iM} is called the I-adic topology of M . It is easy
to see that in this topology, addition and scalar multiplication are continuous, and
if M = R, then multiplication is also continuous so that R is a topological ring.

Proposition 1.8.51 ([91], Proposition 1.7.2)
M is Hausdorff if and only if ∩I iM = 0.

Definition 1.8.52
A sequence {xn} of elements of an R-module M is said to be a Cauchy sequence in
the I-adic topology if given any nonnegative integer k, there exists a nonnegative
integer n0 such that xi+1−xi ∈ IkM whenever i ≥ n0. {xn} is said to be convergent
if there is an x ∈ M such that given any k there is an n0 such that xn − x ∈ IkM
whenever n ≥ n0 is called a limit of the sequence {xn}. We note that the limit is
unique if M is Hausdorff and that every convergent sequence is a Cauchy sequence.
An R-module M is said to be complete in its I-adic topology if every Cauchy
sequence in M converges. Now let C be the set of all Cauchy sequences in M in the
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I-adic topology. Define addition and scalar multiplication on C by {xn} + {yn} =
{xn + yn} and r{xn} = {rxn} where r ∈ R. Then C is an R-module. Now let C0 be
the subset of C consisting of those Cauchy sequences that converge to zero. Then C0
is a submodule of C. The quotient R-module C/C0 is called the I-adic completion
of M and is denoted by M̂ .

Theorem 1.8.53 ([91], Remark 1.7.6)
We see that if ϕ : M → M̂ is an epimorphism, then M is complete and M/∩ I iM ∼=
M̂ . Furthermore, ϕ is an isomorphism if and only if M is Hausdorff and complete.
In this case M ∼= M̂ .

Theorem 1.8.54 ([91], Theorem 3.4.1)
Let R̂ be the m-adic completion of R. Then:

1- E(k) is an injective cogenerator for R.

2- The canonical map ϕ : M →M vv is an embedding.

3- R̂⊗R E(k) ∼= E(k).

4- E(k) ∼= ER̂(R̂/m̂) as an R̂-module.

5- If M is a finitely generated R-module, then M̂ ∼= M vv.

6- E(k) is Artinian as an R and R̂-module.

Proposition 1.8.55 ([91], Proposition 3.4.3)
An Artinian local ringR with residue field k is self injective if and only if dimkSoc(R) =
1.

Theorem 1.8.56 ([91], Theorem 3.4.4)
An R-module M is artinian if and only if it is finitely embedded, that is, M ⊂ E(k)n
for some n ≥ 1.

Theorem 1.8.57 ([91], Theorem 1.7.7)
M̂ ∼= lim←−M/I iM .

Theorem 1.8.58 ([91], Theorem 2.5.11)
Let R be noetherian, I an ideal of R, and 0 → M ′ ϕ→ M

ψ→ M ′′ → 0 be an exact
sequence of finitely generated R-modules. Then the sequence of I-adic completions:

0→ M̂ ′ → M̂ → M̂ ′′ → 0

is also exact.

Theorem 1.8.59 ([91], Theorem 2.5.14)
Let R be a noetherian ring, I an ideal of R and M a finitely generated R-module.
If M̂ , R̂ denote the I-adic completions of M and R respectively, then:

R̂⊗RM ∼= M̂.

In particular, if R is complete, then so is M .
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Corollary 1.8.60 ([91], Corollary 2.5.15)
If R is noetherian and R̂ is the I-adic completion of R, then:

1- R̂ is a flat R-algebra.

2- IR̂ ∼= I ⊗R R̂ ∼= Î.

3- The topology of R̂ is the Î-adic topology.

Theorem 1.8.61 ([183], Proposition 5.11)
For all B left R-module, pdR[x]B[x] = pdRB.

1.9 Localization
Definition 1.9.1
Let S be a multiplicative subset of R, that is, 1 ∈ S and S is closed under mul-
tiplication. Then the localizaion of R with respect to S, denoted by S−1R, is the
set of all equivalence classes (a, s) with a ∈ R, s ∈ S under the equivalence relation
(a, s) ∼ (b, t) if there is an s′ ∈ S such that (at − bs)s′ = 0. It is easy to check
that this relation is indeed an equivalence relation. The equivalence class (a, s) is
denoted by a/s.

Proposition 1.9.2 ([91], Proposition 2.2.4)
Let S ⊂ R be a multiplicative set. Then:

1- If f : M → N is an R-module homomorphism, then S−1f : S−1M → S−1N
defined by (S−1f)(x/s) = f(x)/s is an S−1R-module homomorphism.

2- If M ′ →M →M ′′ is exact at M then S−1M ′ → S−1M → S−1M ′′ is exact at
S−1M .

3- If N ⊂M are R-modules, then S−1(M/N) ∼= S−1M/S−1N .

4- If M is an R-module, then S−1R⊗RM ∼= S−1M .

5- S−1R is a flat R-module.

Remark 1.9.3 ([91], Remark 2.2.5)
It is now easy to see that if M is a free (resp., projective) R-module, then S−1M
is a free (resp., projective) S−1R-module, and that if M is a finitely generated R-
module, then S−1M is also finitely generated as an S−1R-module. Moreover since
S−1M ∼= S−1R⊗M , if M is a flat R-module, then it is easy to check that S−1M is
a flat S−1R-module.

Proposition 1.9.4 ([91], Exercise 6)
Let ((Mi), (fji)) be a direct system of R-modules. Then lim−→S−1Mi

∼= S−1 lim−→Mi.

Proposition 1.9.5 ([183], Proposition 5.17)
Suppose R is a commutative ring, and S is a multiplicative subset. Set R = S−1R,
φ : R→ R the associated ring homomorphism.
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1- If A, B ∈R M , then A⊗R B ∼= A⊗R B, and HomR(A,B) = HomR(A,B).

2- S−1(A⊗R B) ∼= S−1(A)⊗R B ∼= A⊗R S−1(B) ∼= S−1A⊗S−1R S
−1B for all A

right R-module and B left R-module.

Theorem 1.9.6 ([183], Theorem 5.18)
Suppose R is a commutative ring and S is a multiplicative subset of R. We have:

pdS−1RS
−1B ≤ pdRB

for any B ∈R M .

1.10 Precovers and covers. Preenvelopes and en-
velopes

During this section, χ designates a class of R-modules satisfying the following three
conditions:

� Stable by isomorphism (i.e., if M ∈ χ and N ∼= M , then N ∈ χ);

� Stable by finite direct sum;

� Stable by direct factor.

1.10.1 Precovers and covers
Definition 1.10.1
Let χ be a class of R-module, A morphism ϕ : E → X is an χ-precover of X, if E
is in class χ and if Hom(F,E) → Hom(F,X) is surjective for all modules F ∈ χ.
i.e., for any f ∈ Hom(F,X) there exists u ∈ Hom(F,E) such that ϕou = f.

F
u

~~
f
��

E
ϕ // X

χ-precover.

If moreover, any f : E → E such that ϕof = ϕ is an automorphism of E, then
ϕ : E → X is called an χ-cover of X.

Notation:

. If χ = I(R) : A χ-cover is called an injective cover.

. If χ = P(R): A χ-cover is called a projective cover.

. If χ = F(R): A χ-cover is called a flat cover.

48



1.10. PRECOVERS AND COVERS. PREENVELOPES AND
ENVELOPES

Remark 1.10.2
If there is a surjetive homomorphism h : E →M such that E ∈ χ is an R-module,
then all χ-precover ϕ: χ→M of M is surjective. In particular, all flat or projective
precover are surjective.

Theorem 1.10.3 ([80], Theorem 2.1)
A ring R is left noetherian if and only if every left R-module has an injective cover.

It is not known whether flat precovers always exist. If R is a domain then every
module has a torsion free cover, hence if R is furthermore Prüfer (so flat = torsion
free), flat covers exist. It seems reasonable to conjecture that they exist for any ring.
By Lazard’s thesis every flat module is the inductive limit of projective modules over
some directed set I. If, for a given ring R there is a ”universal” I such that every
flat module over R is the inductive limit of projective modules have flat precovers,
so they have covers.

Corollary 1.10.4 ([80], Corollary(Bass))
If all flat left R-modules are projective, then every left R-module has a projective
cover.

The dual notion of precover is that of preenvelope.

1.10.2 Preenvelopes and envelopes
Definition 1.10.5
A morphism ϕ : X → I is an χ-preenvelope of X, if I ∈ χ and if Hom(I, I ′) →
Hom(X, I ′) is surjective for all modules I ′ ∈ χ, i.e. if for any f ∈ Hom(X, I ′) there
is v ∈ Hom(I, I ′) such that voϕ = f . If moreover, any v : I → I such that voϕ = ϕ
is an automorphism of I, then ϕ : X → I is an χ-envelope of X.

X
ϕ //

f
��

I

v��
I ′

χ-preenvelope.

Notation:

. If χ = I(R) : A χ-envelope is called an injective envelope.

. If χ = P(R): A χ-envelope is called a projective envelope.

. If χ = F(R): A χ-envelope is called a flat envelope.

Lemma 1.10.6 ([80], Lemma 5.1)
If M → F is a flat envelope and M is finitely presented, then F is finitely generated
and projective.

Proposition 1.10.7 ([80], Proposition 5.1)
For a ring R, every left R-module has a flat preenvelope if and only if R is coherent.
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1.10.3 Pure injective
We make a brief review of pure injective modules.
First we need some notions. Recall that an exact sequence left R-modules 0 →
N → M → L → 0 is called pure if for every right R-module S, the sequence
0→ S ⊗R N → S ⊗RM → S ⊗R L→ 0 is still exact.
In this case, we say that N is pure submodule of M and that M is a pure extension
of N . A left R-module P is called pure injective if every diagram:

0 // N

f
��

//M

g
~~

// L // 0

P

with the upper row pure exact can be completed to commutative diagram. Equiva-
lent, HomR(M,P )→ HomR(N,P )→ 0 is exact whenever N is pure submodule of
M .
Example 1.10.8

• Every injective module is a pure injective.

• For all M R-module, the M+ = HomZ(M,Q/Z) of M is a pure injective.

Proposition 1.10.9 ([227], Proposition 2.3.6, p. 45)
Every R-module has a pure injective envelope.

Proposition 1.10.10 ([124])
Every R-module M has a pure injective envelope, denoted PE(M), such that M ⊆
PE(M). If R is right coherent, and F is flat, then both PE(F ) and PE(F )/F are
flat too.

Proposition 1.10.11 ([227], Proposition 2.3.5 p. 45)
For all module M , we have the following pure exact sequence:

0 −→M
σ−→M∗∗ −→ Coker σ −→ 0

with σ is an homomorphism.

Definition 1.10.12 (Cotorsion modules)
A left R-module C is called cotorsion if Ext1R(F,C) = 0 for all flat R-module F .
Note that all pure injective modules are cotorsion.

Proposition 1.10.13
If R is right coherent, and M is a left R-module with finite flat dimension, then M
has a flat cover.
Proposition 1.10.14
An R-module M is a cotorsion if and only if M ∈ F(R)⊥.

Proposition 1.10.15 ([227], Proposition 3.1.2, p. 52)
Let 0→ K1 → K2 → K3 → 0 be a short exact sequence:

1. If K1 and K3 are cotorsion, then K2 is too.
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2. If both K1 and K2 are cotorsion, then K3 is too.

Proposition 1.10.16 ([227], Lemma 2.1.1, p. 27)
Let ϕ : N → M be a χ-cover of M and let K = Ker ϕ. If χ is stable for extension
(i.e., for all short exact sequence 0 → A → B → C → 0, If A and C ∈ χ, then
B ∈ χ), thus Ext(N ′, K) = 0 for all N ′ ∈ χ.

Proposition 1.10.17 ([227], Theorem 3.1.11, p. 57)
Let R a coherent ring and M an R-module.
If there is an exact sequence: 0→Mn →Mn−1 → ...→M0 →M → 0 such that,
for each 0 ≤ i ≤ n, Mi admits a flat cover, then M also admits a flat cover.

1.11 The classical gorenstein dimension
In basic homological algebra, the projective, injective and flat dimensions of mod-

ules play an important and fundamental role. In this section, we are going to
introduce some Gorenstein projective, Gorenstein injective and Gorenstein flat di-
mensions.
In 1967 Auslader [6] introduced a new invariant for finitely generated modules
over commutative noetherian rings: a relative homological dimension called the G-
dimension. The ’G’ is, no doubt, for ’Gorenstein’ and chosen because the following
are equivalent for a local ring (R,m, k):
→ R is Gorenstein,

→ The residue field k = R/m has finite G-dimension,

→ All finitely generated R-modules have finite G-dimension.

Definition 1.11.1
A finite R-module M belongs to the G-class G(R) if and if only:

1- ExtmR (M,R) = 0 for m > 0,

2- ExtmR (HomR(M,R), R) = 0 for m > 0, and

3- The biduality map δM : M → HomR(HomR(M,R), R) is an isomorphism
(then we say that M is reflexive).

This class could be called also totally reflexive as in [134].

Now we are going to give definition of G-resolution.

Definition 1.11.2
A G-resolution of a finite R-module M is a sequence of modules in G(R):

...→ Gl → Gl−1 → ...→ G1 → G0 → 0

which is exact at Gl for l > 0 and has G0/Im(G1 → G0) ∼= M . That is, then is an
exact sequence:

...→ Gl → Gl−1 → ...→ G1 → G0 →M → 0.

The resolution is said to be of length n if Gn 6= 0 and Gl = 0 for l > n.
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Remark 1.11.3 ([53])
Every finite R-module has a resolution by finite free modules and, thereby, a G-
resolution.

; Observation: Let M be a finite R-module and consider an exact sequence:

...→ Gl → Gl−1 → ...→ G0 →M → 0

where the modules Gl belong to G(R). We set

K0 = M , K1 = Ker(G0 →M) and
Kl = Ker(Gl−1 → Gl−2) for l ≥ 2.

For each l ∈ N, we then have a short exact sequence:

0→ Kl → Gl−1 → Kl−1 → 0,

then we get isomorphism:

ExtmR (Kl, R) ∼= Extm+1
R (Kl−1, R)

which piece together to give isomorphism

ExtmR (Kl, R) ∼= Extm+1
R (M,R) for m > 0.

Suppose Kn ∈ G(R), that is, G − dimRM ≤ n. For l < n we then have an exact
sequence:

0→ Kn → Gn−1 → ...→ Gl → Kl → 0,
showing that G-dimRKl ≤ n− l, and we note that equality holds if G-dimRM = n,
then we get:

0→ Kn → Gn−1 → ...→ Gl →M → 0
is exact.

Definition 1.11.4
Let R be a noetherian ring. For a finitely generated R-module N 6= 0 the G-
dimension, denoted by G-dimRN , is the least integer n ≥ 0 such that there exists a
G-resolution of N with Gi = 0 for all i > n. If no such n exist, then G-dimRN is
infinite, by convention, G-dimR0 = −∞.

Theorem 1.11.5
Let the following results from [53]:
Regularity theorem: Let R be a local ring with residue field k. The following
are equivalent:

1- R is regular,

2- pdRk <∞,

3- pdRM <∞ for all finite R-modules M ,

4- pdRM <∞ for all R-modules M .
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Auslander-Buchsbaum formula: Let R local ring and let M be a finite R-
module. If M is of finite projective dimention, then:

pdRM + depthRM = depthR.

Bass formula: Let R be a local ring, and let M 6= 0 be a finite R-module. If M
is of finite injective dimension, then:

idRM = depthR.

Theorem 1.11.6 ([53], Proposition 1.2.10, p. 29)
For every module M finitely generated, G-dim(M) ≤ pd(M) with equality if pd(M)
is finite.

As we have pdRM+depthRM = depthR, then when pdR is finite we get the following
result:

G− dimRM + depthRM = depthR.

Theorem 1.11.7 ([53], Theorem 1.2.7, p. 24)
Let R be a noetherian ring and M is finitely generated R-module of finite G-
dimension. For every integer n ≥ 0, the following statements are equivalent:

1- G-dimRM ≤ n,

2- ExtiR(M,R) = 0 for all i > n,

3- ExtiR(M,N) = 0 for all i > n and all R-modules N with finite projective
dimension,

4- In every Gorenstein resolution ... → G1 → G0 → M → 0 the module
Coker(Gn+1 → Gn) is totally reflexive.

Corollary 1.11.8 ([134], Corollary 9, p. 66)
Let R be noetherian. For every finitely generated R-moduleM of finiteG-dimension,
there is the equality:

G-dimRM = sup{i ∈ N/ExtiR(M,R) 6= 0}.

Definition 1.11.9
A ring R is said to be n-Gorenstein (n ≥ 0) if R is right and left noetherian and if
R has finite injective dimension at most n on either side. R is said to be Gorenstein
if it is n-Gorenstein for some n.

Proposition 1.11.10 ([99], Proposition 1.1)
Let R be a ring n-Gorenstein and M be an R-module. Then, the following assertions
are equivalent:

1- pd(M) < +∞,

2- pd(M) ≤ n,

3- id(M) < +∞,
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4- id(M) ≤ n,

5- fd(M) < +∞,

6- fd(M) ≤ n.

Theorem 1.11.11 ([178], Theorem 18)
Let 0 −→ A −→ B −→ C −→ 0 a short exact sequence of modules finitely gener-
ated. Then, we have the following inequality:

1- G-dim(A) ≤ max{G-dim(B),G-dim(C)− 1};

2- G-dim(B) ≤ max{G-dim(A),G-dim(C)};

3- G-dim(C) ≤ 1 + max{G-dim(A),G-dim(C)}.

If two of three modules A, B and C has a finite G-dimension, it is the same for the
third.

1.11.1 Gorenstein dimensions
Definition 1.11.12
A complex:

0→M → P 0 → P 1 → ...

is called a projective resolvent of M if each P i is a projective module and if for each
projetive module P , the functor HomR(−, P ) makes the complex exact.
Using projective preenvelopes, such as resolvent for M can be constructed. If

...→ P2 → P1 → P0 →M → 0

is a projective resolution of M , then:

...→ P1 → P0 → P 0 → P 1 → ...

is called a complete projective resolution of M .

We get the same result by using injective precovers E. Enochs and O. Jenda in [83]
to define a complete injective resolution:

Definition 1.11.13
If N is a left R-module then a complex:

...→ E1 → E0 → N → 0

is called an injective resolvent of N if each Ei is an injective left R-module and if for
any injective left R-module E, the functor Hom(E,−) leaves the sequence exact.

We note that a complex as above is an injective resolvent if and only if E0 → N ,
E1 → Ker(E0 → N) and Ei → Ker(Ei−1 → Ei−2) for i ≥ 2 are injective precovers.
If all these maps are injective covers then we say that the complex is a minimal
injective resolvent of N. Then noting that a minimal injective resolvent is unique up
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to isomorphism, we denote Ei in such a complex by Ei(N). If M is a left R-module
and

0→M → E0 → E1 → ...

is an injective resolution and

...→ E1 → E0 → N → 0

is an injective resolvent, then

...→ E1 → E0 → E0 → E1 → ...

is called a complete injective resolution of M.
Then, we have the following definition.

Definition 1.11.14 ([53])
1- i- An exact sequence: (P ) : · · · → P1 → P0 → P 0 → P 1 → · · ·

such that the modules Pi and P i are projective, is called a complete pro-
jective resolution if Hom((P ), Q) is exact for every projective R-module
Q.

ii- AnR-moduleM is called Gorenstein projective (G-projective for short), if
there exists a complete projective resolution P with M ∼= Im(P0 → P 0).

2- i- An exact sequence (E) : · · · → E1 → E0 → E0 → E1 → · · · ,
such that the modules Ei and Ei are injective, is called a complete in-
jective resolution if Hom(I, (E)) is exact for every injective R-module
I.

ii- An R-module N is called Gorenstein injective (G-injective for short), if
there exists a complete injective resolution I with N ∼= Im(E0 → E0).

Example 1.11.15
Every projective module is Gorenstein projective.

Theorem 1.11.16 ([53], Theorem 4.2.6, p. 98)
A module finitely generated M is Gorenstein projective if and only if G-dim(M) = 0.

Definition 1.11.17
1- We say that a module M a finite Gorenstein projective dimension less or

equal to n, denoted by GpdR(M) ≤ n or just Gpd(M) ≤ n, if there is an
exact sequence:

0→ Gn → · · · → G1 → G0 →M → 0

such that the modules Gi are Gorenstein projectives.

2- Dualy, we can define the Gorenstein injective dimension of a module N which
denoted by Gid(N).
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Proposition 1.11.18 ([99], Proposition 1.5)
Let R be n-Gorenstein and M a left R-module, then there is a short exact sequence:

0 −→M −→ G −→ L −→ 0,

such that G is Gorenstein injective and that idR(L) ≤ n− 1.

Theorem 1.11.19 ([99], Theorem 2.2)
Let R be n-Gorenstein and M an R-module, then there is a short exact sequence:

0 −→ L −→ A −→M −→ 0,

such that A is Gorenstein projective and that pdR(L) ≤ n− 1.

Definition 1.11.20
1- An exact sequence (F ) : · · · → F1 → F0 → F 0 → F 1 → · · · , such that the

modules Fi and F i are flats, it’s called complete flat resolution if (F )⊗ I is an
exact sequence for all injective module I.

2- A module M is called Gorenstein flat ( G-flat for short) if there is a complete
flat resolution (F ) such that M ∼= Im(F0 → F 0).

Proposition 1.11.21 ([53], Proposition 5.1.4)
Every Gorenstein projective module is Gorenstein flat.

Proposition 1.11.22 ([53], Proposition 5.1.10 and Lemma 5.1.11)
If R is coherent, then a finitely presented R-module is Gorenstein flat if and only if
it is Gorenstein projective.

Theorem 1.11.23 ([53], Theorem 5.1.11)
Let M an R-module finitely generated. M is Gorenstein flat if and only if M
Gorenstein projective.

Lemma 1.11.24
Let 0→ A→ B → C → 0 be a short exact sequence of R-modules. Then:

1- Gpd(A) ≤ sup{Gpd(B),Gpd(C)− 1} with equality if Gpd(B) 6= Gpd(C).

2- Gpd(B) ≤ sup{Gpd(A),Gpd(C)} with equality if Gpd(C) 6= Gpd(A) + 1.

3- Gpd(C) ≤ sup{Gpd(B),Gpd(A) + 1} with equality if Gpd(B) 6= Gpd(A).

Lemma 1.11.25
Let 0→ A→ B → C → 0 be a short exact sequence of R-modules. Then:

1- Gid(A) ≤ sup{Gid(B),Gid(C) + 1} with equality if Gid(B) 6= Gid(C).

2- Gid(B) ≤ sup{Gid(A),Gid(C)} with equality if Gid(A) 6= Gid(C) + 1.

3- Gid(C) ≤ sup{Gid(B),Gid(A)− 1} with equality if Gid(B) 6= Gid(A).

Lemma 1.11.26
Let 0→ A→ B → C → 0 be an exact sequence of modules over a coherent ring R.
Then:
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1- GfdR(A) ≤ sup{GfdR(B),GfdR(C)− 1} with equality if GfdR(B) 6= GfdR(C).

2- GfdR(B) ≤ sup{GfdR(A),GfdR(C)} with equality if GfdR(C) 6= GfdR(A) + 1.

3- GfdR(C) ≤ sup{GfdR(B),GfdR(A) + 1} with equality if GfdR(B) 6= GfdR(A).

Theorem 1.11.27 ([89], Theorem 4.8)
The following are equivalent for a nonzero artinian R-module M :

1- M is Gorenstein injective,

2- M v is Gorenstein projective,

3- Hom(E(k),M) is nonzero Gorenstein projective R-module,

4- Hom(E(k),M) is nonzero, depthHom(E(k),M) = depthR andG−dimHom(E(k),M) <
∞.

Along with Gorenstein flat dimension, The restricted large flat dimension proved
its importance in Gorenstein homological dimension theory (see [53] page 127), it is
defined as following:

RfdR(M) = sup{i ≥ 0 | ∃L ∈ F(R) : Tori(L,M) 6= 0}.

Proposition 1.11.28 ([53], Proposition 5.4.2)
For every M an R-module, RfdR(M) ≤ fdR(M) with equality if fdR(M) is finite.
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Chapitre 2:
Dimensions homologiques de Gorenstein

Il existe une variété de résultats intéressants sur les dimensions de Gorenstein sur
des anneaux noethériens commutatifs spéciaux. Le but de ce chapitre dû à H. Holm
[124] est de généraliser ces résultats, et de donner des descriptions homologiques de
la dimension de Gorenstien sur des anneaux associatifs arbitraires.
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CHAPTER 2

GORENSTEIN HOMOLOGICAL
DIMENSIONS

There is a variety of nice results about Gorenstein dimensions over special commu-
tative noetherian rings. The aim of this chapter due to H. Holm [124] is to generalize
these results, and to give homological descriptions of the Gorenstien dimension over
arbitrary associative rings.

2.1 Gorenstein projective and Gorenstein injec-
tive modules

Definition 2.1.1
An R-module M is called Gorenstein projective (G-projective for short), if there
exists a complete projective resolution:

P = ...→ P1 → P0 → P 0 → P 1 → ...,

with M ∼= Im(P0 → P 0). The class of all Gorenstein projective R-modules is
denoted by GP(R).

The dual notion of a Gorenstein projective module is that of a Gorenstein injective
module. This class of modules was also introduced by Enochs and Jenda in [83,].
Their definition works over arbitrary rings.

Definition 2.1.2
An R-module M is Gorenstein injective if there exists an exact complex of injective
modules:

E = ...→ E1 → E0 → E0 → E1 → ...,

such that for any injective R-module I, the complex Hom(I,E) is still exact, and
such that M ∼= Im(E0 → E0). In other way M is Gorenstein injective if there exists
a complete injective resolution.
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Remark 2.1.3
If P is a complete projective resolution, then by symmetry, all the images, kernels,
and cokernels of P are Gorenstein projective modules.
The same for the Gorenstein injective module E.
We will use the notation GI(R) for the class of Gorenstein injective modules.

Example 2.1.4
Every projective module is Gorenstein projective. Indeed, if P is projective, then
the complex 0→ P → P → 0 is exact and Hom( , P ′) is exact for any projective
P ′ and P = Im(P → P ). So the class of projective modules is contained in that of
Gorenstein projectives.

Proposition 2.1.5
An R-module M is Gorenstein projective if and only if, M belongs to the left
orthogonal class ⊥P(R), and admits a co-proper right P(R)-resolution.
Furthermore, if P is a complete projective resolution, then HomR(P, L) is exact
for all R-modules L with finite projective dimension. Consequently, when M is
Gorenstein projective, then ExtiR(M,L) = 0 for all i > 0 and all R-modules L with
finite projective dimension.

Remark 2.1.6
We note that if M is Gorenstein injective then ExtiR(I,M) = 0 for any injective
R-module I and for all i ≥ 1. By induction we obtain that if M is Gorenstein
injective then ExtiR(A,M) = 0 for any R-module A of finite injective dimension, for
all i ≥ 1.

As the next result shows, we can always assume that the modules in a complete
projective resolution are free.

Proposition 2.1.7
If M is a Gorenstein projective module, then there is a complete projective resolu-
tion:

F = ...→ F1 → F0 → F 0 → F 1 → ...,

consisting of free modules Fn and F n such that M ∼= Im(F0 → F 0).

Proof.
Only the construction of the right half 0→M → F 0 → F 1 → ... of F is of interest.
As M is a Gorenstein projective module then M admits a co-proper right P(R)-
resolution, say 0→M → Q0 → Q1 → ....
We successively pick projective modules P 0, P 1, P 2,..., such that every projective
module is a direct summand of free module, then we get:

F 0 = Q0 ⊕ P 0 and F n = Qn ⊕ P n−1 ⊕ P n for n > 0 are free.

By adding 0 → P i → P i → 0 to the co-proper right P(R)-resolution above in
degrees i and i+ 1, we obtain the desired sequence.

Theorem 2.1.8
The class GP(R) of all Gorenstein projective R-modules is projectively resolving.
Furthermore, GP(R) is closed under arbitrary direct sums and under direct sum-
mands.
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Proof.
To prove that GP(R) is projectively resolving we consider any short exact sequence
of R-modules, 0→M ′ →M →M ′′ → 0, where M ′′ is Gorenstein projective.

. First assume that M ′ is Gorenstein projective. Again, using the caracteri-
zation in proposition 2.1.5, we have that M ′ admits a co-proper right P(R)-
resolution, we conclude that M admits also a co-proper right P(R)-resolution
by the Horseshoe lemma, and by example 1.5.21, which shows that the left or-
thogonal class ⊥P(R) is projectively resolving, and as we have that M ′ belongs
to ⊥P(R), then also M and we get that M is Gorenstein projective.

. Next assume that M is Gorenstein projective and let’s prove that M ′ is also
Gorenstein projective. Since ⊥P(R) is projectively resolving, we get that M ′

belongs to ⊥P(R). Thus, to show that M ′ is Gorenstein projective, we only
have to prove that M ′ admits a co-proper right P(R)-resolution. By assump-
tion, there exists co-proper right P(R)-resolution,

M = 0→M → P 0 → P 1 → ...
M ′′ = 0→M ′′ → P ′′0 → P ′′1 → ...

There exists a chain map M → M ′′ called α which is quasi-isomorphism (as
M and M ′′ are exact), then we have the exact mapping cone of α:

M(α) : 0→M →M ′′ ⊕ P 0 → P ′′0 ⊕ P 1 → ...

Then we have the following commutative diagram:

... ... ...x x x
0 −−−→ P ′′0 ⊕ P 1 P ′′0 ⊕ P 1 −−−→ 0 −−−→ 0x x x
0 −−−→ P 0 −−−→ M ′′ ⊕ P 0 −−−→ M ′′ −−−→ 0x x ‖

0 −−−→ M ′ −−−→ M −−−→ M ′′ −−−→ 0x x x
0 0 0

‖ ‖ ‖

0 −−−→ M ′ −−−→ M(α) −−−→ D −−−→ 0
We have M ′ → P 0 and P 0 → P ′′0⊕P 1 are defined by using proposition 1.1.6.
We claim that the first colomn, M ′ is a co-proper right P(R)-resolution of
M ′. Since both M(α) and D are exact, the long exact sequence in homology
shows that M ′ is exact as well. Thus M ′ is a right P(R)-resolution of M ′.
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We still need now to prove that M ′ admits a co-proper, for that let Q be any
projective module. Applying HomR( , Q), we obtain another exact sequence
of complexes:

0→ HomR(D,Q)→ HomR(M(α), Q)→ HomR(M ′, Q)→ 0

For the first row, 0 → HomR(M ′′, Q) → HomR(M,Q) → HomR(M ′, Q) → 0
exactness follows from proposition 2.1.5, because we have Ext(M ′′, Q) = 0
(Since M ′′ is Gorenstein projective).
To prove that HomR(M ′, Q) is exact, we have to prove that HomR(D,Q) and
HomR(M(α), Q) are exact.
Thus, it is clear that HomR(D,Q) is exact and HomR(M(α), Q) is exact,
because:
Let’s put the functor T = HomR( , Q), we haveHomR(M(α), Q) = T (M(α)) =
M(T (α)) which is exact, as we have:
T (α) : HomR(M ′′, Q)→ HomR(M,Q) is quasi-isomorphism as HomR(M,Q)
and HomR(M ′′, Q) are exact since M and M ′′ are G-projectives. Finally, we
have the desire result.

The left orthogonal class ⊥P(R) is closed under arbitrary direct sums by Example
1.5.21, and so is the class of modules which admits a co-proper right P(R)-resolution
by Proposition 1.5.26 (ii). Consequently, the class GP(R) is also closed under ar-
bitrary direct sums by Proposition 2.1.5. Finally we have to show that the class
GP(R) is closed under direct summands. Since GP(R) is projectively resolving, and
closed under arbitrary direct sums, the desired conclusion follows from Proposition
1.5.22.

Theorem 2.1.9
The class GI(R) of all Gorenstein injective R-modules is injectively resolving. Fur-
thermore GI(R) is closed under arbitrary direct products and under direct sum-
mands.

Proposition 2.1.10
Let M be an R-module and consider two exact sequences,

0→ Kn → Gn−1 → ...→ G0 →M → 0,
0→ K

′
n → G

′
n−1 → ...→ G

′
0 →M → 0,

where each Gi and G
′
i are Gorenstein projective modules. Then Kn is Gorenstein

projective if and only if K ′n is Gorenstein projective.

Proof.
Since every module admits a projective resolution, then we take the Gi are pro-
jectives and G′i are Gorenstein projectives for i = 0, ..., n − 1. Thus, we have the
following commutative diagram:

0 −−−→ Kn −−−→ Gn−1 −−−→ · · · −−−→ G0 −−−→ M −−−→ 0y y y ||

0 −−−→ K ′n −−−→ G′n−1 −−−→ · · · −−−→ G′0 −−−→ M −−−→ 0
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which induce the following complex quasi-isomorphisms:
0 −−−→ Kn −−−→ Gn−1 −−−→ · · · −−−→ G0 −−−→ 0y y y
0 −−−→ K ′n −−−→ G′n−1 −−−→ · · · −−−→ G′0 −−−→ 0

As α is quasi-isomorphism, the M(α) is exact:

M(α) : 0→ Kn → K ′n ⊕Gn−1 → ...→ G′1 ⊕G0 → G′0 → 0.

Kn is Gorenstein projective then Kn is projectively resolving we have:
Kn ∈ GP(R) ⇔ K ′n ⊕ Gn−1 ∈ GP(R) ⇔ K ′n ∈ GP(R) since we have that Gn−1 ∈
GP(R) and we have GP(R) is closed under countable direct sums.

At this point we introduce the Gorenstein projective dimension:

Definition 2.1.11
The Gorenstein projective dimension, GpdR(M), of an R-module M is defined by
declaring that GpdR(M) ≤ n (n ∈ N0), if and only if M has a Gorenstein projective
resolution of length n. We use GP(R) to denote the class of all R-modules with
finite Gorenstein projective dimension.
Similarly, one defines the Gorenstein injective dimension, GidR(M) of M , and we
use GI(R) to denote the class of all R-modules with finite Gorenstein injective
dimension.
Theorem 2.1.12
Let M be an R-module with finite Gorenstein projective dimension n. Then M
admits a surjective Gorenstein projective precover, ϕ : G�M , where K = Ker(ϕ)
satisfies pdRK = n− 1.
In particular, M admits a proper left GP(R)-resolution of length n.

Proof.
Pick an exact sequence 0→ K ′ → Pn−1 → ...→ P0 →M → 0,
where P0, ..., Pn−1 are projectives. Then K ′ is Gorenstein projective. Hence there is
an exact sequence 0→ K ′ → Q0 → ...→ Qn−1 → G→ 0, where Qi are projectives
for all i = 0, ..., n− 1, G is Gorenstein projective and such that HomR( , L) leaves
this sequence exact, whenever L is projective.
Thus there exist homomorphisms, Qi → Pn−1−i for i = 0, ..., n − 1, and G → M ,
such that the following diagram is commutative:

0 −−−→ K ′ −−−→ Q0 −−−→ · · · −−−→ Qn−1 −−−→ G −−−→ 0

||
y y y

0 −−−→ K ′ −−−→ Pn−1 −−−→ · · · −−−→ P0 −−−→ M −−−→ 0
this diagram gives a chain map between complexes

0 −−−→ Q0 −−−→ · · · −−−→ Qn−1 −−−→ G −−−→ 0y y y
0 −−−→ Pn−1 −−−→ · · · −−−→ P0 −−−→ M −−−→ 0
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Then the mapping cone M(α) is exact.
Let M(α) : 0 → Q0 → Pn−1 ⊕ Q1 → ... → P1 ⊕ Qn−1 → P0 ⊕ G → M → 0, then
K = Kerϕ satisfies pd(K) ≤ n−1. As Gpd(M) = n then necessarily pd(K) = n−1.
SinceK has finite projective dimension, we have Ext1R(G′, K) = 0 for any Gorenstein
projective module G′, then we have the following short exact sequence:

0 −→ K −→ P0 ⊕G
ϕ−→M −→ 0

and we apply the Theorem 1.6.15 to the previous sequence, we get:

HomR(G′, P0 ⊕G)→ HomR(G′,M)→ Ext1R(G′, K) = 0

is exact for all R-module G′ Gorenstein projective. Hence ϕ : P0 ⊕ G � M is the
desired precover of M .

Corollary 2.1.13
Let 0→ G′ → G→M → 0 be a short exact sequence whereG andG′ are Gorenstein
projective modules, and where Ext1R(M,Q) = 0 for all projective modules Q. Then
M is Gorenstein projective.

Proof.
We have the exact sequence 0→ G′ → G→M → 0 then Gpd(M) ≤ 1 there exists
a short exact sequence 0 → Q → Q′ → M → 0 with Q is projective and Q′ is
Gorenstein projective. By our assumption Ext1R(M,Q) = 0 this sequence is split
and Q′ ∼= M ⊕ Q. Thus M is Gorenstein projective as a direct summand of Q′ by
theorem 2.1.8.

Corollary 2.1.14
Every finite R-module M with finite Gorenstein projective dimension has a finite
surjective Gorenstein projective precover, 0 → K → G → M → 0, such that the
kernel K has finite projective dimension.

Theorem 2.1.15
Let N be an R-module with finite Gorenstein injective dimension n. Then M admits
an injective Gorenstein injective preenvelope, ϕ : M ↪→ N , where C = Cokerϕ
satisfies idR(C) = n− 1, if n = 0, this should be interpreted as C = 0.
In particular, N admits a co-proper right GI(R)-resolution of length n.

The following theorem is the dual version of proposition 2.1.13, which is proved by
Enochs and Jenda in [83].

Theorem 2.1.16
Let 0 → E ′ → E → E ′′ → 0 be an exact sequence of left R-modules. If E ′ and E ′′

are Gorenstein injective then so is E. If E ′ and E are Gorenstein injective, then so
is E ′′. If E and E ′′ are Gorenstein injective then E ′ is Gorenstein injective if and
only if Ext1R(I, E ′) = 0 for all injective left R-modules I.

Proposition 2.1.17
Assume that R is left noetherian, and that M is a finite left R-module with Goren-
stein projective dimension m. Then M has a Gorenstein projective resolution of
length m, consisting of finite Gorenstein projective modules.
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Theorem 2.1.18
Let 0 → A → B → C → 0 a short exact sequence. If two of the three modules A,
B and C have a finite Gorenstein projective dimension, then so has the third.

Proposition 2.1.19
Let 0 → K → G → M → 0 be an exact sequence of R-modules where G is
Gorenstein projective. If M is Gorenstein projective, then so is K. Otherwise we
get:

GpdR(K) = GpdR(M)− 1 ≥ 0.

Proposition 2.1.20
If (Mλ)λ∈Λ is any family of R-modules, then we have an equality:

GpdR(
⊕

Mλ) = sup{GpdRMλ|λ ∈ Λ}.

Proof.
Since GP(R) is closed under direct sums by theorem 2.1.8, then it is clear that we
have the inequality ′ ≤′. So for the converse it suffices to show that if M ′ is any
direct summand of an R-module M , then GpdRM ′ ≤ GpdRM . Let M = M ′ ⊕M ′′

and GpdRM = n is finite, and then proceed by induction on n.

• If n = 0 (i.e., M is Gorenstein projective) then M ′ also Gorenstein projective.

• If n > 0. Pick exact sequences

0→ K ′ → G′ →M ′ → 0,
0→ K ′′ → G′′ →M ′′ → 0,

where G′ and G′′ are projectives. We get a commutative diagram with split-
exact rows,

0 0 0x x x
0 −−−→ M ′ −−−→ M −−−→ M ′′ −−−→ 0x x x
0 −−−→ G′ −−−→ G′ ⊕G′′ −−−→ G′′ −−−→ 0x x x
0 −−−→ K ′ −−−→ K ′ ⊕K ′′ −−−→ K ′′ −−−→ 0x x x

0 0 0

then for the middle column in this diagram we have GpdR(K ′ ⊕ K ′′) =
GpdR(M)−1 = n−1. Hence the induction hypothesis yields that GpdR(K ′) ≤
n− 1, and thus the short exact sequence 0→ K ′ → G′ →M ′ → 0 shows that
GpdR(M ′) ≤ n, as desired.
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Lemma 2.1.21
Consider an exact sequence 0 → Kn → Gn−1 → ... → G0 → M → 0 where G0,...,
Gn−1 are Gorenstein projective modules. Then ExtiR(Kn, L) ∼= Exti+nR (M,L) for all
R-modules L with finite projective dimension, and all integers i > 0.

Theorem 2.1.22
Let M be an R-module with finite Gorenstein projective dimension, and let n be an
integer. Then the following conditions are equivalent:

1- GpdRM ≤ n,

2- ExtiR(M,L) = 0 for all i > n, and all R-modules L with finite pdR(L),

3- ExtiR(M,N) = 0 for all i > n, and all projective R-modules N ,

4- For every exact sequence 0→ Kn → Gn−1 → ...→ G0 →M → 0,
where G0,...,Gn−1 are Gorenstein projectives, then also Kn is Gorenstein pro-
jective.

Consequently, the Gorenstein projective dimension of M is determined by the fol-
lowing formulas:

GpdRM= sup{i ∈ N0|∃L ∈ P(R) : ExtiR(M,L) 6= 0},
= sup{i ∈ N0|∃Q ∈ P(R) : ExtiR(M,Q) 6= 0}.

Proof.
Obviously (2) ⇒ (3) and (4) ⇒ (1), so we only have to prove the last two implica-
tions.

• To prove (1) ⇒ (2), let GpdR ≤ n. By definition there is an exact sequence:

0→ Gn → Gn−1 → ...→ G0 →M → 0,

where each Gi is projective for all i = 0, ..., n. By Lemma 2.1.21 and Propo-
sition 2.1.5, ExtiR(M,L) ∼= Exti−nR (Gn, L) = 0 for all i > n, and L has finite
projective dimension, as desired.

• To prove (iii) ⇒ (iv), we consider an exact sequence:

0→ Kn → Gn−1 → ...→ G0 →M → 0,

where each Gi is projective for all i = 0, ..., n − 1. Applying Lemma 2.1.21
to this sequence, and using the assumption, we get that ExtiR(Kn, Q) ∼=
Exti+nR (M,Q) = 0 for all i > n and every projective module Q. Decomposing
the previous sequence into short exact sequences, and applying Proposition
2.1.19 successively n times, we see that GpdRKn < ∞, since GpdRM < ∞.
Hence there is an exact sequence:

0→ G′m → ...→ G′0 → Kn → 0,

where G′0, ..., G′m are Gorenstein projectives. We decompose it into short exact
sequences, 0 → C ′j → G′j−1 → C ′j−1 → 0, for j = 1, ...,m, where C ′m = G′m
and C ′0 = Kn. Now another use of Lemma 2.1.21 gives that:

Ext1R(C ′j−1, Q) ∼= ExtjR(Kn, Q) = 0,
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for all j = 1, ...,m, and all projective modules Q. Thus Corollary 2.1.13 can
be applied successively to conclude that C ′m, ..., C ′0 are Gorenstein projectives.
In particular Kn = C ′0 is Gorenstein projective.

Corollary 2.1.23
If R is left noetherian, and M is a finite left module with finite Gorenstein projective
dimension, then:

GpdRM = sup{i ∈ N0|ExtiR(M,R) 6= 0}.

Proof.
By theorem 2.1.22, it suffices to show that if ExtiR(M,Q) 6= 0 for some projective
R-module Q, then also ExtiR(M,R) 6= 0. We pick another R-module P , as we know
a projective R-module is a direct summand of a free R-module. Let R(Λ) a free
R-module then Q ⊕ P ∼= R(Λ) for some index set Λ, and then ExtnR(M,R)(Λ) =
ExtnR(M,R(Λ)) ∼= ExtnR(M,Q)⊕ ExtnR(M,P ) 6= 0.

Theorem 2.1.24
Let N be an R-module with finite Gorenstein injective dimension, and let n be an
integer. Then the following conditions are equivalent:

1- GidRN ≤ n,

2- ExtiR(L,N) = 0 for all i > n, and all R-modules L with finite idR(L),

3- ExtiR(Q,N) = 0 for all i > n, and all injective R-modules N ,

4- For every exact sequence 0→ N → H0 → ...→ Hn−1 → Cn → 0,
where H0,...,Hn−1 are Gorenstein injectives, then also Cn is Gorenstein injec-
tive.

Consequently, the Gorenstein injective dimension of M is determined by the follow-
ing formulas:

GidRN= sup{i ∈ N0|∃L ∈ I(R) : ExtiR(L,N) 6= 0},
= sup{i ∈ N0|∃Q ∈ I(R) : ExtiR(Q,N) 6= 0}.

Proposition 2.1.25
If M is an R-module with finite projective dimension, then GpdRM = pdRM .
In particular there is an equality of classes GP(R) ∩ P(R) = P(R).

Proof.
Assume that pdRM = n is finite. By definition, there is always an inequality
GpdRM ≤ pdRM . Now, we need to prove that n ≤ GpdRM . Then by theo-
rem 2.1.22 we have to prove the existence of a projective module P , such that
ExtnR(M,P ) 6= 0.
Since pdRM = n there exists some module Q, with ExtnR(M,Q) 6= 0, let P be any
projective module which surjects onto Q. From the long exact homology sequence,
it follows now that also ExtnR(M,P ) 6= 0, as desired.
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We end this section with an application of Gorenstein projective precovers. We
compare the left finitistic Gorenstein projective dimension of the base ring R,

FGPD(R) = sup{Gpd(M) |M ∈ GP(R)}.

Theorem 2.1.26
For any ring R there is an equality FGPD(R) = FPD(R).

Proof.
Clearly FPD(R) ≤ FGPD(R) by proposition 2.1.25. Therefore, if FGPD(R) = 0
then we get the desired equality.
Note that if M is a module with 0 < GpdRM <∞, then theorem 2.1.12 in particular
gives the existence of a module K with pdRK = GpdRM − 1, and hence we get
FGPD(R) ≤ FPD(R) + 1. Thus, if one of FGPD(R) and FPD(R) is infinite the
other will be the same.
Proving the inequality FGPD(R) ≤ FPD(R), we may assume that 0 < FGPD(R) =
m <∞.
Pick a module M with GpdRM = m, we wish to find a module L with pdRL = m.
By theorem 2.1.12 there is an exact sequence:

0→ K → G→M → 0,

where G is Gorenstein projective, and pdRK = m − 1. Since G is Gorenstein
projective, there exists a projective module Q with G ⊆ Q and since also K ⊆ G,
we can consider the quotient L = Q/K. Note that M ∼= G/K is a submodule of L,
and thus we get a short exact sequence:

0→M → L→ L/M → 0.

If L is Gorenstein projective, then proposition 2.1.19 will imply that GpdR(L/M) =
m+ 1, since GpdRM = m > 0. But this contradict the fact that m = FGPD(R) <
∞. Hence L is not Gorenstein projective, in particular, L is not projective. Therefore
the short exact sequence 0→ K → Q→ L→ 0 shows that pdRL = pdRK+1 = m.

For the left finitistic Gorenstein injective dimension, FGID(R), and the usual left
finitistic injective dimension, FID(R), we of course also have:

Theorem 2.1.27
For any ring R there is an equality FGID(R) = FID(R).

2.2 Gorenstein flat modules
The treatment of Gorenstein flat R-modules is different from the way we handled
Gorenstein projective R-modules. This is because Gorenstein flat R-modules are
defined by the tensor product functor − ⊗R − and not by HomR(−,−). However,
over a right coherent ring there is a connection between Gorenstein flat left R-
modules and Gorenstein injective right R-modules, and this allow us to get good
results.
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Definition 2.2.1
A complete flat resolution is an exact sequence of flat left R-modules,

F = ...→ F1 → F0 → F 0 → F 1 → ...,

such that I ⊗R F is exact for every injective right R-module I.
An R-module M is called Gorenstein flat (G-flat for short), if there exists a complete
flat resolution F with M ∼= Im(F0 → F 0).
The class of all Gorenstein flat R-modules is denoted GF(R).

Proposition 2.2.2
The class GF(R) is closed under arbitrary direct sums.

There is a nice connection between Gorenstein flat and Gorenstein injective modules,
and this enable us to prove that the class of Gorenstein flat modules is projectively
resolving.

Proposition 2.2.3
If R is right coherent with finite left finitistic projective dimension, then every Goren-
stein projective left R-module is also Gorenstein flat.

Proof.
We just need to prove that if P admits a complete projective resolution then I⊗RP
is exact, for every injective module.
As R is a coherent ring then I+ = HomZ(I,Q/Z) is flat left R-module, by assump-
tion we have FPD(R) is finite implies pdR(I+) is also finite. P admits a complete
projective resolution, then HomR(P, I+) is exact, and we know that:

HomR(P, I+) = HomR(P, HomZ(I,Q/Z)) = HomZ(I ⊗R P,Q/Z),

then HomZ(I ⊗R P,Q/Z) is exact and by proposition 1.4.14 I ⊗R P is exact. Thus
P is a Gorenstein flat R-module.

Theorem 2.2.4
For any left R-module M , we consider the following conditions:

1- M is a Gorenstein flat left R-module,

2- The Pontryagin dual M+ = HomZ(M,Q/Z) is a Gorenstein injective right
R-module,

3- M admits a co-proper right flat resolution, and TorRi (I,M) = 0 for all injective
right R-modules I, and all integers i > 0.

Then (1)⇒ (2). If R is right coherent, then the previous conditions are equivalent.
Proof.
• 1− ⇒ 2−
Let F : ... → F1 → F0 → F 0 → F 1 → ... be a complete flat resolution, such that
M ∼= Im(F0 → F 0). By the proposition 1.4.14 and theorem 1.5.2,

F+ : ...→ F 1+ → F 0+ → F+
0 → F+

1 → ...
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is an exact sequence of injective R-modules, such that M+ ∼= Im(F 0+ → F+
0 ). On

the other hand, we have for all injective I,

HomR(I,F+) = HomR(I,HomZ(F,Q/Z)) ∼= HomZ(I ⊗R F,Q/Z)

which is exact. Then F+ is a complete injective resolution and M+ is Gorenstein
injective.
Suppose now that R is right coherent:
• 2− ⇒ 3−
Let’s prove that TorRi (I,M) = 0 for all i > 0 and injective R-module I.
Let ... → F2 → F1 → F0 → M → 0 be a flat resolution of M , then 0 → M+ →
F+

0 → F+
1 → F+

2 → ...is an injective resolution. Let I be an R-module, we have the
following commutative diagram:

· · · → HomR(I, F +
1 ) → HomR(I, F +

0 ) → HomR(I, M+) → 0
∼=↓ ∼=↓ ∼=↓

· · · → HomZ(I ⊗ F1,Q/Z) → HomZ(I ⊗ F0,Q/Z) → HomZ(I ⊗M,Q/Z) → 0

such that the upper row of the diagram is exact as M+ is Gorenstein injective, then
also the lower row is exact, which means that TorRi (I,M) = 0 for all i > 0 and
every injective R-module I.
Let’s prove the other condition:
We want to construct a right F(R)-resolution of M :

0→M → F 0 → F 1 → ...

such that · · · → Hom(F 1, F ) → Hom(F 0, F ) → Hom(M,F ) → 0 is an exact
sequence for all flat R-module F .
For that, we need to find a short exact sequence 0 → M → F 0 → C0 → 0, where
F 0 is flat and such that 0 → Hom(C0, F ) → Hom(F 0, F ) → Hom(M,F ) → 0 is
exact for all flat R-module F and (C0)̆ ∼= HomZ(C0,Q/Z) is Gorenstein injective.
Since redoing what we did for M to C0, and so on, we obtain a short exact sequence
family with which we construct the desired resolution.
As R is a coherent ring and by theorem 1.10.7, M admits a flat preevolepe ϕ :
M −→ F 0.
We want to have that ϕ is injective. Thus, we have the exact sequence

(∗) : 0→M → F 0 → C0 → 0

where C0 = Cokerϕ and such that 0→ Hom(C0, F )→ Hom(F 0, F )→ Hom(M,F )→
0 is an exact sequence for all flat R-module F . For that, we need to find an injective
homomorphism of M in a flat R-module. However,

M˘= HomR(M,ER) ∼= HomZ(M,Q/Z) = M+ (Remark 1.4.13).

Thus, M˘is Gorenstein injective. Then, there is an exact sequence 0 → Z → I
d→

M˘→ 0 such that I is injective, therefore the sequence 0 → M˘̆ d˘→ I˘→ Z˘→ 0 is
exact.
On the other hand, according to theorem 1.4.11 and example 1.4.12, the homomor-
phism δEM : M −→ M˘̆ is injective, then ν = d̆ δEM : M −→ I˘is injective. And as
I is injective and R is coherent, then I+ ∼= I˘is flat. Therefore, we get the desired
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homomorphism.
Now, we need to prove that (C0)̆ is Gorenstein injective.
From the sequence (∗) we get the short exact sequence 0→ (C0)̆ → (F 0)̆ →M˘→ 0
such that M˘is Gorenstein injective and (F 0)̆ is injective. Thus, we just have prove
that Ext(J, (C0)̆ ) = 0 for all injective R-module J . Let J be an injective R-module,
then J˘is flat. Then the following commutative diagram with exact lines:

0 → Hom(J, (C0)̆ ) → Hom(J, (F 0)̆ ) φ→ Hom(J, M )̆ → Ext(J, (C0)̆ ) → 0 = Ext(J, (F 0)̆ )
∼=↓ ∼=↓ ∼=↓

0 → Hom((C0), J )̆ → Hom((F 0), J )̆ → Hom(M, J )̆ → 0

Then, φ is sujective, and Ext(J, (C0)̆ ) = 0, then finaly we get the desired result.
• 3− ⇒ 1−
Let (F ′) : 0 −→ M −→ F 0 −→ F 1 −→ F 2 −→ · · · is a right co-proper F(R)-
resolution of M and I is an injective R-module. We get the following diagram
commutative:

· · · −−−−→ HomZ(F 0 ⊗ I,Q/Z) −−−−→ HomZ(M ⊗ I,Q/Z) −−−−→ 0
∼=

y ∼=
y

· · · −−−−→ HomR(F 0, HomZ(I,Q/Z)) −−−−→ HomR(M, HomZ(I,Q/Z)) −−−−→ 0

As R is coherent, I+ = HomZ(I,Q/Z) is flat R-module. Furthermore, the lower
row of the diagram is exact, then the same for the upper row. Thus, the sequence
0→ M ⊗ I → F 0 ⊗ I → F 1 ⊗ I → · · · is exact. On the other hand, we consider a
flat resolution of M :

(F ′′) : 0 · · · −→ F2 −→ F1 −→ F0 −→M −→ 0

We have Tori(I,M) = 0 for all i > 0 and all injective R-module I. Then, the
sequence · · · → F1⊗ I → F0⊗ I →M ⊗ I → 0 is exact for all injective R-module I.
Finaly, by assembling the two sequence (F ′) and (F ′′), we get the exact sequence:

· · · → F2 → F1 → F0 → F 0 → F 1 → F 2 → · · ·

which is a complete flat resolution with M ∼= Im(F0 → F 0). which prove that M is
Gorenstein flat.

Theorem 2.2.5
If R is right coherent, then the class GF(R) of Gorenstein flat R-modules is projec-
tively resolving and closed under direct summands.
Furthermore, if F0 → F1 → F2 → ... is a sequence of Gorenstein flat modules, then
the direct limit lim−→Fn is also Gorenstein flat.

Proof.
Using theorem 2.1.9 together with the equivalence (i)⇔ (ii) in theorem 2.2.4 above,
we see that GF(R) is projectively resolving. Now, comparing proposition 2.2.2 with
proposition 1.5.22, we get that GF(R) is closed under direct summands.
Concerning the last statement, let F0 → F1 → F2 → ... a sequence of Gorenstein flat
modules, we pick for each n a co-proper right flat resolution Gn of Fn, as illustrated
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in the next diagram:

G0 0 −−−→ F0 −−−→ G0
0 −−−→ G1

0 −−−→ G2
0 −−−→ · · ·y y y y y

G1 0 −−−→ F1 −−−→ G0
1 −−−→ G1

1 −−−→ G2
1 −−−→ · · ·y y y y y

... ... ... ... ...
Each map Fn → Fn+1 can be lifted to a chain map Gn → Gn+1 of complexes. Since
we are dealing with sequences, each column in the diagram is again a direct system.
Thus, it makes sense to apply the exact functor lim−→ to diagram, and doing so, we
obtain an exact complex:

G = lim−→Gn = 0→ lim−→Fn → lim−→G0
n → lim−→G1

n → ...,

where each module Gk = lim−→Gk
n, k = 0, 1, 2, ... is flat. When I is injective right

R-module, we have R is right coherent then I+ = HomZ(I,Q/Z), is a flat left R-
module, we get exactness of HomR(Gn, I

+) ∼= HomZ(I ⊗R Gn,Q/Z), and hence
I ⊗R Gn is exact, since Q/Z is a faithfully injective Z-module. Since lim−→ commutes
with the homology functor, we also get exactness of

I ⊗R G ∼= lim−→(I ⊗R Gn).

Thus, we have constructed the ”right half” G of a complete flat resolution for lim−→Fn.
Since Fn is Gorenstein flat, we also have TorRi (I, lim−→Fn) ∼= lim−→TorRi (I, Fn) = 0 for
i > 0 and all injective right modules I. Thus lim−→Fn is Gorenstein flat.

Proposition 2.2.6
Assume that R is right coherent, and consider a short exact sequence of left R-
modules 0 → G′ → G → F → 0, where G and G′ are Gorenstein flats. If
TorR1 (I, F ) = 0 for all injective right modules I, then F is Gorenstein flat.

Proof.
Let G+ = HomZ(G,Q/Z) and G′+ = HomZ(G′,Q/Z). As G and G′ are Gorenstein
flats then G+ and G′+ are Gorenstein injectives applying theorem 2.1.16 to the exact
sequence, we get:

0→ F+ → G+ → G′+ → 0.
We have Ext1R(I,HomZ(F,Q/Z)) = HomZ(TorR1 (I, F ),Q/Z) = 0, for all injective
right module I, then F+ is Gorenstein injective right R-module, and as R is coherent
ring we get F is Gorenstein flat left R-module.

Similarly to Gorenstein projective dimension, we define the Gorenstein flat dimen-
sion, GfdRM , so that GfdRM ≤ n if and only if M has a resolution by Gorenstein
flat modules of length n.
We denote by GF(R) the class of all R-modules with finite Gorenstein flat dimen-
sion.
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Proposition 2.2.7 (Flat base change)
Consider a flat homomorphism of commutative rings R → S with S is a flat R-
module. Then for any left R-module M we have an inequality:

GfdS(S ⊗RM) ≤ GfdRM.

Proof.
To prove inequality, we need just to prove that if M is a Gorenstein flat R-module,
then S ⊗RM is a Gorenstein flat S-module.
If M is a complete flat resolution of R-modules, since S is R-flat then S ⊗R M is
an exact sequence of flat S-modules. If I is an injective S-module, then, as S is
R-flat, I is also an injective R-module. Thus we have exactness of I⊗S (S⊗RM) ∼=
(I ⊗S S) ⊗R M ∼= I ⊗R M, and hence S ⊗R M is a complete flat resolution of
S-modules.

Proposition 2.2.8
For any left R-module M there is an inequality:

GidRHomZ(M,Q/Z) ≤ GfdRM.

If R is right coherent, then we have the equality:

GidRHomZ(M,Q/Z) = GfdRM.

Proof.
Let M+ = HomZ(M,Q/Z) be a Gorenstein injective right R-module. Assume
that GidRM+ = n is finite. Pick an exact sequence 0 → Kn → Gn−1 → ... →
G0 → M → 0, where G0, ..., Gn−1 are Gorenstein flats. Applying HomZ( ,Q/Z)
to this sequence, we get exactness of 0 → M+ → G+

0 → ...G+
n−1 → K+

n → 0,
where G+

i = HomZ(Gi,Q/Z) are Gorenstein injectives. Theorem 2.1.24 implies
that K+

n = HomZ(Kn,Q/Z) is Gorenstein injective, and consequently GfdRM ≤ n.
Then GidRM+ = GfdRM .

Proposition 2.2.9
Assume that R is right coherent. Let 0 → A → B → C → 0 be a short exact
sequence of R-modules where B is Gorenstein flat. If C is Gorenstein flat, then so
is A. If otherwise n > 0, then:

GfdRA = GfdRC − 1.

Proposition 2.2.10
Assume that R is right coherent. If (Mλ)λ∈Λ is any family of left R-modules, then
we have an equality:

GfdR(
⊕

Mλ) = sup{GfdRMλ|λ ∈ Λ}.

Theorem 2.2.11
Let M be an R-module with R is right coherent, and M is a finite Gorenstein flat
dimension, and let n be an integer. Then the following conditions are equivalent:

1- GfdRM ≤ n.
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2- TorRi (L,M) = 0 for all i > n, and all R-modules L with finite idR(L).

3- TorRi (I,M) = 0 for all i > n, and all injective R-modules I.

4- For every exact sequence 0→ Kn → Gn−1 → ...→ G0 →M → 0,
where G0,...,Gn−1 are Gorenstein flats, then also Kn is Gorenstein flat.

Consequently, the Gorenstein flat dimension of M is determined by the following
formulas:

GfdRM= sup{i ∈ N0|∃L ∈ I(R) : TorRi (L,M) 6= 0},
= sup{i ∈ N0|∃I ∈ I(R) : TorRi (I,M) 6= 0}.

Proof.
Combine the adjointness isomorphism, HomZ(TorRi (L,M),Q/Z) = ExtiR(L,HomZ(M,Q/Z)),
for rightR-modules L, together with the identity from Proposition 2.2.8, GidRHomZ(M,Q/Z) =
GfdRM , and use Theorem 2.1.24.

Theorem 2.2.12
Assume that R is right coherent. If any two of the modules M , M ′ or M ′′ in a short
exact sequence 0 → M ′′ → M ′ → M → 0 have finite Gorenstein flat dimension,
then so has the third.

Next, we examine the large restricted flat dimension, and relate it to the usual flat
dimension, and to the Gorenstein flat dimension.

Definition 2.2.13
For an R-module M , we consider the large restricted flat dimension, which is defined
by:
RfdRM=sup{i ≥ 0|TorRi (L,M) 6= 0, for some right R-module with finite flat di-
mension}.

Lemma 2.2.14
Assume that R is right coherent. Let M be any R-module with finite Gorenstein
flat dimension n. Then there exists a short exact sequence 0→ K → G→ M → 0
where G is Gorenstein flat, and fdRK = n− 1.

Proof.
Let’s pick an exact sequence 0 → K ′ → Fn−1 → ... → F0 → M → 0, where
F0, ..., Fn−1 are flats. Then K ′ is Gorenstein flat, and hence theorem 2.2.4 (iii) gives
an exact sequence 0 → K ′ → G0 → ... → Gn−1 → G′ → 0, where G0, ..., Gn−1 are
flats, G′ is Gorenstein flat, and such that the functor HomR( , F ) leaves this se-
quence exact whenever F is a flat R-module. Consequently, we get homomorphisms,
Gi → Fn−1−i, i = 0, ..., n− 1, and G′ →M , giving a commutative diagram:

0 → K ′ → G0 → G1 → · · · → Gn−1 → G′ → 0
‖ ↓ ↓ ↓ ↓

0 → K ′ → Fn−1 → Fn−2 → · · · → F0 → M → 0

The same procedure as in the proof of theorem 2.1.12 gives the result.
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Remark 2.2.15
As noticed in the proof of theorem 2.1.12, the homomorphism G � M in a short
exact sequence 0 → K → G → M → 0 where pdRK is finite, is necessarily a
Gorenstein projective precover of M . But the homomorphism G�M in the exact
sequence 0 → K → G → M → 0 established above in Lemma 2.2.14, where fdRK
is finite, is not necessarily a Gorenstein flat cover of M , since it is not true that
Ext1R(T,K) = 0 whenever T is Gorenstein flat and fdRK is finite.
We have the application below of the simpler Lemma 2.2.14.

Theorem 2.2.16
For any R-module M , we have two inequalities, RfdRM ≤ GfdRM ≤ fdRM .
Now assume that R is commutative and noetherian. If GfdRM is finite, then:

RfdRM = GfdRM.

If fdRM is finite, then we have two equalities:

RfdRM = GfdRM = fdRM.

Proof.
The last inequality GfdRM ≤ fdRM is clear. Concerning RfdRM ≤ GfdRM , we
may assume that GfdRM = n is finite, and then proceed by induction on n ≥ 0.

∗ If n = 0. Then, M is Gorenstein flat. We wish to prove that TorRi (L,M) = 0
for all i > 0, and all right modules L with L ∈ F(R). Therefore assume that
fdRL = l is finite. Since M is Gorenstein flat, there exists an exact sequence,

0→M → G0 → ...→ Gl−1 → T → 0,

where Gi are flats and T is Gorenstein flat. By this sequence we get that
TorRi (L,M) ∼= TorRi+l(L, T ) = 0 for all i > 0, since i+ l > fdRL.

∗ If n > 0. Pick a short exact sequence 0 → K → T → M → 0 where T
is Gorenstein flat, and GfdRK = n − 1. By induction hypothesis we have
RfdRK ≤ GfdRK = n − 1. Therefore, TorRj (L,K) = 0 for all j > n − 1, and
all right R-modules L with finite flat dimension. For such an L and an integer
i > n, we use the long exact sequence,

0 = TorRi (L, T )→ TorRi (L,M)→ TorRi−1(L,K) = 0.

Then, TorRi (L,M) = 0, as a result RfdRM ≤ n = GfdRM.

Now assume that R is commutative and noetherian.

∗ If fdRM is finite, then RfdRM = fdRM , and hence also RfdRM = GfdRM =
fdRM.

∗ Let assume that GfdRM = n is finite. As we have RfdRM ≤ GfdRM , we just
need to prove that RfdRM ≥ n. Assume that n > 0. There exists a short
exact sequence 0 → K → T → M → 0 such that T is a Gorenstein flat and
that fdRK = n− 1.
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Since T is Gorenstein flat, we have a short exact sequence 0 → T → G →
T ′ → 0 such that G is flat and T ′ is Gorenstein flat. Since K ⊆ T ⊆ G, we
can consider the residue class module Q = G/K. Thus, we get the short exact
sequence 0 → K → G → Q → 0, shows that fd(Q) ≤ n, as G is flat and
fdRK = n− 1.
Note that M ∼= T/K is a submodule of Q = G/K with the isomorphism
Q/M ∼= (G/K)/(T/K) ∼= G/T ∼= T ′ and thus we get a short exact sequence
0→M → Q→ T ′ → 0. Since GfdRM = n, we get an injective module I such
that TorRn (I,M) 6= 0. Applying I ⊗R − to 0→M → Q→ T ′ → 0, we get:

0 = TorRn+1(I, T ′) −→ TorRn (I,M) −→ TorRn (I,Q),

thus TorRn (I,Q) 6= 0. Since GfdRQ ≤ fdRQ ≤ n < ∞, Theorem 2.2.11 gives
that GfdRQ ≥ n, therefore fdRQ = n and consequently RfdRQ = fdRQ = n.
Thus we get the existence of an R-module L with finite flat dimension, such
that TorRn (L,Q) 6= 0. Since T ′ is Gorenstein flat, RfdRT ′ ≤ 0. and so the
exactness of

TorRn (L,M) −→ TorRn (L,Q) −→ TorRn (L, T ′) = 0,

which prove that also TorRn (L,M) 6= 0. Hence RfdRM ≥ n.

Our next goal is to prove that over a right coherent ring, every left module M with
finite GfdRM , admits a Gorenstein flat precover.

Proposition 2.2.17
Assume thatR is right coherent. If T is a Gorenstein flatR-module, then ExtiR(T,K) =
0 for all integers i > 0, and all cotorsion R-modules K with finite flat dimension.

Proof.
Let fd(K) = n and by induction on n.

> If n = 0, then K is flat. Consider the Pontryagin duals K+ = HomZ(K,Q/Z)
is injective, then K++ is flat since R is coherent. Therefore, we have the short
exact sequence:

0→ K → K++ → K++/K → 0.

SinceK++ is flat, K++/K is also flat. AsK is cotorsion, thenExt(K++/K,K) =
0. Consequently, the previous sequence is split exact and we have (K++/K)⊕
K ∼= K++. Then Exti(T,K)⊕ Exti(T,K++/K) ∼= Exti(T,K++).
Since Exti(T,K++) = Exti(T,HomZ(K+,Q/Z)) ∼= HomZ(Tori(K+, T ),Q/Z) =
0. We have K+ is injective and T is Gorenstein flat, then Exti(T,K) = 0.

> If n > 0: by proposition 1.10.13 we can pick a short exact sequence 0 →
K ′ → F → K → 0 such that F → K is a flat cover of K and K ′ are
cotorsion with fd(K ′) = n − 1. Since both K and K ′ are cotorsion, then
so is F . Applying the induction hypothesis, the long exact sequence, 0 =
Exti(T, F ) → Exti(T,K) → Exti+1(T,K ′) = 0 gives the desired conclusion.
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Theorem 2.2.18
Assume that R is right coherent ring, and that M is an R-module with finite
Gorenstein flat dimension n. Then M admits a surjective Gorenstein flat precover
ϕ : A�M , where K = Kerϕ satisfies fdRK = n− 1.
In particular, M admits a proper left Gorenstein flat resolution of length n.

Proof.
If M is Gorenstein flat, then M

=−→M is a GF(R)-precover of M .
We may assume that Gfd(M) = n > 0. By the Proposition 2.2.17, it suffices
to construct an exact sequence 0 −→ K −→ T −→ M −→ 0 such that K is
cotorsion with fd(K) = n−1. By Lemma 2.2.14, there exists a short exact sequence
0→ K ′ → T ′ →M → 0 where T ′ is Gorenstein flat and that fd(K ′) = n− 1. Since
fd(K ′) is finite, there exists an exact sequence 0 −→ C −→ F

ψ−→ K ′ −→ 0 where
ψ is a flat cover of K ′ and C = Kerψ is a cotorsion. Now consider the pushout
diagram,

0 0
↓ ↓

0 → C → F → K ′ → 0
‖ ↓ ↓

0 → C → PE(F ) → K → 0
↓ ↓

PE(F )/F == PE(F )/F
↓ ↓
0 0

In the sequence 0 → C → PE(F ) → K → 0 both C and PE(F ) are cotorsion.
Furthermore, the same for K is a cotorsion (Proposition 1.10.15). Thus, since
PE(F )/F is flat, the short exact sequence 0 → K → K ′ → PE(F )/F → 0 shows
that fd(K) = fd(K ′) = n− 1. Finally, we consider the pushout diagram:

0 0
↓ ↓

0 → K ′ → T ′ → M → 0
↓ ↓ ‖

0 → K → T → M → 0
↓ ↓

PE(F )/F == PE(F )/F
↓ ↓
0 0

In the middle column, both T ′ and PE(F )/F are Gorenstein flats, furthermore T
is also Gorenstein flat, because GF(R) is projectively resolving. Thus, the sequence
0 → K → T → M → 0, in the previous diagram the lower row, is the desired
sequence.

Theorem 2.2.19
If R is right coherent, then FGFD(R) = FFD(R).
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Proof.
Analogous to the proof of Theorem 2.1.26, using Proposition 2.2.9 instead of 2.1.19,
and Theorem 2.2.18 above instead of 2.1.12.
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Chapitre 3:
Modules projectifs, injectifs et plats

fortement Gorenstein

L’idée principale de ce chapitre est d’introduire une notion plus forte et une classe
intermédiaire de modules appelés modules fortement projectifs de Gorenstein, cette
classe de modules a été introduite par D. Bennis et N. Mahdou dans [39]. Ces mod-
ules sont définis en considérant la situation où tous les modules et homomorphismes
des résolutions complètes de définition 2.1.1 sont égaux. De même, nous définissons
les modules fortement injectifs et plats de Gorenstein. La simplicité de ces modules
se manifeste dans le fait qu’ils sont des caractérisations plus simples que leurs mod-
ules Gorenstein correspondants. De plus, l’objectif de ce chapitre est de généraliser
ces caractérisations et résultats.
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CHAPTER 3

STRONGLY GORENSTEIN
PROJECTIVE, INJECTIVE, AND FLAT

MODULES

The main idea of this chapter is to introduce a stronger notion and an intermedi-
ate class of modules called strongly Gorenstein projective modules, these class of
modules was introduced by D. Bennis and N. Mahdou in [39]. These modules are
defined by considering the situation where all modules and homomorphisms of the
complete resolutions of definition 2.1.1 are equal. Similarly, we define the strongly
Gorenstein injective and flat modules. The simplicity of these modules manifests in
the fact that they are simpler characterizations than their corresponding Gorenstein
modules. Moreover, the aim of this chapter is to generalize these characterizations
and results.
Throughout this chapter, R is a commutative ring with identity element.

3.1 Strongly Gorenstein projective and Strongly
Gorenstein injective modules

Definition 3.1.1
A complete projective resolution of the form:

P = · · · f−→ P
f−→ P

f−→ P
f−→ · · ·

is called strongly complete projective resolution and denoted by (P, f).
An R-module M is called strongly Gorenstein projective (SG-projective for short)
if M ∼= Ker f for some strongly complete projective resolution (P, f).
The strongly Gorenstein injective (SG-injective for short) modules are defined dually.
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Proposition 3.1.2
1- If (Pi)i∈I is a family of strongly Gorenstein projective modules, then ⊕Pi is

strongly Gorenstein projective.

2- If (Ii)i∈I is a family of strongly Gorenstein injective modules, then ∏
Ii is

strongly Gorenstein injective.

Theorem 3.1.3
A module is Gorenstein projective (resp., injective) if, and only if, it is a direct
summand of a strongly Gorenstein projective (resp., injective) module.
Every flat module is a direct summand of a strongly Gorenstein flat module.

Proof.
It suffices to prove the Gorenstein projective case, and the Gorenstein injective case
is analogous. By Proposition 2.1.8, it remains to prove the direct implication. Let
M be a Gorenstein projective module. Then, there exists a complete projective
resolution:

P = · · · −→ P1
dP

1−→ P0
dP

0−→ P−1
dP
−1−→ P−2 −→ · · ·

such that M ∼= Im(dP0 ).
For all m ∈ Z, denote as ΣmP the exact sequence obtained from P by increasing all
index by m:

(ΣmP )i = Pi−m and dΣmP
i = dPi−m for all i ∈ Z.

Considering the exact sequence

Q = ⊕(ΣmP ) = · · · −→ Q = ⊕Pi
⊕dP

i−→ Q = ⊕Pi
⊕dP

i−→ Q = ⊕Pi −→ · · ·

Since Im(⊕di) ∼= ⊕Im di, M is a direct summand of Im(⊕di).
Moreover, from Proposition 1.1.2 (1)

Hom(
⊕
m∈Z

(ΣmP ), L) ∼=
∏
m∈Z

Hom(ΣmP,L)

which is an exact sequence for any projective module L. Thus, Q is a strongly
complete projective resolution.
Therefore, M is a direct summand of the strongly Gorenstein projective module
Im(⊕di), as desired.

Remark 3.1.4
From Proposition 2.1.7, we can consider all modules of the complete projective
resolution in the previous proof are free, then so are the modules in the constructed
strongly complete projective resolution.

It is straightforward that the strongly Gorenstein projective (resp., injective) mod-
ules are a particular case of Gorenstein projective (resp., injective) modules. And it
is well known in chapter 2 that every projective (resp., injective) module is Goren-
stein projective (resp., injective).
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{Projective modules}⊆ {SG-projective modules}
⊆ { G-projective modules}.

Proposition 3.1.5
Every projective (resp., injective) module is strongly Gorenstein projective (resp.,
injective).

Proof.
It suffices to prove the Gorenstein projective case, and the Gorenstein injective case
is analogous. Let P be a projective R-module, and consider the exact sequence:

P = · · · f−→ P ⊕ P f−→ P ⊕ P f−→ P ⊕ P f−→ · · ·
(x, y) 7−→ (0, x)

We have 0⊕ P = Ker f = Im f ∼= P .
Consider a projective module Q, and applying the functor HomR(−, Q) to the above
sequence P, we get the following commutative diagram

· · · −→ Hom(P ⊕ P,Q) HomR(f,Q)−→ Hom(P ⊕ P,Q) −→ · · ·
∼=↓ ∼=↓

· · · −→ Hom(P,Q)⊕Hom(P,Q) −→ Hom(P,Q)⊕Hom(P,Q) −→ · · ·

Since the lower sequence in the diagram above is exact, the proposition follows.

The strongly Gorenstein projective (resp., injective) modules are not necessarily
projective (resp., injective), as shown by the following examples.

Example 3.1.6
Consider the quasi-Frobenius local ring R = k[X]/(X2) where k is a field, and
denote by X the residue class in R of X.

1- The ideal (X) is strongly Gorenstein projective and strongly Gorenstein injec-
tive.

2- But, it is neither projective nor injective.

Proof.
1- With the homothety x given by multiplication by X we have the exact sequence
F = · · · −→ R

x−→ R
x−→ R −→ · · · . Then, Ker x = Im x = (X).

Since R is quasi-Frobenius, we can see easily from Theorem 1.8.19 that F is simul-
taneously strongly complete projective and injective resolution. Thus, (X) is both
strongly Gorenstein projective and injective ideal.
2- The ideal (X) it is not projective, since it is not a free ideal in the local ring R
(since X2 = 0). Then, from Theorem 1.8.19 we conclude that X is also not injective,
as desired.

Proposition 3.1.7
For any module M , the following are equivalent:

1- M is strongly Gorenstein projective,
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2- There exists a short exact sequence 0 → M → P → M → 0, where P is a
projective module, and Ext(M,Q) = 0 for any projective module Q,

3- There exists a short exact sequence 0 → M → P → M → 0, where P
is a projective module, and Ext(M,Q′) = 0 for any module Q′ with finite
projective dimension,

4- There exists a short exact sequence 0 → M → P → M → 0, where P is a
projective module, such that, for any projective module Q, the short sequence
0→ Hom(M,Q)→ Hom(P,Q)→ Hom(M,Q)→ 0 is exact,

5- There exists a short exact sequence 0→M → P →M → 0, where P is a pro-
jective module; such that, for any module Q′ with finite projective dimension,
the short sequence 0 → Hom(M,Q′) → Hom(P,Q′) → Hom(M,Q′) → 0 is
exact.

Proof.
Using standard arguments, this follows immediately from the Definition of strongly
Gorenstein modules.

Remarks 3.1.8
1- Note that using this characterization of strongly Gorenstein projective mod-

ules, the Proposition 3.1.5 becomes straightforward. Indeed, we have the short
exact sequence 0→ P → P ⊕P → P → 0, and Ext(P,Q) = 0 for any module
Q.

2- We can also characterize the strongly Gorenstein injective modules in a way
similar to the description of strongly Gorenstein projective modules in Propo-
sition 3.1.7.

Recall that a strongly Gorenstein projective module is projective if, and only if,
it has finite projective dimension Proposition 2.1.25. In the next result we give
similar result in which the strongly Gorenstein projective modules link with the flat
dimension.

Corollary 3.1.9
A strongly Gorenstein projective module is flat if, and only if, it has finite flat
dimension.

Proof.
This is a simple consequence of Proposition 3.1.7.

The following proposition deals with finitely generated strongly Gorenstein pro-
jective modules. It is well-known that a finitely generated projective module is
infinitely presented (i.e., it admits a free resolution

· · · → Fn → Fn−1 → · · · → F0 →M → 0

such that each Fi is a finitely generated free module).
For the Gorenstein projective modules the question is still open. However, the
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strongly Gorenstein projective modules give the following partial affirmative answer,
in which we give a characterization of the finitely generated strongly Gorenstein
projective modules.

Proposition 3.1.10
Let M be an R-module. The following are equivalent:

1- M is finitely generated strongly Gorenstein projective;

2- There exists a short exact sequence 0 → M → P → M → 0 where P is a
finitely generated projective R-module, and Ext(M,R) = 0;

3- There exists a short exact sequence 0 → M → P → M → 0 where P is
a finitely generated projective R-module, and Ext(M,F ) = 0 for all flat R-
modules F ;

4- There exists a short exact sequence 0 → M → P → M → 0 where P is a
finitely generated projective R-module, and Ext(M,F ′) = 0 for all R-modules
F ′ with finite flat dimension.

Proof.
Note that the forth condition is stronger than the first, this leaves us three implica-
tions to prove.
(1)⇒ (2). This is a simple consequence of Proposition 3.1.7.
(2)⇒ (3). Let F be a flat R-module. By Lazard’s Theorem 1.5.14, there is a direct
system (Li)i∈I of finitely generated free R-modules such that lim−→ Li ∼= F . From
Theorem 1.4.7 (3), we have:

Ext(M,F ) ∼= Ext(M, lim−→Li)∼= lim−→Ext(M,Li).

Now, combining Theorem 1.4.7 (3) with Theorem 1.1.10 shows immediately that
Ext(M,Li) = 0 for all i ∈ I, as desired.
(3)⇒ (4). Let F ′ be an R-module such that 0 < fd(F ′) = m <∞.
First, we can see easily that (3) implies Extn(M,F ) = 0 for all n > 0, and all flat
R-modules F . Now, pick a short exact sequence 0→ K → L→ F ′ → 0 where L is
a free R-module and fd(K) = m− 1. By induction Extn(M,L) = Extn(M,K) = 0
for all n > 0. Then, applying the functor Hom(M,−) to the short exact sequence
above we obtain the exact sequence:

0 = Ext(M,L)→ Ext(M,F ′)→ Ext2(M,K) = 0.

Therefore, Ext(M,F ′) = 0.
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3.2 Strongly Gorenstein flat modules
Definition 3.2.1
A complete flat resolution of the form

F = · · · f−→ F
f−→ F

f−→ F
f−→ · · ·

is called strongly complete flat resolution and denoted by (F, f).
An R-module M is called strongly Gorenstein flat (SG-flat for short) if M ∼= Ker f
for some strongly complete flat resolution (F, f).

Proposition 3.2.2
Every flat module is strongly Gorenstein flat.

Proposition 3.2.3
Every direct sum of strongly Gorenstein flat modules is also strongly Gorenstein
flat.

Proof.
Immediate as the proof of Proposition 3.1.2 using the fact that tensor products
commutes with sums.

With strongly Gorenstein flat modules we have a simple characterization of Goren-
stein flat modules, that is:

Theorem 3.2.4
If a module is Gorenstein flat, then it is a direct summand of a strongly Gorenstein
flat module.

Proof.
Similar to the proof of Theorem 3.1.3.

Also, similarly to Proposition 3.1.7, we have the following characterization of the
strongly Gorenstein flat modules.

Proposition 3.2.5
For any module M , the following are equivalent:

1- M is strongly Gorenstein flat,

2- There exists a short exact sequence 0→M → F →M → 0, where F is a flat
module, and Tor(M, I) = 0 for any injective module I,

3- There exists a short exact sequence 0→M → F →M → 0, where F is a flat
module, and Tor(M, I ′) = 0 for any module I ′ with finite injective dimension,

4- There exists a short exact sequence 0→M → F →M → 0, where F is a flat
module; such that the sequence 0 → M ⊗ I → F ⊗ I → M ⊗ I → 0 is exact
for any injective module I,
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5- There exists a short exact sequence 0→M → F →M → 0, where F is a flat
module; such that the sequence 0→M ⊗ I ′ → F ⊗ I ′ →M ⊗ I ′ → 0 is exact
for any module I ′ with finite injective dimension.

Proposition 3.2.6
A strongly Gorenstein flat module is flat if, and only if, it has finite flat dimension.

Proof.
Immediate from Proposition 3.2.5.

Corollary 3.2.7
If R has finite weak global dimension. Then, an R-module is Gorenstein flat if, and
only if, it is flat.

Proof.
Simply, combining Theorem 3.2.4 with Proposition 3.2.6.

From Proposition 1.11.22, we have that, over coherent rings, the class of all finitely
presented Gorenstein projective modules and the class of all finitely presented Goren-
stein flat modules are the same class. In general, the question is still open. Neverthe-
less, the strongly Gorenstein modules give the following partial affirmative answer:

Proposition 3.2.8
A module is finitely generated strongly Gorenstein projective if, and only if, it is
finitely presented strongly Gorenstein flat.

Proof.
We can prove this similarly to the proof [53, Lemma 5.1.10] using the strongly
complete resolutions. Here, we give a proof using the characterization of finitely
generated strongly Gorenstein projective modules.
=⇒ Let M be a finitely generated strongly Gorenstein projective module. By Propo-
sition 3.1.10, there exists a short exact sequence 0 → M → P → M → 0 where P
is a finitely generated projective module, and Ext(M,R) = 0.
Let E be an injective module. Since M is infinitely presented, we have, from [117,
Theorem 1.1.8], the following isomorphism:

Tor(Hom(R,E),M) ∼= Hom(Ext(M,R), E).

As we have Hom(R,E) ∼= E then Tor(E,M) = 0. Therefore, M is strongly Goren-
stein flat R-module (by Proposition 3.2.5).
⇐= Now, assumeM to be a finitely presented strongly Gorenstein flat module. From
Proposition 3.2.5, we deduce that there exists a short exact sequence 0 → M →
P →M → 0 where P is a finitely generated projective module, and Tor(M,E) = 0
for every injective module E. If we assume E to be faithfully injective, the same iso-
morphism of the direct implication above implies that Ext(M,R) = 0. This means,
by Proposition 3.1.10, that M is strongly Gorenstein projective.
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It is well-known that if a flat R-module M is finitely presented, or is finitely
generated with R is either local or integral domain, then M is projective (see [191,
Theorem 3.61 and page 135]).
Under the same conditions we have the same relation between strongly Gorenstein
flat modules and strongly Gorenstein projective modules, that is Proposition 3.2.8
and the following Corollary:

Corollary 3.2.9
If R is integral domain or local, then a finitely generated R-module is strongly
Gorenstein flat if, and only if, it is strongly Gorenstein projective.

Proof.
Use Proposition 3.2.8 and its proof.

Proposition 3.2.10
R is an S-ring if, and only if, every finitely generated strongly Gorenstein flat R-
module is strongly Gorenstein projective.

Proof.
=⇒. Let M be a finitely generated strongly Gorenstein flat R-module. Then, by
Proposition 3.2.5, there exists a short exact sequence 0→M → F →M → 0 where
F is a finitely generated flat R-module. By hypothesis F is projective, and so M
is finitely presented. Therefore, from Proposition 3.2.8, M is strongly Gorenstein
projective.
⇐=. Now, assume M to be a finitely generated flat R-module. Then, from Proposi-
tion 3.2.2, M is finitely generated strongly Gorenstein flat. Hence, it is, by hypoth-
esis, strongly Gorenstein projective. Thus, from Proposition 3.1.10, There exists a
short exact sequence 0→M → P →M → 0 where P is a finitely generated projec-
tive R-module, and Ext(M,F ) = 0 for all flat R-modules F . Then, Ext(M,M) = 0
(since M is flat), and then the above short exact sequence split. Therefore, M is
projective as a direct summand of the projective R-module P , as desired.
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Chapitre 4:
Quelques propriétés des modules

fortement projectifs, injectifs et plats de
Gorenstein

Il y a quelques propriétés de fortement Gorenstein projectif, injectif et plat. L’objectif
de ce chapitre, dû à Y. Xiaoyan et L. Zhongkui [226], est de discuter des relations
entre modules fortement Gorenstein projectifs, injectifs et plats, et nous considérons
ces propriétés sous changement d’anneaux.
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CHAPTER 4

SOME PROPERTIES OF STRONGLY
GORENSTEIN PROJECTIVE,

INJECTIVE AND FLAT MODULES

There is some properties of strongly Gorenstein projective, injective and flat. The
objective of this chapter is due to Y. Xiaoyan and L. Zhongkui [226], is to discuss
some connections between strongly Gorenstein projective, injective and flat modules,
and we consider these properties under change of rings.

4.1 The strongly Gorenstein property
Theorem 4.1.1
Direct summands of a strongly Gorenstein projective module need not be strongly
Gorenstein projective and the class SGP(R) of all strongly Gorenstein projective
R-modules is not projectively resolving.

Proof.
Assume that SGP(R) is projectively resolving. Let M be a G-projective R-module
but not SG-projective. Then there is a G-projective R-module N such that M⊕N is
SG-projective. Set L = M⊕N⊕M⊕N⊕..., then L is SG-projective by Proposition
3.1.2.
Consider the exact sequence 0→M →M ⊕N ⊕ L→ N ⊕ L→ 0.
Since M ⊕ N ⊕ L ∼= L and N ⊕ L ∼= L, we have 0 → M → L → L → 0 is exact,
and hence M is SG-projective, a contradiction.

Theorem 4.1.2
Let 0→ N →M → Q→ 0 be exact with Q projective. Then N is SG-projective if
and only if M is SG-projective.

Proof.
(⇒) If N is SG-projective, then M ∼= N ⊕Q is SG-projective by Proposition 3.1.2.

89



4.1. THE STRONGLY GORENSTEIN PROPERTY

(⇐) Assume M is SG-projective. There exists an exact sequence 0 → N ⊕ Q →
P → N ⊕Q→ 0 with P projective.
Consider the pushout of N ⊕Q→ P and N ⊕Q→ N :

0 0
↓ ↓

0 −→ Q −→ N ⊕Q −→ N −→ 0
‖ ↓ ↓

0 −→ Q −→ P −→ Q′ −→ 0
↓ ↓

N ⊕Q == N ⊕Q
↓ ↓
0 0

Then Q′ is G-projective by Theorem 2.1.8 since N and N ⊕ Q are G-projective by
Theorem 2.1.8.
So Ext1R(Q′, Q) = 0, the sequence 0 → Q → P → Q′ → 0 splits. Hence Q′ is
projective.
Consider the pullback of Q′ → N ⊕Q and N → N ⊕Q:

0 0
↓ ↓
N == N
↓ ↓

0 → Q′′ → Q′ → Q → 0
↓ ↓ ‖

0 → N → N ⊕Q → Q → 0
↓ ↓
0 0

Then 0→ N → Q′′ → N → 0 is exact and Q′′ is projective. Let W be any projective
R-module. Then ExtiR(N,W ) = 0 for all i ≥ 1 since N is G-projective by Theorem
2.1.8. It follows that N is SG-projective by Proposition 3.1.7.

Theorem 4.1.3
Let 0 → E → M → N → 0 be exact with E injective. Then N is SG-injective if
and only if M is SG-injective.

Lemma 4.1.4
Let M be a left R-module and P a flat left R-module. Then M is SG-flat if and
only if M ⊕ P is SG-flat.

Proof.
(⇒) If M is SG-flat, then M ⊕ P is SG-flat by Proposition 3.2.3.
(⇐) Assume M ⊕P is SG-flat. There exists an exact sequence 0→M ⊕P → F →
M⊕P → 0 with F flat. Then (M⊕P )+ is G-injective by Theorem 2.2.4, and hence
M+ is G-injective by Theorem 2.1.9.
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Consider the pushout of M ⊕ P → F and M ⊕ P →M :

0 0
↓ ↓

0 −→ P −→ M ⊕ P −→ M −→ 0
‖ ↓ ↓

0 −→ P −→ F −→ F ′ −→ 0
↓ ↓

M ⊕ P == M ⊕ P
↓ ↓
0 0

and consider the commutative diagram:

0 0
↓ ↓

(M ⊕ P )+ == (M ⊕ P )+

↓ ↓
0 → F ′+ → F+ → P+ → 0

↓ ↓ ‖
0 → M+ → (M ⊕ P )+ → P+ → 0

↓ ↓
0 0

Then F ′+ is G-injective by Theorem 2.1.9, and thus Ext1R(P+, F ′+) = 0, the se-
quence 0→ F ′+ → F+ → P+ → 0 splits. It follows that F ′+ is injective, and hence
F ′ is flat.
Consider the pullback of F ′ →M ⊕ P and M →M ⊕ P :

0 0
↓ ↓
M == M
↓ ↓

0 → F ′′ → F ′ → P → 0
↓ ↓ ‖

0 → M → M ⊕ P → P → 0
↓ ↓
0 0

Then 0→ M → F ′′ → M → 0 is exact and F ′′ is flat. Let I be any injective right
R-module. Then 0 = TorRi+1(I, P ) → TorRi (I,M) → TorRi (I,M ⊕ P ) = 0 is exact
for all i ≥ 1. Hence TorRi (I,M) = 0 for all i ≥ 1, and therefore M is SG-flat by
Proposition 3.2.5.

Theorem 4.1.5
Let R be right coherent. Then M is an SG-flat left R-module if and only if M+ is
an SG-injective right R-module.
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Proof.
(⇒) There exists an exact sequence 0→M → F →M → 0 in R-Mod with F flat.
Then 0→ M+ → F+ → M+ → 0 is exact in Mod-R and F+ is injective. Let I be
an injective right R-module. Then ExtiR(I,M+) ∼= TorRi (I,M)+ = 0 for all i ≥ 1,
and hence M+ is an SG-injective right R-module.
(⇐) There exists an exact sequence 0 → M+ → E → M+ → 0 in Mod-R with E
injective.
Then there is an injective right R-module E ′ such that E ⊕ E ′ = E++.
Let H = (E ′ ⊕ E)N ∼= (E+(N))+. Consider the exact sequence 0 → M+ ⊕ H →
E⊕H⊕H →M+⊕H → 0. Then 0→M⊕E+(N) → E+(N)⊕E+(N) →M⊕E+(N) → 0
is exact and E+(N) ⊕ E+(N) is flat. Let I be any injective right R-module. Then
TorRi (I,M ⊕ E+(N)) = TorRi (I,M) ⊕ TorRi (I, E+(N)) = 0 for all i ≥ 1 since M is
G-flat by Theorem 2.2.4, and thus M⊕E+(N) is SG-flat. It follows that M is SG-flat
by Lemma 4.1.4.

Corollary 4.1.6
Let R be a commutative coherent ring. Then the following are equivalent:

1- M is SG-flat,

2- HomR(M,E) is SG-injective for all injective R-modules E,

3- HomR(M,E) is SG-injective for any injective cogenerator E for R-Mod.

Proof.
(1)⇒ (2) By analogy with the proof of Theorem 4.1.5.
(2)⇒ (3) Is obvious.
(3) ⇒ (1) Since M+ ∼= HomR(M,R+) is SG-injective, we have M is SG-flat by
Theorem 4.1.5.

Theorem 4.1.7
Let R be right coherent and let 0→ N →M → F → 0 be exact with F flat. Then
N is SG-flat if and only if M is SG-flat.

Proof.
Use Theorem 4.1.3 and 4.1.5.

Theorem 4.1.8
Let M be a finitely presented torsion-free left R-module. Then the following are
equivalent:

1- M is SG-projective,

2- M is SG-flat,

3- The natural map from M∗ ⊗RM to HomR(M,M) is an isomorphism,

4- The image of the natural map from M∗⊗RM to HomR(M,M) contains IdM ,

5- M is projective,
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6- M is flat.

Proof.
(1)⇔ (2) By Proposition 3.2.8.
(2) ⇒ (3) There exists an exact sequence 0 → M

f−→ F
g−→ M → 0 with F flat.

Consider the commutative diagram:

M∗ ⊗RM
τFM

∗⊗Rf //

τM

��

M∗ ⊗R F
M∗⊗Rg //

τF

��

M∗ ⊗RM
τM

��

// 0

0 // HomR(M,M) HomR(M,f) // HomR(M,F ) HomR(M,g) // HomR(M,M)

Let ϕ ⊗ m ∈ Ker(M∗ ⊗R f). Then for any m′ ∈ M , τF (ϕ ⊗ f(m))(m′) =
f(ϕ(m′)m) = 0. So ϕ(m′)m = 0, and hence m = 0 or ϕ = 0 since M is torsion-free.
It follows that ϕ⊗m = 0, M∗⊗R f is monic, and hence τM is an isomorphism since
τF is an isomorphism by Theorem 1.5.13.
(3)⇒ (4) and (5)⇒ (1) are obvious.
(4)⇔ (5)⇔ (6) By Theorem 1.5.10.

Proposition 4.1.9
Let R be left noetherian. Then every direct limit of finitely generated SG-flat left
R-modules is SG-flat.

Proof.
Let ((Gi), (ϕji)) be a direct system over I of finitely generated SG-flat left R-
modules. Let i, j ∈ I with i ≤ j. There are exact sequences 0 → Gi → Fi →
Gi → 0 and 0 → Gj → Fj → Gj → 0 with Fi, Fj flat. Since ExtnR(Gi, Fj)+ ∼=
TorRn (F+

j , Gi) = 0 by Theorem 1.6.23 for all n ≥ 1, then Ext1R(Gi, Fj) = 0. Con-
sider the commutative diagram:

0 −−−→ Gi −−−→ Fi −−−→ Gi −−−→ 0yϕji

yψji

y
0 −−−→ Gj −−−→ Fj −−−→ Gj −−−→ 0

Then ((Fi), (ψji)) is a direct system over I. Therefore 0 → lim−→Gi → lim−→Fi →
lim−→Gi → 0 is exact by Theorem 1.1.12 and lim−→Fi is a flat left R-module. let E be
any injective right R-module. Then TorRn (E, lim−→Gi) ∼= lim−→TorRn (E,Gi) = 0 for all
n ≥ 1. Hence lim−→Gi is SG-flat by Proposition 3.2.5.

Proposition 4.1.10
Let R be a commutative ring and Q a projective R-module. If M is an SG-projective
R-module, then M ⊗R Q is an SG-projective R-module.

Proof.
There is an exact sequence 0 → M → P → M → 0 with P projective. Then
0 → M ⊗R Q → P ⊗R Q → M ⊗R Q → 0 is exact and P ⊗R Q is a projective
R-module by Theorem 3, in Ch. 2, ℵ1 [217]. Let Q′ be any projective R-module.
Then ExtiR(M ⊗R Q,Q′) ∼= HomR(Q,ExtiR(M,Q′)) = 0 by Theorem 1.6.19 for all
i ≥ 1. Hence M ⊗R Q is an SG-projective R-module by Proposition 3.1.7.
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Proposition 4.1.11
Let K be a field R a commutative K-algebra and suppose that Q is a countably
generated free R-module. Then M is an SG-projective R-module if and only if
M ⊗R Q is an SG-projective R-module.

Proof.
(⇒) By Proposition 4.1.10.
(⇐) There is an exact sequence 0→M ⊗R Q→ P →M ⊗R Q→ 0 with P projec-
tive. Consider the pullback of P →M ⊗R Q and M ⊗R (Q⊕Q)→M ⊗R Q:

0 0
↓ ↓

M ⊗R Q == M ⊗R Q
↓ ↓

0 −→ M ⊗R Q −→ H −→ M ⊗R (Q⊕Q) −→ 0
‖ ↓ ↓

0 −→ M ⊗R Q −→ P −→ M ⊗R Q −→ 0
↓ ↓
0 0

ThenH is SG-projective by Theorem 4.1.2 and 0→M⊗RQ⊗RQ→ H⊗RQ→ P⊗R
Q → 0 is exact. Since Q is countably generated free and Q ⊗R Rn ∼= (Rn)(N) ∼= Q,
we have Q⊗RQ = lim−→(Q⊗RRn) ∼= Q. So 0→M⊗RQ→ H⊗RQ→ P⊗RQ→ 0 is
exact. Consider the exact sequence 0→M → H → C → 0. Then C⊗RQ ∼= P⊗RQ
is projective, and hence C is projective by Theorem 3, in Ch. 2, ℵ1 [217]. Thus M
is SG-projective by Theorem 4.1.2.

Theorem 4.1.12
Let R be left artinian and suppose that the injective envelope of every simple left
R-module is finitely generated. Then M is an SG-injective left R-module if and
only if M+ is an SG-flat right R-module.

Proof.
(⇒) There exists an exact sequence 0 → M → E → M → 0 in R-Mod with E
injective. Then 0 → M+ → E+ → M+ → 0 is exact and E+ is a flat right R-
module. Let J be any injective left R-module. Then J = ⊕

Λ Jα, where Jα is an
injective envelope of some simple left R-module for any α ∈ Λ by Theorem 1.8.15,
and hence TorRi (M+, J) ∼=

⊕
Λ Tor

R
i (M+, Jα) ∼=

⊕
ΛExt

i
R(Jα,M)+ = 0 by Theorem

1.6.12 for all i ≥ 1. Therefore M+ is an SG-flat right R-module.
(⇐) There exists an exact sequence 0 → M+ → F → M+ → 0 in Mod-R with
F flat. Then 0 → M++N → F+N → M++N → 0 is exact and F+N is an injective
left R-module, and so there is an injective left R-module E such that F+N ⊕ E =
(F+N)++. Set L = (F+N ⊕ E)N. Then 0 → M++N ⊕ L → L → M++N ⊕ L → 0 is
exact, and thus 0 → M ⊕ F+N → F+N → M ⊕ F+N → 0 is exact. Let J be any
injective left R-module. Then J = ⊕

Λ Jα, where Jα is an injective envelope of some
simple left R-module for any α ∈ Λ by Theorem 1.8.15. Thus ExtiR(Jα,M)+ ∼=
TorRi (M+, Jα) = 0 by Theorem 1.6.12 for all i ≥ 1 and any α ∈ Λ, and hence
ExtiR(J,M) ∼=

∏
ΛExt

i
R(Jα,M) = 0 for all i ≥ 1.

94



4.1. THE STRONGLY GORENSTEIN PROPERTY

It follows that M ⊕ F+N is an SG-injective left R-module, and so M is an SG-
injective left R-module by Theorem 4.1.3.

Lemma 4.1.13
Let R be left artinian and suppose that the injective envelope of every simple left
R-module is finitely generated. Then the class SGF(R) of all strongly Gorenstein
flat right R-modules is closed under arbitrary direct products.

Proof.
Let M = ∏

i∈IMi, and Mi ∈ SGF(R) for all i ≥ 1. There exists an exact sequence
0→Mi → Fi →Mi → 0 for all i ≥ 1. Then 0→ ∏

i∈IMi →
∏
i∈I Fi →

∏
i∈IMi → 0

is exact and ∏
i∈I Fi is a flat right R-modules. Let E be any injective left R-module.

Then E = ⊕
ΛEα, where Eα is an injective envelope of some simple left R-module for

any α ∈ Λ by Theorem 1.8.15. Thus TorRn (∏
i∈IMi, E) ∼=

⊕
Λ Tor

R
n (∏

i∈IMi, Eα) ∼=⊕
Λ

∏
i∈I Tor

R
n (Mi, Eα) = 0 by Theorem 1.6.13 for all n ≥ 1. Therefore M is an

SG-flat right R-module.

Corollary 4.1.14
Let R be left artinian and suppose that the injective envelope of every simple module
is finitely generated. Then the following are equivalent for an (R, S)-bimodule M :

1- M is a G-injective left R-module,

2- HomS(M,E) is a G-flat right R-module for all injective right S-modules E,

3- HomS(M,E) is a G-flat right R-module for any injective cogenerator E for
Mod-S,

4- M ⊗S F is a G-injective left R-module for all flat left S-modules F ,

5- M ⊗S F is a G-injective left R-module for any faithfully flat left S-module F .

Proof.
(1)⇒ (2) There is a G-injective left R-module N such that M ⊕N is SG-injective.
Let E be any injective right S-module. Then E is isomorphic to a summand of
S+X for some set X. So HomS(M,E) is isomorphic to a summand of HomS(M ⊕
N,S+X) ∼= (M ⊕ N)+X , and hence HomS(M,E) is a G-flat right R-module by
Theorem 4.1.12, Lemma 4.1.13 and Theorem 3.1.3.
(2)⇒ (3) is obvious.
(3)⇒ (1) There is a G-injective left R-module N such that M ⊕N is SG-injective.
Since (M ⊕N)+ ∼= HomS(M ⊕N,S+) is an SG-flat right R-module, we have M is
a G-injective left R-module by Theorem 4.1.12 and Theorem 3.1.3.
(2)⇒ (4) Let F be any flat left S-module. Then F+ is an injective right S-module.
Hence (M⊗SF )+ ∼= HomS(M,F+) is a G-flat right R-module, and therefore M⊗SF
is a G-injective left R-module by Theorem 2.2.4.
(4)⇒ (5) and (5)⇒ (1) are obvious.

A ring R is said to be left V -ring if every simple left R-module is injective. Recall
an R-module M is small projective if HomR(M,−) is exact with respect to the exact
sequence 0→ K → L→M → 0 in R-Mod with K � L.
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Corollary 4.1.15
Let R be a left artinian left V -ring. Then the following are equivalent for an (R, S)-
bimodule M :

1- M is a G-injective left R-module,

2- HomS(M,E) is a G-flat right R-module for all injective right S-modules E,

3- HomS(M,E) is a G-flat right R-module for any injective cogenerator E for
Mod-S,

4- M ⊗S F is a G-injective left R-module for all flat left S-modules F ,

5- M ⊗S F is a G-injective left R-module for any faithfully flat left S-module F .

Corollary 4.1.16
Let R be left artinian. If every left R-module is small projective, then the following
are equivalent for an (R, S)-bimodule M :

1- M is a G-injective left R-module,

2- HomS(M,E) is a G-flat right R-module for all injective right S-modules E,

3- HomS(M,E) is a G-flat right R-module for any injective cogenerator E for
Mod-S,

4- M ⊗S F is a G-injective left R-module for all flat left S-modules F ,

5- M ⊗S F is a G-injective left R-module for any faithfully flat left S-module F .

Corollary 4.1.17
Let R be a commutative artinian ring. Then the following are equivalent for an
(R, S)-bimodule M :

1- M is a G-injective left R-module,

2- HomS(M,E) is a G-flat right R-module for all injective right S-modules E,

3- HomS(M,E) is a G-flat right R-module for any injective cogenerator E for
Mod-S,

4- M ⊗S F is a G-injective left R-module for all flat left S-modules F ,

5- M ⊗S F is a G-injective left R-module for any faithfully flat left S-module F .

Proof.
If L is a simple R-module, then E(L) is finitely generated by Theorem 1.4.19.

Proposition 4.1.18
Let R be a commutative noetherian ring. If M is an SG-flat R-module and Q is a
flat R-module, then M ⊗R Q is an SG-flat R-module.
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Proof.
There is an exact sequence 0 → M → F → M → 0 with F flat. Then 0 →
M ⊗R Q → F ⊗R Q → M ⊗R Q → 0 is exact and F ⊗R Q is flat R-module by
Theorem 1.5.15. Let I be any injective R-module and let F be a flat resolution of
I.
Then TorRi (M⊗RQ, I) = Hi((M⊗RQ)⊗RF) ∼= Hi(M⊗R(Q⊗RF)) = TorRi (M,Q⊗R
I) = 0 for all i ≥ 1 since Q ⊗R I is injective R-module by Theorem 1.8.14. Hence
M ⊗R Q is an SG-flat R-module by Proposition 3.2.5.

Proposition 4.1.19
If M is a finitely generated SG-projective right R-module, then M∗ = HomR(M,R)
is a finitely generated SG-projective left R-module.

Proof.
There exists a complete projective resolution of the form P = ...

f→ P
f→ P

f→ P
f→

... such that M ∼= Kerf with P finitely generated projective. Then P∗ = ...
f∗→ P ∗

f∗→
P ∗

f∗→ P ∗
f∗→ ... is exact such that M∗ ∼= Kerf ∗ since ExtiR(M,R) = 0 for all i ≥ 1,

and P ∗ is finitely generated projective by Theorem 1.3.11. Let Q be any projective
left R-module. Then HomR(P∗, Q) ∼= P⊗RQ is exact by Proposition 1.3.10. Hence
M∗ is a finitely generated SG-projective left R-module.

4.2 Change of rings
Proposition 4.2.1
Let (R,m) be a commutative local noetherian ring and M a finitely generated R-
module. Then:

1- M ∈ SGP(R) if and only if M̂ ∈ SGP(R̂).

2- If R̂ is a projective R-module and M̂ ∈ SGP(R̂), then M̂ ∈ SGP(R).

Proof.
(1)(⇒) There is an exact sequence 0→M → P →M → 0 in R-Mod with P finitely
generated projective. Then 0→ M̂ → P̂ → M̂ → 0 is exact in R̂-Mod by Theorem
1.8.58. Since Exti

R̂
(P̂ ,−) ∼= Exti

R̂
(R̂ ⊗R P,−) ∼= HomR(P,Exti

R̂
(R̂,−)) = 0 by

Theorem 1.6.19 for all i ≥ 1, then P̂ is a projective R̂-module. Since Exti
R̂

(M̂, R̂) ∼=
Exti

R̂
(M ⊗R R̂, R ⊗R R̂) ∼= ExtiR(M,R)⊗R R̂ = 0 by Theorem 1.6.21 for all i ≥ 1,

we have M̂ ∈ SGP(R̂) by Proposition 3.1.10.
(⇐) There is an exact sequence 0 → M̂ → P → M̂ → 0 in R̂-Mod with P finitely
generated projective. Then P = R̂n for some n ∈ N by Theorem 2.5.15 in [203].
Consider the exact sequence 0 → M → Rn → C → 0. Then 0 → Ĉ → M̂ → 0 is
exact. Consider the exact sequence 0→ C →M → L→ 0. Then L̂ ∼= L⊗R R̂ = 0,
and hence L = 0 since R̂ is a faithfully flat R-module. Since 0 = Exti

R̂
(M̂, R̂) ∼=

ExtiR(M,R) ⊗R R̂ by Theorem 1.6.21, we have ExtiR(M,R) = 0 for all i ≥ 1. It
follows that M ∈ SGP(R) by Proposition 3.1.10.
(2) There is an exact sequence 0 → M̂ → P → M̂ → 0 in R̂-Mod with P finitely
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generated projective. Then P is a projective R-module since P is isomorphic to a
summand of R̂(X) for some set X and R̂(X) is a projective R-module. Since 0 =
Exti

R̂
(M̂, R̂) ∼= ExtiR(M,R)⊗R R̂ by Theorem 1.6.21, we have ExtiR(M,R) = 0 for

all i ≥ 1, and thus ExtiR(M̂,R) ∼= ExtiR(R̂⊗RM,R) ∼= HomR(R̂, ExtiR(M,R)) = 0
by Theorem 1.6.19 for all i ≥ 1. Hence M̂ ∈ SGP(R) by Proposition 3.1.10.

Proposition 4.2.2
Let (R,m) be a commutative local noetherian ring and M an R-module. If R̂ is a
projective R-module, then:

1- If M ∈ SGI(R), then HomR(R̂,M) ∈ SGI(R̂).

2- If HomR(R̂,M) ∈ SGI(R̂), then HomR(R̂,M) ∈ SGI(R).

Proof.
1- There is an exact sequence 0 → M → E → M → 0 in R-Mod with E injec-
tive. Then 0 → HomR(R̂,M) → HomR(R̂, E) → HomR(R̂,M) → 0 is exact in
R̂-Mod and HomR(R̂, E) is an injective R̂-module by Theorem 1.5.12. Let I be
any injective R̂-module. Then ExtiR(H, I) ⊗R R̂ ∼= Exti

R̂
(H ⊗R R̂, I ⊗R R̂) = 0 by

Theorem 1.6.24 for any finitely generated R-module H and all i ≥ 1 since I ⊗R R̂
is an injective R̂-module by Theorem 1.8.14. So ExtiR(H, I) = 0, and hence I is an
injective R-module. Thus Exti

R̂
(I,HomR(R̂,M)) ∼= ExtiR(I,M) = 0 by Theorem

1.6.20 for all i ≥ 1. It follows that HomR(R̂,M) ∈ SGI(R̂).
2- There is an exact sequence 0 → HomR(R̂,M) → E → HomR(R̂,M) → 0 in R̂-
Mod with E injective. Then E is an injective R-module by the proof of (1). Let I be
any injective R-module. Then I is isomorphic to a summand of E(k)X for some set
X, and hence I⊗R R̂ is isomorphic to a summand of E(k)X⊗R R̂ ∼= ER̂(R̂/m̂)X⊗R R̂
by Theorem 1.8.54. It follows that I ⊗R R̂ is an injective R̂-module by Theo-
rem 1.8.14. Hence ExtiR(I,HomR(R̂,M)) ∼= ExtiR(I,HomR̂(R̂,HomR(R̂,M))) ∼=
Exti

R̂
(I⊗RR̂,HomR(R̂,M)) = 0 by Theorem 1.6.20 for all i ≥ 1. So HomR(R̂,M) ∈

SGI(R).

Proposition 4.2.3
Let (R,m) be a commutative local noetherian ring and M an R-module. Then:

1- If M ∈ SGF(R), then R̂⊗RM ∈ SGF(R̂).

2- If R̂⊗RM ∈ SGF(R̂), then R̂⊗RM ∈ SGF(R).

Proof.
1- There is a complete flat resolution of the form F = ...

f−→ F
f−→ F

f−→ F
f−→ ...

in R-Mod such that M ∼= Kerf . Then R̂⊗R F = ...
R̂⊗Rf−→ R̂⊗R F

R̂⊗Rf−→ R̂⊗R F
R̂⊗Rf−→

R̂⊗R F
R̂⊗Rf−→ ... is exact in R̂-Mod and R̂⊗RM ∼= Ker(R̂⊗R f), R̂⊗R F is a flat R̂-

module by Theorem 1.5.15. Let I be any injective R̂-module. Then I is an injective
R-module by the proof of Proposition 4.2.2(1). Hence I ⊗R̂ (R̂ ⊗R F) ∼= I ⊗R F is
exact, and therefore R̂⊗RM ∈ SGF(R̂).
2- There is a complete flat resolution of the form F = ...

f−→ F
f−→ F

f−→ F
f−→ ...
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in R̂-Mod such that R̂ ⊗R M ∼= Kerf . Then F is a flat R-module. Let I be any
injectiveR-module. Then I⊗RR̂ is an injective R̂-module by the proof of Proposition
4.2.2. Hence I ⊗R F ∼= (I ⊗R R̂)⊗R̂ F is exact, and therefore R̂ ⊗R M ∈ SGF(R).

Proposition 4.2.4
Let (R,m) be a complete local ring and M a nonzero artinian R-module. Then the
following are equivalent:

1- M is an SG-injective R-module,

2- M v is an SG-projective R-module,

3- HomR(E(k),M) is a nonzero SG-projective R-module.

Proof.
(1) ⇒ (2) There is an exact sequence 0 → M → E → M → 0 with E injective.
Then E ⊕E ′ = E(k)n for some injective R-module E ′ and some n ∈ N by Theorem
1.8.55, and thus Ev ⊕E ′v = Rn by Lemma 1.4.28 and E ′v is a projective R-module.
Consider the exact sequence 0 → M ⊕ E ′ → E(k)n ⊕ E ′ → M ⊕ E ′ → 0. Then
0 → M v ⊕ E ′v → Rn ⊕ E ′v → M v ⊕ E ′v → 0 is exact with Rn ⊕ E ′v projective
by Lemma 1.4.28. Let Q be any projective R-module. Then ExtiR(M v ⊕ E ′v, Q) ∼=
ExtiR(M v, Q) ⊕ ExtiR(E ′v, Q) = 0 by Theorem 1.11.27. Thus M v ⊕ E ′v is SG-
projective, and hence M v is SG-projective by Theorem 4.1.2.
(2) ⇒ (1) There is an exact sequence 0 → M v → P → M v → 0 with P finitely
generated projective by Theorem 1.4.26. Then P = Rm for some m ∈ N by Theorem
2.5.15 in [203], and hence 0→M → E(k)m →M → 0 is exact by Corollary 1.4.25.
Thus M is SG-injective by Theorem 1.11.27.
(2) ⇔ (3) We first note that if M v is SG-projective, then HomR(E(k),M) ∼=
(M v)∗ 6= 0 by Lemma 1.4.21 since M v 6= 0. Let N be a finitely generated R-
module. If N∗ is SG-projective, then N is G-projective by the proof of Theorem
1.11.27 and there exists an exact sequence 0 → N∗ → P → N∗ → 0 with P pro-
jective, and hence 0 → N → P ∗ → N → 0 is exact by Theorem 1.11.16 and P ∗ is
projective by Theorem 1.3.11. It follows that N is SG-projective if and only if N∗ is
SG-projective by Proposition 4.1.19. Therefore M v is SG-projective if and only if
(M v)∗ is SG-projective if and only if HomR(E(k),M) is SG-projective by Lemma
1.4.21.
(⇐) There is an exact sequence 0→M v → P →M v → 0 with P finitely generated
projective by Theorem 1.4.26. Then P = Rm for some m ∈ N by Theorem 2.5.15 in
[203]. Thus 0 → M → E(k)m → M → 0 is exact by Corollary 1.4.25, and so M is
SG-injective by Theorem 4.1.2.

Proposition 4.2.5
Let (R,m) be a complete local ring and M a nonzero R-module. Then the following
are equivalent:

1- M is a finitely generated SG-injective R-module,

2- M is of finite length and M v is SG-projective,
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3- M is of finite length and HomR(E(k),M) is a nonzero SG-projective R-
module.

Proof.
By Lemma 1.4.29 and Proposition 4.2.4.

Proposition 4.2.6
Let R and S be equivalent rings via equivalences F : R-Mod→ S-Mod and G : S-
Mod→ R-Mod. Then:

1- M ∈ SGP(R) if and only if F (M) ∈ SGP(S) for all M ∈ R-Mod,

2- M ∈ SGI(R) if and only if F (M) ∈ SGI(S) for all M ∈ R-Mod,

3- M ∈ SGF(R) if and only if F (M) ∈ SGF(S) for all M ∈ R-Mod.

Proof.
(1)(⇒) There is a complete projective resolution of the form P = ...

f−→ P
f−→

P
f−→ P

f−→ ... in R-Mod such that M ∼= Kerf . Then F (P) = ...
F (f)−→ F (P ) F (f)−→

F (P ) F (f)−→ F (P ) F (f)−→ ... is exact in S-Mod such that F (M) ∼= Ker(F (f)) and F (P) is
a projective S-module. Let Q be any projective S-module. Then HomS(F (P), Q) ∼=
HomR(P, G(Q)) is exact. Hence F (M) ∈ SGP(S).
(⇐) By GF (M) ∼= M .
(2) and (3) By analogy with the proof of (1).

Corollary 4.2.7
Let R and S be equivalent rings via equivalences F : R-Mod→ S-Mod and G : S-
Mod→ R-Mod. Then:

1- For all M ∈ R-Mod, RM is G-projective if and only if SF (M) is G-projective,

2- For all M ∈ R-Mod, RM is G-injective if and only if SF (M) is G-injective,

3- For all M ∈ R-Mod, RM is G-flat if and only if SF (M) is G-flat.

Corollary 4.2.8
Let R be a ring and let e ∈ R be a nonzero idempotent. If ReR = R, then:

1- M ∈ SGP(R) if and only if eR⊗RM ∈ SGP(eRe) for all M ∈ R-Mod,

2- M ∈ SGP(eRe) if and only if Re⊗eReM ∈ SGP(R) for all M ∈ eRe-Mod,

3- M ∈ SGI(R) if and only if eR⊗RM ∈ SGI(eRe) for all M ∈ R-Mod,

4- M ∈ SGI(eRe) if and only if Re⊗eReM ∈ SGI(R) for all M ∈ eRe-Mod,

5- M ∈ SGF(R) if and only if eR⊗RM ∈ SGF(eRe) for all M ∈ R-Mod,

6- M ∈ SGF(eRe) if and only if Re⊗eReM ∈ SGF(R) for all M ∈ eRe-Mod.
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Corollary 4.2.9
Let R be a ring and let n ≥ 1 be a natural number. Then:

1- M ∈ SGP(R) if and only if Mn(R)eii ⊗R M ∈ SGP(Mn(R)) for all M ∈ R-
Mod,

2- M ∈ SGP(Mn(R)) if and only if eiiMn(R) ⊗Mn(R) M ∈ SGP(R) for all M ∈
Mn(R)-Mod,

3- M ∈ SGI(R) if and only if Mn(R)eii⊗RM ∈ SGI(Mn(R)) for allM ∈ R-Mod,

4- M ∈ SGI(Mn(R)) if and only if eiiMn(R) ⊗Mn(R) M ∈ SGI(R) for all M ∈
Mn(R)-Mod,

5- M ∈ SGF(R) if and only if Mn(R)eii ⊗R M ∈ SGF(Mn(R)) for all M ∈ R-
Mod,

6- M ∈ SGF(Mn(R)) if and only if eiiMn(R) ⊗Mn(R) M ∈ SGF(R) for all M ∈
Mn(R)-Mod.

where eii is matrix unit for all i = 1, ..., n.

Proposition 4.2.10
Assume that S ≥ R is an excellent extension. Then:

1- RM ∈ SGP(R) if and only if S ⊗RM ∈ SGP(S) for all M ∈ R-Mod,

2- RM ∈ SGI(R) if and only if HomR(S,M) ∈ SGI(S) for all M ∈ R-Mod,

3- MR ∈ SGF(R) if and only if M ⊗R S ∈ SGF(S) for all M ∈Mod-R.

Proof.
(1)(⇒) There exists an exact sequence 0 → M → P → M → 0 in R-Mod with P
projective. Then 0 → S ⊗R M → S ⊗R P → S ⊗R M → 0 is exact in S-Mod with
S ⊗R P projective. Let Q be any projective left S-module. Then Q is a projective
left R-module, and so ExtiS(S ⊗RM,Q) ∼= ExtiR(M,Q) = 0 by 1.6.20 for all i ≥ 1.
It follows that S ⊗RM ∈ SGP(S).
(⇐) There exists an exact sequence 0 → S ⊗R M → P → S ⊗R M → 0 in S-
Mod with P projective. Then there is a projective left S-module P

′ such that
P ⊕ P ′ = S ⊗R P . Set L = (P ⊕ P ′)(N). Consider the exact sequence 0 → (S ⊗R
M) ⊕ L → P ⊕ L ⊕ L → (S ⊗R M) ⊕ L → 0. Then 0 → S ⊗R (M ⊕ P

(N)) →
S⊗RP

(N) → S⊗R (M⊕P (N))→ 0 is exact, 0→M⊕P (N) → P
(N) →M⊕P (N) → 0

is exact in R-Mod with P
(N) projective since S is a faithfully flat R-module. Let Q

be any projective left R-module. Then S ⊗R Q is a projective left S-module. Thus
0 = ExtiS(S ⊗R M,S ⊗R Q) ∼= ExtiR(M,S ⊗R Q), and so ExtiR(M,Q) = 0 for all
i ≥ 1 since Q is isomorphic to a summand of S⊗RQ. It follows that M ∈ SGP(R).
(2)(⇒) There exists an sequence 0 → M → E → M → 0 in R-Mod with E
injective. Then 0→ HomR(S,M)→ HomR(S,E)→ HomR(S,M)→ 0 is exact in
S-Mod with HomR(S,E) injective. Let I be any injective left S-module. Then I is
an injective left R-module, and thus ExtiS(I,HomR(S,M)) ∼= ExtiR(I,M) = 0 by
Theorem 1.6.20 for all i ≥ 1. Hence HomR(S,M) ∈ SGP(S).
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(⇐) There exists an exact sequence 0 → HomR(S,M) → E → HomR(S,M) →
0 in S-Mod with E injective. Then there is an injective left S-module E

′ such
that E ⊕ E

′ = HomR(S,E). Set H = (E ⊕ E
′)N. Consider the exact sequence

0 → HomR(S,M) ⊕ H → E ⊕ H ⊕ H → HomR(S,M) ⊕ H → 0. Then 0 →
HomR(S,M ⊕ E

N) → HomR(S,EN) → HomR(S,M ⊕ E
N) → 0 is exact, and

so 0 → M ⊕ E
N → E

N → M ⊕ E
N → 0 is exact in R-Mod with E

N injective.
Let I be any injective left R-module. Then HomR(S, I) is an injective left S-
module. Thus 0 = ExtiS(HomR(S, I), HomR(S,M)) ∼= ExtiR(HomR(S, I),M), and
so ExtiR(I,M) = 0 for all i ≥ 1 since I is isomorphic to a summand of HomR(S, I).
Hence M ∈ SGI(R).
(3)(⇒) There exists an exact sequence 0 → M → F → M → 0 in Mod-R with
F flat. Then 0 → M ⊗R S → F ⊗R S → M ⊗R S → 0 is exact in Mod-S with
F ⊗R S flat. Let I be any injective left S-module and let F be a flat resolution of
I. Then TorSi (M ⊗R S, I) = Hi(M ⊗R F) = TorRi (M, I) = 0 for all i ≥ 1, and so
M ⊗R S ∈ SGF(S).
(⇐) There exists an exact sequence 0 → M ⊗R S → F → M ⊗R S → 0 in Mod-S
with F flat. Then there is a flat right S-module F ′ such that F ⊕F ′ = F ⊗R S. Set
L = (F ⊕ F ′)(N). Then 0→ M ⊕ F (N) → F

(N) → M ⊕ F (N) → 0 is exact in Mod-R
with F

(N) flat by analogy with proof of (1). Let I be any injective left R-module.
Then HomR(S, I) is an injective left S-module. Let F be a flat resolution of M
over R. Then 0 = TorSi (M ⊗R S,HomR(S, I)) = Hi((F ⊗R S) ⊗S HomR(S, I)) ∼=
Hi(F⊗RHomR(S, I)) = TorRi (M,HomR(S, I)) for all i ≥ 1, and so TorRi (M, I) = 0.
Hence M ∈ SGF(R).

Corollary 4.2.11
Let R ∗G be a crossed product, where G is a finite group with |G|−1 ∈ R, Then:

1- For any M ∈ (R ∗G)-Mod, RM is SG-projective if and only if (R ∗G)⊗RM
is SG-projective,

2- For any M ∈ (R∗G)-Mod, RM is SG-injective if and only if HomR(R∗G,M)
is SG-injective,

3- For any M ∈Mod-(R∗G), MR is SG-flat if and only if M⊗R (R∗G) is SG-flat.

Corollary 4.2.12
Let R be a ring n any positive integer. Then:

1- For any M ∈ Mn(R)-Mod, RM is SG-projective if and only if Mn(R) ⊗R M
is SG-projective,

2- For anyM ∈Mn(R)-Mod, RM is SG-injective if and only ifHomR(Mn(R),M)
is SG-injective,

3- For any M ∈Mod-Mn(R), MR is SG-flat if and only if M⊗RMn(R) is SG-flat.

Proposition 4.2.13
Let R be a ring and a a central nonzero divisor. Let M be a finitely generated
R-module on which a acts simply, that is, such that ax = 0, x ∈ M implies x = 0.
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Set R = R/Ra and M = M/aM . If M is an SG-projective left R-module, then M
is an SG-projective left R-module.

Proof.
There is an exact sequence 0 → M → P → M → 0 in R-Mod with P finitely
generated projective. Then 0 → M → P → M → 0 is exact in R-Mod, since
pdR(R) ≤ 1, and P is a projective R-module. Let −\ = HomR(−, R). Consider
the exact sequence 0 → Ra → R → R → 0. Then 0 → R → R\ → Ra\ → 0 is
exact and 0→ Ra⊗RM →M → R⊗RM → 0 is exact. Consider the commutative
diagram:

M \ //

∼=
��

(Ra⊗RM)\ //

∼=
��

Ext1
R

(R⊗RM,R) //

��

Ext1
R

(M,R)
∼=
��

HomR(M,R\) // HomR(M,Ra\) // Ext1R(M,R) // Ext1R(M,R\)

Then Ext1
R

(M,R) ∼= Ext1
R

(R ⊗R M,R) ∼= Ext1R(M,R) = 0, and hence M is an
SG-projective left R-module by Proposition 3.1.10.

Proposition 4.2.14
Let R be a commutative ring. If M is an SG-projective R-module, then M [x] is an
SG-projective R[x]-module.

Proof.
There is an exact sequence 0→M → P →M → 0 in R-Mod with P projective. So

0→M [x]→ P [x]→M [x]→ 0
is exact in R[x]-Mod and P [x] is a projective R[x]-module. Let Q be any projective
R[x]-module. Then Q[x] ∼= R[x] ⊗R Q ∼= R(N) ⊗R Q ∼= Q(N). Hence Q[x] is a
projective R[x]-module, and so Q is a projective R-module by Proposition 1.8.61.
Thus ExtiR[x](M [x], Q) ∼= ExtiR(M,Q) = 0 for all i ≥ 1, and hence M [x] is an
SG-projective R[x]-module.

Corollary 4.2.15
Let K be a field, R a commutative noetherian K-algebra and M a finitely generated
R-module.
Then M is an SG-projective R-module if and only if M [x] is an SG-projective
R[x]-module.

Proof.
(⇒) By Proposition 4.2.14.
(⇐) There is an exact sequence 0 → M [x] → P → M [x] → 0 in R[x]-Mod
with P projective. Then P is a projective R-module by the proof of Proposi-
tion 4.2.14. Since ExtiR(M [x], R) ⊗R R[x] ∼= ExtiR(R[x] ⊗R M,R) ⊗R R[x] ∼=
ExtiR(M,HomR(R[x], R))⊗R R[x] ∼= ExtiR(M,
HomR(R[x], R)⊗R R[x]) ∼= ExtiR(M,R[x])N ∼= ExtiR(M,HomR[x](R[x], R[x]))N ∼=
ExtiR[x](M [x], R[x])N = 0 by Theorem 1.6.20 and Theorem 1.6.24 and R[x] is a
countably generated free R-module for all i ≥ 1, we have M [x] ∼= M ⊗R R[x] is an
SG-projective R-module by Proposition 3.1.10, and hence M is SG-projective by
Proposition 4.1.11.
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Lemma 4.2.16
Let R be a commutative ring and S a multiplicatively closed set of R. If S−1R is a
projective R-module, then A is a projective R-module if and only if A is a projective
S−1R-module for any A ∈ S−1R-Mod.

Proof.
(⇒) Since A ∼= S−1A by Proposition 1.9.5, so A is a projective S−1R-module by
Proposition 2.5.10 in [203].
(⇐) Since A is isomorphic to a summand of S−1R(X) for some set X, we have A is
a projective R-module.

Proposition 4.2.17
Let R be a commutative ring and S a multiplicatively closed set of R. If S−1R is a
projective R-module, then:

1- If A is an SG-projective R-module, then S−1A is an SG-projective S−1R-
module,

2- If S−1R is a finitely generated R-module, then B is an SG-projective R-module
if and only if B is an SG-projective S−1R-module for any B ∈ S−1R-Mod.

Proof.
(1) There is an exact sequence 0→ A→ P → A→ 0 in R-Mod with P projective.
Then 0→ S−1A→ S−1P → S−1A→ 0 is exact in S−1R-Mod and S−1P is a projec-
tive S−1R-module. Let Q be any projective S−1R-module. Then Q is a projective
R-module by Lemma 4.2.16. So ExtiS−1R(S−1A,Q) ∼= ExtiS−1R(S−1R ⊗R A,Q) ∼=
ExtiR(A,Q) = 0 for all i ≥ 1. Hence S−1A is an SG-projective S−1R-module.
(2)(⇒) By (1), since B ∼= S−1B by Proposition 1.9.5.
(⇐) There is an exact sequence 0 → B → P → B → 0 in S−1R-Mod with P
projective. Then P is a projective R-module by Lemma 4.2.16. Let Q be any pro-
jective R-module. Then HomR(S−1R,Q) is a projective S−1R-module since S−1R
is a finitely generated projective R-module by Lemma 4.2.16. So ExtiR(B,Q) ∼=
ExtiR(S−1R ⊗S−1R B,Q) ∼= ExtiS−1R(B,HomR(S−1R,Q)) = 0 by Proposition 1.9.5
and Theorem 1.6.20 for all i ≥ 1, and hence B is an SG-projective R-module.

Proposition 4.2.18
Let R be a commutative noetherian ring and S a multiplicatively closed set of R.
If B is a finitely generated SG-projective S−1R-module, then B is an SG-flat R-
module.

Proof.
There is an exact sequence 0→ B → P → B → 0 in S−1R-Mod with P finitely gen-
erated projective. Then P is a flat R-module by Theorem 1.9.6. Let I be any injec-
tiveR-module. Then 0 = HomS−1R(ExtiS−1R(B, S−1R), S−1I) ∼= TorS

−1R
i (S−1I, B) ∼=

TorRi (I, B)⊗RS−1R by Theorem 1.6.12, and hence TorRi (I, B) = 0 by the condition
Or in Proposition 1.5.16 for all i ≥ 1. So B is an SG-flat R-module.
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Proposition 4.2.19
Let R be a commutative ring and S a multiplicatively closed set of R. If S−1R is a
projective R-module, then:

1- If A is an SG-injective R-module, then HomR(S−1R,A) is an SG-injective
S−1R-module,

2- For any B ∈ R-Mod, HomR(S−1R,B) is an SG-injective R-module if and
only if HomR(S−1R,B) is an SG-injective S−1R-module.

Proof.
(1) There is an exact sequence 0 → A → E → A → 0 in R-Mod with E injective.
Then 0 → HomR(S−1R,A) → HomR(S−1R,E) → HomR(S−1R,A) → 0 is exact
in S−1R-Mod and HomR(S−1R,E) is an injective S−1R-module by Theorem 1.5.12.
Let I be any injective S−1R-module. Then I is an injective R-module by Lemma
1.8.16. So ExtiS−1R(I,HomR(S−1R,A)) ∼= ExtiR(I, A) = 0 by for all i ≥ 1, and
hence HomR(S−1R,A) is an SG-injective S−1R-module.
(2)(⇒) is obvious.
(⇐) There is an exact sequence 0→ HomR(S−1R,B)→ E → HomR(S−1R,B)→ 0
in S−1R-Mod with E injective. Then E is an injective R-module. Let I be any injec-
tiveR-module. Then S−1I is an injective S−1R-module. So ExtiR(I,HomR(S−1R,B)) ∼=
ExtiR(I,HomS−1R(S−1R,HomR(S−1R,B))) ∼= ExtiS−1R(S−1I,HomR(S−1R,B)) =
0 for all i ≥ 1, and hence HomR(S−1R,B) is an SG-injective R-module.

Proposition 4.2.20
Let R be a commutative ring and S a multiplicatively closed set of R. Then:

1- If A is an SG-flat R-module, then S−1A is an SG-flat R-module for any
A ∈ R-Mod,

2- If A is an SG-flat R-module, then S−1A is an SG-flat S−1R-module for any
A ∈ R-Mod,

3- For any B ∈ S−1R-Mod, B is an SG-flat R-module if and only if B is an
SG-flat S−1R-module.

Proof.
(1) There is a complete flat resolution of the form F = ...

f→ F
f→ F

f→ F
f→ ... in R-

Mod such that A ∼= Kerf . Then S−1F = ...
S−1f→ S−1F

S−1f→ S−1F
S−1f→ S−1F

S−1f→ ...
is exact such that S−1A ∼= Ker(S−1f) and S−1F is a flat S−1R-module. Hence S−1F
is a flat R-module. Let I be any injective R-module. Then I⊗R S−1F ∼= S−1I⊗R F
is exact by Proposition 1.9.5 since S−1I is an injective R-module by Lemma 1.8.16.
Hence S−1A is an SG-flat R-module.
(2) There is an exact sequence 0→ A→ F → A→ 0 in R-Mod with F flat. Then
0 → S−1A → S−1F → S−1A → 0 is exact in S−1R-Mod and S−1F is a flat S−1R-
module. Let I be any injective S−1R-module. Then I is an injective R-module by
Lemma 1.8.16. So TorS−1R

i (I, S−1A) ∼= TorRi (I, A) ⊗R S−1R = 0 for all i ≥ 1, and
hence S−1A is an SG-flat S−1R-module.
(3)(⇒) By (2).
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4.2. CHANGE OF RINGS

(⇐) There is a complete flat resolution of the form F = ...
f→ F

f→ F
f→ F

f→ ... in
S−1R-Mod such that B ∼= Kerf . Then F is a flat R-module. Let I be any injective
R-module. Then I ⊗R F ∼= S−1I ⊗S−1R F is exact by Proposition 1.9.5. So B is an
SG-flat R-module.

Corollary 4.2.21
Let R be a commutative ring and S a multiplicatively closed set of R. Then:

1- If A is a G-flat R-module, then S−1A is a G-flat R-module for any A ∈ R-Mod,

2- If A is a G-flat R-module, then S−1A is a G-flat S−1R-module for any A ∈ R-
Mod,

3- For any B ∈ S−1R-Mod, B is a G-flat R-module if and only if B is a G-flat
S−1R-module.

106



BIBLIOGRAPHY

[1] F. W. Anderson and K. R. Fuller, Rings and Catégories of Modules, vol 13 of
Graduate Texts Mathematics. Springer-Verlag, (1974).
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